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Abstract

We study neighbourhoods of submanifolds in generalized complex geometry. Our first main
result provides sufficient criteria for such a submanifold to admit a neighbourhood on which
the generalized complex structure is B-field equivalent to a holomorphic Poisson structure.
This is intimately tied with our second main result, which is a rigidity theorem for gener-
alized complex deformations of holomorphic Poisson structures. Specifically, on a compact
manifold with boundary we provide explicit conditions under which any generalized complex
perturbation of a holomorphic Poisson structure is B-field equivalent to another holomorphic
Poisson structure. The proofs of these results require two analytical tools: Hodge decompo-
sitions on almost complex manifolds with boundary, and the Nash-Moser algorithm. As a
concrete application of these results, we show that on a four-dimensional generalized complex
submanifold which is generically symplectic, a neighbourhood of the entire complex locus is
B-field equivalent to a holomorphic Poisson structure. Furthermore, we use the neighbour-
hood theorem to develop the theory of blowing down submanifolds in generalized complex
geometry.
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1 Introduction

A fundamental question about any geometric structure is “What does it look like?”. This can
be asked at different levels, such as in a neighbourhood of a point or in a neighbourhood of a
special submanifold. In a neighbourhood of a point, an answer to this question amounts to
finding all local invariants of the structure. For example, complex and symplectic structures
have no local invariants and any point has a neighbourhood equivalent to a fixed standard
model. In contrast, Riemannian metrics and Poisson structures do not admit such local models
and further hypothesis are needed to produce a meaningful statement, see, for example, [20, 30]
for the Riemannian case and [9, 12] for the Poisson case.

Similar results describing the neighbourhood of a special submanifold are harder to come
by as typically there is more local data to influence the behaviour of the structure. In sym-
plectic geometry, Weinstein’s Lagrangian and the Symplectic Neighbourhood Theorems [29]
provide successful examples where one can fully describe the geometric structure in a neigh-
bourhood of a special submanifold. In contrast, in complex geometry similar results can only
be proved under more restrictive assumptions [15, 16].

We are interested in the local structure of generalized complex structures. For these struc-
tures, the state-of-the-art on local form theorems are those for neighbourhoods of branes and
for the type change locus on stable generalized complex manifolds [8], for Poisson transversals
[3, 6] and Bailey’s theorem for neighbourhoods of points [4]. The results in [8, 3, 6] rely on
symplectic tools and are similar to Weinstein’s Lagrangian and Symplectic Neighbourhood
Theorems. The normal form theorem for points proved in [4] is complex in nature and states
that generalized complex structures are locally equivalent to the product of symplectic and
holomorphic Poisson structures.

Our objective here is to extend the results from [4] and provide a local form theorem
for the neighbourhood of special types of submanifolds. Since we are aiming for a result
that is complex in nature, the first desired property of these special submanifolds is that the
generalized complex structure in a neighbourhood of the submanifold can be compared with
a reference complex structure. Abelian Poisson Branes (see Definition 2.16) are a natural
class of submanifolds for which such comparison can be made and, similar to Bailey’s result,
we show that there is an equivalence between smooth and holomorphic objects. A precise
statement is given in Theorem 5.2, but the message is that if a neighbourhood U of an Abelian
Poisson brane Y is sufficiently convex and the Dolbeault cohomology H0,2(U) vanishes, then
the generalized complex structure is B-field equivalent to a holomorphic Poisson structure on
a neighbourhood of Y .

This result will follow from an openness result for holomorphic Poisson structures. Namely,
in Theorem 5.1 we prove that if (M, I) is a holomorphic Poisson manifold whose boundary
is sufficiently convex and H0,2(M, I) = 0, then any nearby generalized complex structure is
also holomorphic Poisson. This result is new even for compact manifolds without boundary
(in which case the convexity hypothesis is empty) and implies, for example, that generalized
complex structures near complex structures are of holomorphic Poisson type.

The main tools to prove these results are analytical, namely, we use a Nash–Moser type
of argument as developed in [18] (which relies on some version of elliptic regularity/Hodge
theory), and Hodge theory for complex manifolds with boundary developed recently by van
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der Leer Duran [28] (which relies on the geometric condition of having sufficiently convex
boundary).

Applications of this theorem arise readily in four real dimensions, where the hypotheses of
convexity and vanishing of cohomology are easier to be fulfilled. The first application concerns
the behaviour of the complex locus. We prove:

Theorem 1. Suppose Y is the compact complex locus inside a generalized complex 4-manifold
(M, J). Then J is equivalent to a holomorphic Poisson structure in a neighbourhood of Y in
M .

The second application is to establish a converse to the blow-up procedure introduced in
[3]. We study the question of when a generalized complex manifold is the (canonical) blow-up
of another generalized complex manifold. The full answer is given in Theorem 6.8, and, in
four real dimensions, the result becomes:

Theorem 2. Let Y be a real two-dimensional surface in the complex locus of a four-dimensional
generalized complex manifold M̃ . If Y is diffeomorphic to CP1 and has self-intersection −1,
then Y can be blown down to a point, that is, M = M̃/Y admits a generalized complex

structure for which the quotient map M̃ →M is generalized holomorphic.

While we focused our attention on the generalized complex implications of our main theo-
rems, we expect that their usefulness will go beyond their immediate area. For example, since
the introduction of generalized complex structures two things became apparent:

1. these structures provide a good mathematical framework to describe type II string the-
ory,

2. physicists and mathematicians do not have adequate tools to deal with the type change
locus of a generalized complex manifold, which is precisely where the most interesting
behaviour happens.

The theory developed here provides the missing tools and they are as nice as we could hope
for: the type change locus is described by holomorphic data.

This paper is organized as follows. In Section 2 we review the basics of generalized complex
geometry, starting with the geometry of TM⊕T ∗M in 2.1, following with generalized complex
structures in Section 2.2 and finally introducing Abelian Poisson branes in Section 2.3. In
Section 3 we introduce the framework for deformations of generalized complex structures,
focusing on structures of holomorphic Poisson type and in Section 3.2 we prove our first
result on stability of holomorphic Poisson structures on compact manifolds without boundary
(Theorem 3.4). We continue in Section 4 with Hodge theory, the tool needed to state and
prove the same result on manifolds with boundary. In Section 5 we can finally state our main
theorems. We follow these statements with applications in Section 6 and finish the paper with
the proofs of our main results, in the last section of the paper.

2 Generalized complex geometry

Our main objective in this paper is to prove a neighbouhood theorem for generalized complex
submanifolds of complex type. In this introductory section we briefly review the basic notions
from generalized complex geometry relevant for this work and introduce the submanifolds on
which we will focus our attention. For more details on the topic covered and proofs of the
statements we refer to [17].

2.1 The double tangent bundle

Given an m-dimensional manifold, M , equipped with a closed three-form, H ∈ Ω3(M), one
can form the double tangent bundle TM := TM ⊕ T ∗M . Elements of TM are denoted by
X + ξ, Y + η, . . ., where X,Y ∈ TM and ξ, η ∈ T ∗M , or simply by u, v, . . . , if the distinction
between vectors and forms is not necessary. There are three relevant structures on TM . The
first is the natural pairing given by the pointwise evaluation of forms on vectors:

〈X + ξ, Y + η〉 :=
1

2

(
ξ(Y ) + η(X)

)
.
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The natural pairing is non-degenerate of signature (m,m), and both TM and T ∗M are
isotropic, that is, the natural paring vanishes when restricted to these subbundles.

The second is the natural projection map πT : TM → TM , also called the anchor.
The third is a bracket on the space of sections, the Courant bracket [10], which is a natural

lift via the anchor of the Lie bracket of vector fields to sections of TM :

JX + ξ, Y + ηK := [X,Y ] + LXη − ιY dξ − ιY ιXH.

Sometimes we write J·, ·KH to emphasize which three-form is being used. The following lemma
lists the main properties of TM with these structures.

Lemma 2.1. For u, v, w ∈ Γ(TM) and f ∈ C∞(M) we have

i) Ju, Jv, wKK = JJu, vK, wK + Jv, Ju,wKK,

ii) πT (Ju, vK) = [πT (u), πT (v)],

iii) Ju, fvK = fJu, vK + (πT (u) · f)v,

iv) Ju, uK = d〈u, u〉,
v) 〈Ju, vK, w〉+ 〈v, Ju,wK〉 = πT (u) · 〈v, w〉.

Definition 2.2. A vector bundle E over M equipped with a pairing 〈·, ·〉, an anchor πT : E →
TM and a bracket J·, ·K satisfying the above axioms is called a Courant algebroid.

Among all Courant algebroids, TM has the special property that the anchor map TM πT→
TM and its adjoint T ∗M

π∗
T→ TM together give rise to a short exact sequence:

0→ T ∗M
π∗
T→ TM πT→ TM → 0.

Definition 2.3. An exact Courant algebroid is a Courant algebroid E →M for which

0→ T ∗M
π∗
T→ E

πT→ TM → 0 (2.1)

is an exact sequence.

Given an exact Courant algebroid E → M , a choice of isotropic splitting s : TM → E
gives rise to an isomorphism of Courant algebroids between E and TM . From this point of
view, the immersion T ∗M → TM is natural, but the immersion TM → TM is not. Also
the three-form H is related to the lack of integrability of the splitting chosen. While we will
continue to work with TM , the framework of exact Courant algebroids clarifies some of the
aspects of the theory we describe below.

An important difference between TM and TM is that these spaces have different symme-
tries. For example, while any diffeomorphism ϕ : M →M preserves the Lie bracket of vector
fields, i.e.,

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ],

the same diffeomorphism will only relate the brackets J·, ·KH and J·, ·Kϕ∗H :

ϕ∗(Ju, vKH) = Jϕ∗u, ϕ∗vKϕ∗H ,

where the action of ϕ on TM is given by1

ϕ∗ :=

(
ϕ∗ 0
0 (ϕ−1)∗

)
: TM → TM,

On the other hand, TM has further symmetries not present on TM which are given by the
action of two-forms. Indeed, a two-form B ∈ Ω2(M) acts on TM via:

eB(X + ξ) := X + ξ + ιXB.

From the point of view of exact Courant algebroids, the action of two-forms corresponds
to different choices of splittings of (2.1). As for diffeomorphisms, the action of two-forms
preserves the natural pairing but only relates different Courant brackets:

eB(Ju, vKH) = JeBu, eBvKH+dB ,

1The splitting in this matrix refers to the splitting TM = TM ⊕ T ∗M .
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Even though separately the actions of diffeomorphisms and two-forms do not necessarily
preserve the Courant bracket, the combination ϕ∗ ◦ eB does, provided that ϕ∗H = H + dB.
This expresses the symmetries of TM as an extension of the diffeomorphisms preserving the
cohomology class [H] by closed two-forms:

0→ Ω2
cl(M)→ Sym(TM)→ Diff [H](M)→ 0.

In particular closed two-forms always provide symmetries of TM and the action of a closed
2-form is called a B-field transform.

Just as one can exponentiate vector fields to produce a one parameter family of diffeomor-
phisms, one can exponentiate sections of TM to produce symmetries of TM . The defining
equation for the flow of a section u ∈ Γ(TM) is

d

dt
Ftu(v) = −Ju, Ftu(v)K.

We can solve this ordinary differential equation explicitly in terms of the flow of vector fields.
Indeed, given u = X + ξ ∈ Γ(TM) the flow of u is the one-parameter family of symmetries of
TM , given by

Ftu := ϕt∗e
Bt : TM → TM, (2.2)

where ϕt is the flow of X and Bt :=
∫ t

0
ϕ∗s(dξ + ιXH)ds.

2.2 Generalized complex structures

As before, let (M,H) be a smooth m-manifold equipped with a closed three-form.

Definition 2.4. A generalized complex structure on (M,H) is a complex structure J on
TM which is orthogonal with respect to the natural pairing and whose (+i)-eigenbundle,
L ⊂ TMC, is involutive, i.e. JΓ(L),Γ(L)K ⊂ Γ(L).

An orthogonal complex structure J on TM is an almost generalized complex structure and
involutivity of L is refered as the integrability condition.

Orthogonality of J is equivalent to isotropy of L, which is therefore a Lagrangian subbun-
dle of TM since the decomposition TMC = L⊕L forces L to be of maximal dimension. There
is, therefore, a one-to-one correspondence between almost generalized complex structures and
Lagrangian subbundles, L ⊂ TM , that satisfy the non-degeneracy condition L∩L = 0. Invo-
lutive Lagrangian subbundles of TMC are also called (complex) Dirac structures, hence there
is a one-to-one correspondence between generalized complex structures and nondegenerate
complex Dirac structures.

One of the most basic (pointwise) invariants of an almost generalized complex structure,
J, is its type:

type(J)(p) := dimC(T ∗pM ∩ JT ∗pM), p ∈M.

Since the type is the dimension of the intersection of two subbundles of TM , it is a upper
semicontinous function.

An alternative description of the type of J is obtained by considering the composition

T ∗M
π∗
T→ TM J→ TM πT→ TM.

Orthogonality of J implies that πT ◦ J ◦ π∗T : T ∗M → TM is induced by a bivector πJ and the
type of J is (half of) the corank of π. If J is integrable, πJ is Poisson [11].

The next few examples indicate that the type corresponds to the number of complex
directions J has at any given point.

Example 2.5. Let I be an almost complex structure on M2n. Then

JI :=

(
−I 0
0 I∗

)
(2.3)

defines an almost generalized complex structure whose type is n everywhere. The correspond-
ing Dirac structure is given by LI = T 0,1M ⊕ T ∗1,0M . Integrability of JI is equivalent to
integrability of I and that H be of type (2, 1) + (1, 2) with respect to I.
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Conversely, if a generalized complex structure, J, has type n everywhere, then J : T ∗M →
T ∗M and hence defines an almost complex structure on M . Further, one can show that there
is a two-form B that transforms J into a complex structure, that is J = eB∗ JIe−B∗ for some
B ∈ Ω2(M). Therefore complex structures provide the prototype for structures of type n.

Example 2.6. Let ω ∈ Ω2(M) be a nondegenerate two-form, which therefore provides an
isomorphism ω : TM → T ∗M . Then

Jω :=

(
0 −ω−1

ω 0

)
(2.4)

is an almost generalized complex structure and since J : T ∗M → TM , the structure has
type zero everywhere. The associated Dirac structure is given by Lω = e−iω∗ (TMC) = {X −
iω(X)| X ∈ TMC}. The structure Jω is integrable if and only if ω is closed and H = 0.

Conversely, if J has type zero everywhere, then both TM and JT ∗M are Lagrangian spaces
complimentary to T ∗M hence there is a 2-form B for which JT ∗M = eBTM . Using this form
to transform TM , we put J in the block form above, that is J = eBJωe−B . If J is integrable
we also have that dB = H and dω = 0.

Example 2.7. Let (I, σ) be a holomorphic Poisson structure on M which we decompose into
real and imaginary parts as σ := − 1

4
(IP + iP ), that is, P = −4 Im(σ). If H = 0 then

J(I,σ) :=

(
−I P
0 I∗

)
(2.5)

defines a generalized complex structure. The corresponding Dirac structure is given by

L(I,σ) := T 0,1M ⊕ eσ(T ∗1,0M) = {X + σ(ξ) + ξ| X ∈ T 0,1M, ξ ∈ T ∗1,0M}. (2.6)

The type coincides with 1
2
corank(P ).

Conversely, given a generalized complex structure J, if there exists an involutive, isotropic
splitting s : TM → TM for the anchor π : TM → TM whose image is invariant by J, then,
by performing a B-field transform, we can arrange that J preserves TM , putting it into the
form (2.5) which allows us to define a complex structure and read off the imaginary part of
the holomorphic Poisson bivector, which in turn defines the holomorphic Poisson structure.

The situation described in Example 2.7 occurs frequently enough to deserve a name.

Definition 2.8. A holomorphic gauge for a generalized complex structure J is a B-field B
such that

eBJe−B =

(
−I P
0 I∗

)
(2.7)

for some I and P . In this case, I is a complex structure and σ := − 1
4

(IP + iP ) is a holomor-
phic Poisson structure.

Examples 2.5 to 2.7 tie up generalized complex structures with the more common complex
and symplectic structures. A valid question is whether there are examples which are not
modeled on complex nor symplectic objects. The answer to the question is interesting as
there is a marked difference between local and global behaviour. As we mentioned before,
locally these examples extinguish all possibilities:

Theorem 2.9 (Bailey [4]). A point of type k in a generalized complex manifold has a neigh-
bourhood equivalent, via the action of diffeomorphisms and two-forms, to a neighbourhood of
0 in R2(n−k) × Ck, where R2(n−k) is endowed with the standard symplectic structure and Ck
with a holomorphic Poisson structure which vanishes at 0.

That is, locally a generalized complex manifold is just a product of the structures intro-
duced in Examples 2.5 to 2.7. However, it is not always possible to patch these local forms
in a compatible way and there are many generalized complex manifolds that do not admit
complex or symplectic structures nor are products of these. Concrete examples are given by

the connected sums mCP2#nCP2
: they admit complex or symplectic structures if and only

if m = 1 while they carry a generalized complex structure precisely when m is odd, which is
precisely the condition for admitting an almost complex structure [7].
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2.3 Generalized Poisson submanifolds and branes

Having introduced generalized complex structures last section, our next task is to introduce
the different notions of submanifolds and eventually specialize to the type of submanifolds
for which our neighbourhood theorem applies, namely, those whose local behaviour contains
enough holomorphic data.

The first notion of submanifold arises naturally in the context of pullbacks of Dirac struc-
tures as introduced by Courant [10]. Given a Dirac structure D on a manifold M and a
submanifold i : Y →M , for every point p ∈ Y we define a subspace of TpY by

i∗Dp = {X + i∗ξ ∈ TpY |i∗X + ξ ∈ Dp}. (2.8)

The space i∗Dp ⊂ TpY is automatically Lagrangian, but the collection of spaces Dp may not
vary smoothly from point to point. If it does, involutivity of D with respect to J·, ·KH implies
the involutivity of i∗D with respect to J·, ·Ki∗H , making it into a Dirac structure on Y . One
condition that guarantees that i∗D varies smoothly is that D|i(Y ) ∩N∗Y has constant rank,
where N∗Y is the conormal bundle of Y .

Definition 2.10. Given a Dirac structure D on M and a submanifold i : Y → M , the
pullback of D to Y is the structure i∗D which is well defined as long as i∗D is a smooth
subbundle of TY .

We can rephrase this definition in a splitting independent way. Given a submanifold
i : Y → M , we can form on i∗TM the subbundle N∗Y ⊥, the orthogonal complement of the
conormal bundle of N∗Y ⊂ i∗TM . Then the Courant bracket and the pairing on TM induce
naturally a Courant bracket and a pairing on N∗Y ⊥/N∗Y ∼= TY . In this description, the
pullback Dirac structure is given by

i∗D =
D ∩N∗Y ⊥ +N∗Y

N∗Y
⊂ N∗Y ⊥

N∗Y
. (2.9)

Back to the generalized complex world, given a generalized complex manifold (M,H, J)
and a submanifold i : Y → M , under the smoothness condition above, we can pull back the
associated Dirac structure, L, to Y to obtain a Dirac structure which may or may not be
degenerate. If i∗L is nondegenerate, it defines a generalized complex structure on Y .

Definition 2.11. A generalized complex submanifold of (M,H, J) is a submanifold i : Y ↪→
M such that the Dirac pullback i∗L exists and defines a generalized complex structure on
(Y, i∗H).

In the complex and symplectic contexts this notion of submanifold agrees with the notion of
complex and symplectic submanifolds, respectively. We now want to specialize to a subclass of
generalized complex submanifolds whose behaviour resembles that of complex submanifolds in
complex geometry. To this end we will impose three requirements on our generalized complex
submanifolds. We first give a short overview with intuitive explanations.

1. The first requirement is that JN∗Y = N∗Y , which intuitively means that J is complex in
directions normal to Y . Consequently, Y itself inherits a generalized complex structure
JY via the isomorphism TY ∼= (N∗Y )⊥/N∗Y , a quotient of two J-invariant subspaces.

2. The second requirement is that the induced generalized complex structure JY obtained
from step 1. is B-field equivalent to a holomorphic Poisson structure on Y .

3. The first two requirements imply that N∗1,0Y is a complex vector bundle over a complex
manifold. The third and final requirement is that N∗1,0Y is a holomorphic vector bundle.

Together, these three conditions intuitively amount to J being holomorphic in directions
tangent and normal to Y . Concretely, they imply that there is a natural complex structure
on a tubular neighborhood of Y that we can compare against J itself, and this will play a
major role in the rest of the paper.

To make the above three requirements precise we need some terminology. Below, defini-
tions 2.12, 2.15 and 2.14 correspond to the above requirements 1.,2. and 3., respectively, and
the corresponding class of submanifolds will be called Abelian Poisson branes.

Definition 2.12. A generalized Poisson submanifold of (M,H, J) is a submanifold Y ⊂ M
with the property that JN∗Y = N∗Y .
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Generalized Poisson submanifolds are generalized complex submanifolds in the sense of
Definition 2.11 and they are Poisson submanifolds for πJ. The induced generalized complex
structure JY on Y can be understood directly via the isomorphism TY ∼= (N∗Y )⊥/N∗Y ,
which is a quotient of two J-invariant subspaces of TM .

Lemma 2.13. Let i : Y → (M,H, J) be a generalized Poisson submanifold and let N∗1,0Y
be the +i-eigenspace of J on N∗CY . Then for every y ∈ Y the space N∗1,0y Y inherits a Lie
algebra structure whose bracket is given by

[α, β] = Jα̃, β̃K|y,

where α̃, β̃ ∈ Γ(L) are smooth extensions of α, β ∈ N∗1,0y Y .

Proof. We only need to check that this bracket is well defined since the Lie bracket properties
follow from the corresponding properties of the Courant bracket.

The first step is to check that the bracket does not depend on the choice of extensions α̃
and β̃. We check that for β̃. A different extension of β differs from β̃ by a section β̃′ ∈ Γ(L)
which vanishes at y and we need to show that for such sections Jα̃, β̃′K = 0 at y. Using
bilinearity of the Courant bracket we may assume that β̃′ = fγ, where f is a function that
vanishes at y and γ ∈ Γ(L). For such a section we have

Jα̃, fγK = fJα̃, γK + (LπT (α̃)f)γ.

Both terms on the right hand side vanish at y: the first because f does so and the second
because πT (α̃) vanishes at y.

Since α̃, β̃ ∈ Γ(L) and L is isotropic, we have Jα̃, β̃K = −Jβ̃, α̃K. So the bracket is skew and
the argument above also implies that the bracket is independent of the extension α̃.

Next we check that the right hand side lies in N∗1,0y . Since the result is independent of

the extensions we may pick α̃, β̃ such that α̃|Y , β̃|Y ∈ Γ(N∗1,0Y ) and we must check that
〈Jα̃, β̃K, X〉 vanishes for all X ∈ Γ(TY ). Indeed, we have

〈Jα̃, β̃K, X〉 = LπT α̃〈β̃, X〉 − 〈β̃, Jα̃,XK〉.

The first term vanishes because πT α̃ vanishes at y. The second vanishes because, over Y ,
πT α̃ = 0 and X ∈ TY , hence the vector part of Jα̃,XK vanishes over Y and β̃ ∈ Γ(N∗Y ).

Definition 2.14. A generalized Poisson submanifold i : Y → (M,H, J) is Abelian ifN∗1,0Y →
Y is a bundle of Abelian Lie algebras.

If Y is a generalized Poisson submanifold with complex codimension one, then it is auto-
matically Abelian as any one-dimensional Lie algebra is Abelian. From the Poisson viewpoint,
the Abelian condition means that the induced Poisson structure vanishes quadratically in nor-
mal directions.

The last condition we introduce ensures that Y itself carries a holomorphic structure.

Definition 2.15. A generalized complex brane in (M,H, J) is a submanifold Y ⊂M together
with a J-invariant maximal isotropic subbundle τ ⊂ N∗Y ⊥ such that πT : τ → TY is surjective
and the image of τ in N∗Y ⊥/N∗Y is involutive.

Given a brane (Y, τ), it follows that N∗Y ⊂ τ as by definition N∗Y annihilates all elements
in N∗Y ⊥ and τ is maximal. Dimension count shows that we have an exact sequence

0→ N∗Y → τ → TY → 0. (2.10)

Using a splitting TM |Y = TM |Y ⊕T ∗M |Y , the brane condition is equivalent to the existence
of a two-form F ∈ Ω2(Y ) satisfying dF = i∗H, and for which

τ(F ) := {X + ξ ∈ TY ⊕ T ∗M | ξ|TY = ιXF} ⊂ TM |Y

is J-invariant.
If J is induced by a complex structure, a submanifold i : Y →M is a brane only if Y is a

complex submanifold. For symplectic manifolds, branes include Lagrangian submanifolds.
The manifolds we are interested in are simultaneouly Abelian generalized Poisson sub-

manifolds and branes.
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Definition 2.16. An (Abelian) Poisson brane is an (Abelian) generalized Poisson submani-
fold that in addition carries the structure of a generalized complex brane.

In the next few lemmas we make evident the holomorphic nature of Abelian Poisson branes.

Lemma 2.17. If i : (Y, τ)→ (M,H, J) is a Poisson brane and JY is the induced generalized
complex structure on Y then JY is naturally equivalent to a holomorphic Poisson structure
on Y . In particular Y admits a natural complex structure.

Proof. Since (Y, τ) is a Poisson brane, the image of τ in N∗Y ⊥/N∗Y provides an isotropic
complement to T ∗Y which is involutive and invariant under the induced generalized complex
structure. It follows from Example 2.7 that the generalized complex structure on Y is given
by a holomorphic Poisson structure.

Since for a generalized Poisson submanifold JN∗Y = N∗Y , the conormal bundle of Y is a
complex vector bundle over Y . In the case of an Abelian Poisson brane we can further endow
N∗Y with a holomorphic structure.

Lemma 2.18. Let i : (Y, τ)→ (M,H, J) be an Abelian Poisson brane. Then N∗1,0Y admits
the structure of a generalized holomorphic bundle over Y with the partial connection given
by

∂̄vα = Jṽ, α̃K|Y ,
where v ∈ Γ(LY ), α ∈ Γ(N∗1,0Y ) and ṽ, α̃ are sections of L such that α̃ extends α and
ṽ|Y ∈ Γ((N∗Y ⊥)1,0) is a lift of v.

In particular, the partial connection above makes N∗1,0 into a holomorphic bundle for the
underlying complex manifold Y .

Proof. There is a number of things we need to check. First, we need to check that the proposed
expression for the partial connection does not depend on the particular lift (and extension)
α̃ and ṽ of α and v. Then we must show that the proposed expression does indeed define a
partial connection.

Once a lift for v is fixed, the proof that the expression does not depend on the extensions
is similar to that of Lemma 2.13 so we will omit it. To show that the partial connection is
independent of the lift of v, we recall that the generalized complex structure on Y is obtained
from the quotient of complex vector bundles TY ∼= N∗Y ⊥/N∗Y , hence if ṽ is a lift of v over
Y , any other lift will differ from ṽ by a section β̃ ∈ Γ(N∗1,0Y ) which must still be extended
to a section of L. Therefore to show that the expression is independent of the lift we compute

Jṽ + β̃, α̃K|Y = Jṽ, α̃K|Y + Jβ̃, α̃K|Y = Jṽ, α̃K|Y ,

where the term Jβ̃, α̃K|Y vanishes because N∗1,0Y is a bundle of Abelian Lie algebras.
The fact that ∂̄ defined this way is C∞-linear on v follows from isotropy of L, property iii)

from Lemma 2.1 and the fact that α has no tangent component. Finally, the Jacobi identity
for the Courant bracket implies that ∂̄2 = 0.

Since the induced generalized complex structure on Y is holomorphic Poisson, a generalized
holomorphic bundle is automatically holomorphic for the underlying complex structure.

3 Deformation theory of generalized complex struc-
tures

Next we study the deformation theory of generalized complex manifolds. We start, in Section
3.1, with the general framework of deformations of Dirac structures, introduced in [17, 22].
Eventually we narrow our focus to deformations of holomorphic Poisson structures and in
Section 3.2 we prove the result on stability of holomorphic Poisson structures on compact
manifolds. The proof of this result helps us to set our strategy for the case of manifolds with
boundary and a critical look at the proof signals where we can expect difficulties later.
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3.1 The framework for deformations

Given a pair of complimentary almost Dirac structures, L, L̃ ⊂ TMC, we can identify L̃ ∼= L∗

using the natural pairing:

u(v) := 2〈u, v〉 ∀u ∈ L̃, v ∈ L.

This allows us to define a de Rham differential dL : C∞(ΛkL̃) → C∞(Λk+1L̃) in the usual
way by

dLα(v0, . . . , vk) :=
∑
i

(−1)ivi · α(. . . , v̂i, . . .) +
∑
i<j

(−1)i+jα(Jvi, vjKL, . . . , v̂i, . . . , v̂j , . . .),

(3.1)

where α ∈ C∞(ΛkL̃), v0, . . . , vk ∈ C∞(L), and where Jvi, vjKL denotes the component of

Jvi, vjK in L with respect to the decomposition TMC = L ⊕ L̃. Although in general dL
depends on the choice of L̃ we suppress this from the notation.

If L is integrable we have d2
L = 0, while if L̃ is integrable then the Courant bracket on L̃

extends to give a Lie bracket J·, ·K on C∞(Λ∗L̃). If L and L̃ are both integrable, which we will

assume from now on, then the triple (C∞(Λ•L̃), J·, ·K, dL) constitutes a differential graded Lie

algebra, where the grading on C∞(Λ•L̃) is shifted by 1 (see [22]).

We can use L̃ to describe small deformations of L as an almost Dirac structure. For
ε ∈ C∞(Λ2L̃) we define another almost Dirac structure

Lε := {u+ ιuε|u ∈ L},

where ιuε = ε(u) ∈ L̃ denotes the result of interior contraction. Note that every deformation

of L that is transverse to L̃ can be described in this way for a unique ε, and this applies in
particular to all small deformations of L. As L̃ remains complementary to Lε we can again
identify L̃ ∼= L∗ε for all ε. This allows us to regard the corresponding de Rham operators as
differential operators in a fixed vector bundle: dLε : C∞(ΛkL̃) → C∞(Λk+1L̃). As shown in
[22], the Dirac structure Lε is integrable if and only if ε satisfies the Maurer-Cartan equation

dLε+
1

2
Jε, εK = 0. (3.2)

If this is the case then the corresponding deformed operator dLε on C∞(Λ•L̃) is given by

dLε = dL + Jε, ·K.

Having established that Maurer–Cartan elements in C∞(Λ2L̃) describe nearby integrable
structures, the next step in the study of deformations is to determine which deformations
are equivalent to each other. That is, we need to describe how symmetries of TM act on
deformations. If F : TM → TM is an automorphism which is sufficiently small (i.e. close to the

identity) and if ε ∈ C∞(Λ2L̃) describes a small deformation Lε, then F (Lε) is another small

deformation of L that we can therefore write as LF ·ε for a unique element F ·ε ∈ C∞(Λ2L̃). In
particular, for u ∈ C∞(TM) with flow Ftu (see (2.2)) we can consider Ftu · ε and differentiate

it at t = 0, inducing an infinitesimal action of C∞(TM) on C∞(Λ2L̃). Explicitly, one can
show that

d

dt

∣∣∣∣
t=0

Ftu · ε = dLε(uL̃), (3.3)

where u = uLε + uL̃ is the decomposition of u with respect to TMC = Lε ⊕ L̃.

Holomorphic Poisson structures

The study of deformations becomes more concrete for certain special types of generalized
complex manifolds. Here we focus on holomorphic Poisson structures.

Let (M, I, σ) be a holomorphic Poisson manifold (with zero three-form on M) and let

L := T 0,1M ⊕ eσ(T ∗1,0M) = {X + σ(ξ) + ξ| X ∈ T 0,1M, ξ ∈ T ∗1,0M}
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be the corresponding Dirac structure. We choose L̃ := T 1,0M ⊕ T ∗0,1M as an integrable
Dirac complement to L, for which one can compute that dL = ∂̄ + Jσ, ·K. A deformation

ε ∈ C∞(Λ2L̃) of L is then integrable if and only if

0 = dLε+
1

2
Jε, εK = ∂̄ε+ Jσ, εK +

1

2
Jε, εK. (3.4)

Since L̃ is a direct sum, its exterior algebra admits a natural splitting. It is useful to express
the deformation parameter in terms of this splitting. So we write ε = ε1 +ε2 +ε3 with respect
to the decomposition

Λ2L̃ = Λ2T 1,0M ⊕ (T 1,0M ⊗ T ∗0,1M)⊕ Λ2T ∗0,1M. (3.5)

A useful point of view is to interpret ε2 ∈ C∞(T 1,0M ⊗ T ∗0,1M) as a (not necessarily inte-
grable) deformation of the complex structure I. With this in mind we define the corresponding
∂̄ operator:

∂̄ε2 := ∂̄ + Jε2, ·K : Ω0,q(ΛpT 1,0M)→ Ω0,q+1(ΛpT 1,0M),

where Ω0,q(ΛpT 1,0M) := C∞(ΛqT ∗0,1M⊗ΛpT 1,0M). The Maurer-Cartan equation (3.4) can
then be decomposed into four separate equations as follows:

Ω0,0(Λ3T 1,0M) : 0 = Jσ, ε1K +
1

2
Jε1, ε1K, (3.6)

Ω0,1(Λ2T 1,0M) : 0 = ∂̄ε2ε1 + Jσ, ε2K, (3.7)

Ω0,2(Λ1T 1,0M) : 0 = ∂̄ε2 +
1

2
Jε2, ε2K + Jσ + ε1, ε3K, (3.8)

Ω0,3(Λ0T 1,0M) : 0 = ∂̄ε2ε3. (3.9)

To gain some intuition for these equations, observe that the bracket Jσ+ ε1, ε3K in (3.8) gives
the obstruction for Iε2 , the deformation of I with respect to ε2, to be integrable2. In the
special case that this obstruction vanishes, the other three equations can be interpreted in
clear terms: Equation (3.6) together with Jσ, σK = 0 implies that σ + ε1 defines a Poisson
structure. Equation (3.7) is equivalent to σ+ ε1 being holomorphic for the complex structure
Iε2 . Finally, (3.9) states that ε3 defines a holomorphic two-form for Iε2 . Note in particular
that the deformed Dirac structure Lε is given by a holomorphic Poisson structure if and only
if ε3 = 0.

It is rare that a deformation of a holomorphic Poisson structure presents itself naturally
already with vanishing component ε3. To achieve that, one needs to find a holomorphic gauge
for it, that is we need to find an equivalent deformation using the infinitesimal action of
one-forms on deformations as defined in (3.3) explicitly in this context. For ξ ∈ Ω1(M), its

decomposition with respect to TMC = Lε ⊕ L̃ is given by

ξ =
(
ξ1,0 + (σ + ε1)(ξ1,0) + ε2(ξ1,0)

)
+
(
ξ0,1 − (σ + ε1)(ξ1,0)− ε2(ξ1,0)

)
.

In particular, if Ftξ = etdξ denotes the flow of ξ (see 2.2), we deduce from (3.3) that

d

dt

∣∣∣∣
t=0

Ftξ · ε = (∂̄ + Jσ + ε, ·K)
(
ξ0,1 − (σ + ε1)(ξ1,0)− ε2(ξ1,0)

)
.

We are mainly interested in the component that lies in Ω0,2(M), which is given by

d

dt

∣∣∣∣
t=0

(
Ftξ · ε

)
3

= ∂̄ε2
(
ξ0,1 − ε2(ξ1,0)

)
− Jε3, (σ + ε1)(ξ1,0)K. (3.10)

It is actually also possible to describe the action of closed two-forms.

Lemma 3.1. Let B be a sufficiently small closed real two-form. Then

(eB · ε)1 =(ε1 − σB2,0(σ + ε1))(1 +B2,0(σ + ε1))−1 (3.11)

(eB · ε)2 =(ε2 +B1,1(σ + ε1))(1 +B2,0(σ + ε1))−1 (3.12)

(eB · ε)3 =ε3 +B0,2 +B1,1ε2 − (ε2 +B1,1(σ + ε1))(1 +B2,0(σ + ε1))−1(B1,1 +B2,0ε2)
(3.13)

2Note that Iε2 is integrable precisely when ∂̄2
ε2

= 0, or equivalently when ∂̄ε2 + 1
2
Jε2, ε2K = 0.
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Proof. By definition we have eB(Lε) = LeB ·ε, where L = T 0,1M ⊕T ∗1,0M . Writing out both
sides, a tedious yet straightforward calculation, yields the above three equations.

Remark 3.2. Lemma 3.1 treats the various components of ε and B as (skew-symmetric) endo-
morphisms. For instance, ε2 ∈ C∞(T 1,0M ⊗ T ∗0,1M) is considered as a map ε2 : T ∗1,0M →
T ∗0,1M , the (2, 0)-part of B as a map B2,0 : T 1,0M → T ∗1,0M , and so on. From these expres-
sions we see that B being small in the hypothesis of Lemma 3.1 amounts to the endomorphism
1 +B2,0(σ + ε1) being invertible, for which a sufficient condition is given by

|B|0 <
1

|σ + ε1|0
. (3.14)

Remark 3.3. Equation (3.10) can be obtained from (3.13) by taking B = tdξ and differenti-
ating at t = 0. Specifically, this yields the equality

dξ0,2 + dξ1,1ε2 − ε2(dξ1,1 + dξ2,0ε2) = ∂̄ε2
(
ξ0,1 − ε2(ξ1,0)

)
− Jε3, (σ + ε1)(ξ1,0)K. (3.15)

3.2 Stability of holomorphic Poisson structures on compact
manifolds

As we mentioned last section, a deformation of a holomorphic Poisson structure is itself
manifestly holomorphic Poisson if the component ε3 ∈ C∞(∧2T ∗0,1M) of the deformation
parameter vanishes. Our aim, throughout this paper, is to establish conditions under which
this component can be made to vanish by the action of symmetries of TM . This section we
establish when this is the case for compact manifolds without boundary. The answer depends
on the behaviour of the map H2(M ;R)→ H0,2(M, I) which assigns to any real two-form its
(0, 2)-part. Our main result of this section is:

Theorem 3.4. Let (M2n, I, σ) be a compact holomorphic Poisson manifold without boundary
such that H2(M ;R)→ H0,2(M, I) is surjective. Then every generalized complex deformation
of (I, σ) sufficiently small in the Sobolev L2

n+3-norm admits a holomorphic gauge, that is, it is
B-field equivalent to a holomorphic Poisson deformation of (I, σ). If in addition H0,2(M) = 0,
then the two-form B may be taken to be exact.

This theorem implies, for example, that if H0,2(M) = 0, then every small deformation
of a holomorphic Poisson structure is again (equivalent to) holomorphic Poisson, albeit for
a (possibly) different complex structure on M . That is if H0,2(M) = 0 ‘being holomorphic
Poisson’ is an open condition in generalized complex geometry.

Proof. Fix a Hermitian metric on (M, I), let ∆ denote the corresponding ∂̄-Laplacian and
Hp,q the space of ∂̄-harmonic (p, q)-forms. Let G be the associated Green’s operator and let
H be the projection onto harmonics, so that Id = ∆G + H. Let s : H0,2 → Ω2

cl(M ;R) be a
right inverse for the projection p : Ω2

cl(M ;R) → H0,2(M, I) ∼= H0,2, where Ω2
cl(M ;R) is the

space of closed real 2-forms, which we may arrange to satisfy3 s(B)0,2 = B.
Denote by L2

k(Im(∂̄∗)) the image of ∂̄∗ : L2
k+1(Λ0,2T ∗M) → L2

k(Λ0,1T ∗M), and consider
the smooth maps:

ε̃ : L2
k(Λ2L̃)⊕H0,2 ⊕ L2

k(Im(∂̄∗))→ L2
k−1(∧0,2T ∗M)

ε̃(ε,B, u) = (es(B)+d(u+ū) · ε)3

and (abbreviating ε̃ = ε̃(ε,B, u) for sake of notation)

Φ : L2
k(Λ2L̃)⊕H0,2 ⊕ L2

k(Im(∂̄∗))→ H0,2 ⊕ L2
k(Im(∂̄∗)) (3.16)

Φ(ε,B, u) = (H(ε̃), ∂̄∗G(ε̃)).

Here k := n+ 3 is chosen to ensure that the Sobolev spaces of degree k are algebras and that
their elements are once continuously differentiable (the latter will be relevant below). Denote

3Note that any splitting s̃ satisfies B = s̃(B)0,2 + ∂̄α for some (0, 1)-form α. We can then change s̃ (using a
finite basis for H0,2) via s(B) := s̃(B) + d(α+ α).

12



by D
(2,3)

(ε,B,u)Φ the partial derivative of Φ with respect to its second and third variable at the

point (ε,B, u), which is a linear map

D
(2,3)

(ε,B,u)Φ : H0,2 ⊕ L2
k(Im(∂̄∗))→ H0,2 ⊕ L2

k(Im(∂̄∗)).

We claim that D
(2,3)

(0,0,0)Φ is invertible. Indeed, due to (3.10) and (3.13),

D(0,0,0)ε̃(0, B, u) = s(B)0,2 + ∂̄u = B + ∂̄u

by our choice of splitting s, hence

D
(2,3)

(0,0,0)Φ(B, u) = (H(B + ∂̄u), ∂̄∗G(B + ∂̄u)) = (B, u).

Here we used that ∂̄∗G∂̄u = u because u ∈ Im(∂̄∗). By the implicit function theorem

we obtain, for every small deformation ε ∈ L2
k(∧2L̃), a pair (B, u) ∈ H0,2 ⊕ L2

k(Im(∂̄∗))
with the property that after applying the closed two-form s(B) + d(u + ū) to ε we have
(H(ε3), ∂̄∗G(ε3)) = (0, 0). The pair (B, u) depends smoothly on ε, so by taking ε L2

k-small
we can ensure that (B, u) is sufficiently C1-small (because k > n+ 2).

To finish the proof we must prove two facts:

1. If (H(ε3), ∂̄∗G(ε3)) = (0, 0) and ε is small enough and integrable, then ε3 = 0 and
therefore the deformation is holomorphic Poisson.

2. If ε ∈ L2
k(Λ2L̃) is small enough and in fact smooth, then the pair (B, u) obtained above

is also smooth.

To prove 1. we observe that if (H(ε3), ∂̄∗G(ε3)) = (0, 0), then

0 = ∂̄∂̄∗Gε3 = ∆Gε3 − ∂̄∗G∂̄ε3 = ε3 + ∂̄∗GJε2, ε3K.

In the last step we used that H(ε3) = 0 and that ε satisfies the Maurer-Cartan equation. The
operator

1 + ∂̄∗GJε2, ·K : L2
k(Λ0,2T ∗M)→ L2

k(Λ0,2T ∗M)

is invertible for small ε2, which proves 1.
To prove 2. we observe that by construction s(B) is smooth, so the only question here is

whether the (0,1)-form u chosen above is smooth. To prove that this is the case, we turn to
(3.13). If we let F1 be the nonlinear smooth bundle map

F1 : ∧2 (T 1,0M ⊕ T ∗0,1M)× ∧2T ∗M → ∧0,2T ∗M,

F1(ε,B) = ε3 +B0,2 +B1,1ε2 − (ε2 +B1,1(σ + ε1))(1 +B2,0(σ + ε1))−1(B1,1 +B2,0ε2),

then it follows from 1. that F1(ε, s(B) + d(u+ ū)) = 0. Therefore, not only u ∈ Im(∂̄∗) but it
is also a solution to a nonlinear differential equation of first order. Using these two facts we
conclude that u is also a solution to the second order differential equation

F (ε,B, u) := ∂̄∗F1(ε, s(B) + d(u+ ū)) + ∂̄∂̄∗u = 0, (3.17)

since both summands vanish independently. The first summand is a second order quasilinear
differential operator of divergence type in the sense of [21], since it is a composition of a
nonlinear first order differential operator with ∂̄∗ (a first order linear differential operator).
The second summand is clearly a linear differential operator. Therefore F (ε,B, ·) is also a
second order quasilinear differential operator of divergence type. Since F1, ε and s(B) are
smooth, according to [21, Theorem 6.3], a solution u of this equation is smooth as long as the
linearization of F (ε,B, ·) at u is an elliptic (linear) differential operator. Therefore all that
is left to finish the proof is to argue that this is the case. Since F is a quasi-linear operator
the principal symbol of its linearization at u only depends on the first jet of u. Further, as
mentioned before, as long as ε is chosen small enough in L2

k(∧2,0T ∗M), we obtain that B and
u are C1-small, hence, by continuity of the principal symbol, to show that the linearization of
F (ε,B, ·) is elliptic at u it suffices to show it is elliptic for vanishing ε, B, u. For ε = B = 0,
we have

F (0, 0, u) = ∂̄∗(∂̄u− ((∂u+ ∂̄ū)σ)(1 + ∂ūσ)−1(∂u+ ∂̄ū)) + ∂̄∂̄∗u,

whose linearization at u ≡ 0 is ∂F
∂u
|(0,0,0)(v) = 4v which is elliptic, hence the result follows.
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One of our main results in this paper is that under a few additional hypothesis the theorem
above also holds for manifolds with boundary. At this stage it is good to take a critical look
at the proof of Theorem 3.4 to prepare ourselves for what is to come. The broad idea of our
approach remains to use small symmetries of TM to kill the component ε3 of a given small
deformation. Above, we used two key analytical results to achieve that: Hodge theory for the
∂̄-operator and the implicit function theorem for Banach spaces.

Hodge theory for complex manifolds with boundary was developed by Folland and Kohn
in [13]. While it is similar to usual Hodge theory, there is a subtle, but fundamental difference:
the inverse of the Laplacian, now called N , the Neumann operator, only recovers one weak
derivative. If we follow the approach above with this less sharp Neumann operator, this
apparently technical difference comes back at the map Φ defined in (3.16), which in this new
context has a different codomain:

Φ : L2
k(Λ2L̃)⊕H0,2 ⊕ L2

k(Im(∂̄∗))→ H0,2 ⊕ L2
k−1(Im(∂̄∗)).

The same computation carried above shows that the derivative of Φ along the second and
third coordinates at the identity corresponds to the natural inclusion

H0,2 ⊕ L2
k(Im(∂̄∗))→ H0,2 ⊕ L2

k−1(Im(∂̄∗))

which does not allow us to apply the implicit function theorem.
This small and apparently technical issue irreparably breaks down the argument used in

Theorem 3.4 and we must instead find another approach that can deal with this “loss of
derivatives”. This is typically the context of Nash–Moser types of arguments [4, 18, 23, 24]
and this is precisely the path that will allow us to prove the final result.

To use a Nash–Moser type of algorithm it is not enough to have Hodge theory developed
for one fixed structure. We need uniform bounds on the Neumann operator for all nearby
structures, integrable or not. Extending the work of Folland and Kohn to keep track of how
the Neumann operators of nearby structures are related is an undertaking of its own, and
was carried out by van der Leer Durán separately in [27]. We recall the main result of [27]
in Section 4.2. With the Hodge theory for families of almost complex structures at hand, we
can, in this paper, produce the appropriate Nash–Moser type of algorithm that will substitute
the implicit function theorem.

Therefore the next few steps will be to set up Hodge theory for families of almost complex
structures, which will allow us to give a precise statement of our main theorem. After that
we will set up the Nash–Moser algorithm.

4 Hodge Theory on complex manifolds with bound-
ary

Hodge theory for (almost) complex structures on manifolds with boundary depends on how
convex the boundary is in a very precise way. In this section we will introduce q-covexity,
the geometric notion necessary to develop Hodge theory for manifolds with boundary, and
eventually state the result on elliptic regularity for the ∂̄-Laplacian on complex manifolds
with boundary (c.f. Theorem 4.11).

4.1 Cauchy-Riemann structures and q-convexity

Let M be a manifold with boundary of real dimension 2n and let I be an almost complex
structure on M . On the boundary ∂M we can define a complex vector bundle

CR := T 0,1M ∩ T∂MC

called the Cauchy-Riemann structure of (M, I), of complex rank n−1. Consider the complex
line bundle µ on ∂M given by

µ :=
T∂MC

CR ⊕ CR
.
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It is the complexification of a real line bundle that we can equip with a natural orientation
as follows. For x ∈ ∂M , let ν ∈ TxM denote an outward pointing vector with the property
that Iν ∈ Tx∂M . Then Iν defines a real generator for µx which, up to a positive rescaling, is
independent of the choice of ν.

Definition 4.1. The Levi-form of (M, I) at x is the Hermitian bilinear form defined on CRx
with values in µx given by

Lx(u, v) := −i[u, v]. (4.1)

Remark 4.2. We are abusing notation here by implicitly choosing local extensions of u and
v to sections of CR, in order to compute the bracket [u, v]. By definition of µ as a quotient,
this bracket is independent of the choice of extensions.

Using the identifications µx ∼= C described earlier, we can identify L with a conformal class
of Hermitian bilinear forms on CR, so in particular we can consider the number of positive
and negative eigenvalues of L at every boundary point.

Definition 4.3. Let (M, I) be an almost complex manifold of real dimension 2n and let
0 ≤ q ≤ n be an integer. We call (M, I) q-convex, if for every x ∈ ∂M the Levi-form Lx has
either at least n− q positive or at least q + 1 negative eigenvalues at x.

Remark 4.4. Note that (M, I) is always n-convex. The terminology q-convex is not standard,
and perhaps slightly misleading as negative eigenvalues correspond to concave boundaries. In
[13] (in the context of complex structures) q-convexity is referred to as “condition Z(q)”.

Example 4.5. Let (M ′, I) be an integrable complex manifold without boundary and let
M ⊂M ′ be a submanifold with boundary. Around any point x ∈ ∂M we can find holomorphic
coordinates (z1, . . . , zn) and a real smooth function ϕ satisfying M = {y ∈ M ′| ϕ(y) < 0}
and dxϕ 6= 0. Then

u =

n∑
i=1

ui∂zi ∈ T
0,1M

lies in CR if and only if
∑
i u

i∂z̄iϕ = 0, and on such vectors the Levi form is represented by
the Hermitian bilinear form

L(u, v) =

n∑
i,j=1

∂2ϕ

∂zi∂zj
viuj .

If the above Hessian of ϕ is positive definite on T 0,1MC then its restriction to CR is too and
hence (M, I) is q-convex for all q ≥ 1. For instance, ϕ := |z|2 − 1 on the unit ball in Cn
has this property, which is therefore q-convex for all 1 ≤ q ≤ n. If we then remove a smaller
ball from its interior, the boundary has two components, on which L is positive and negative
definite. This annular region is therefore q-convex for all 1 ≤ q ≤ n− 2.

Example 4.6. Let Y be an (n−1)-dimensional compact complex manifold without boundary
and p : L→ Y a holomorphic line bundle. Let h be a Hermitian metric on L and let M ⊂ L
be the associated unit disc-bundle. On ∂M we have CR ∼= p∗T 0,1Y , and if Rh denotes the
curvature associated to h then it turns out that

L(u, v) = Rh(u, v) ∀u, v ∈ T 0,1Y.

Consequently, M is q-convex if and only if −iRh has, at each point y ∈ Y , either at least
n− q positive eigenvalues or at least q + 1 negative eigenvalues4.

Using the fact that c1(L) is represented by i
2π
Rh, one can sometimes translate the previous

example into a statement about c1(L).

Lemma 4.7. [15] Let Y satisfy the ∂∂̄-lemma5. Then there exists a q-convex disc neighbour-
hood of Y inside a holomorphic line bundle L if and only if c1(L) has a real representative
τ ∈ Ω1,1(Y ) which at each point has either at least n− q negative eigenvalues or at least q+ 1
positive eigenvalues.

4By definition, the eigenvalues of a real (1, 1)-form τ are the eigenvalues of the Hermitian matrix τij with respect
to a decomposition τ = i

∑
i,j τijdz

i ∧ dz̄j in local coordinates.
5Specifically, we need that every real (1, 1)-form which is d-exact is also ∂∂̄-exact.
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Example 4.8. If Y is compact and L is negative, meaning that c1(L) admits a representative
whose eigenvalues are all negative, then Y is Kähler and the ∂∂̄-lemma holds. Consequently,
there exists a disc-neighbourhood which is q-convex for all q ≥ 1. The line bundles OPm(−n)
over Pm for n > 0 satisfy this for example.

4.2 Relation between q-convexity and Hodge decompositions

Let M be a compact manifold with boundary and let I be an integrable complex structure
on M . The associated ∂̄ operator defines a linear differential operator

∂̄ : C∞(Λ•T ∗0,1M)→ C∞(Λ•+1T ∗0,1M),

which is a derivation in the sense that ∂̄(α ∧ β) = ∂̄α ∧ β + (−1)deg(α)α ∧ ∂̄β, and satisfies
∂̄2 = 0. If ε2 ∈ Ω0,1(T 1,0M) describes an almost complex deformation of I, we can consider
the differential operator

∂̄ε2 = ∂̄ + Jε2, ·K : C∞(Λ•T ∗0,1M)→ C∞(Λ•+1T ∗0,1M).

It satisfies the same properties as ∂̄, except that ∂̄2
ε2 vanishes if and only if ε2 defines an

integrable deformation of I.

Remark 4.9. For a more concrete expression of ∂̄ε2 we can write ε2 =
∑
j αj ⊗ Xj where

αj ∈ T ∗0,1M and Xj ∈ T 1,0M . Then for any β ∈ Ω0,•(M) we have

∂̄ε2β = ∂̄β +
∑
j

αj ∧ LXjβ.

Our aim here is to describe a Hodge decomposition for ∂̄ε2 . Fix an auxiliary Hermitian
metric on (M, I) and let ∂̄∗ε2 be the corresponding formal adjoint of ∂̄ε2 . Denote by

∆ε2 := ∂̄ε2 ∂̄
∗
ε2 + ∂̄∗ε2 ∂̄ε2

the associated Laplacian, which we consider as an unbounded operator on the Hilbert space
L2(ΛqT ∗0,1M) of square-integrable (0, q)-forms (here q is an integer between 0 and n =
dimC(M)). The following proposition is due to Friedrichs [14] (see also [13] or [27] for more
details). Below we will abbreviate Ω0,q(M) = C∞(ΛqT ∗0,1M) and denote by r ∈ C∞(M)
a function which is negative on the interior of M , zero on the boundary ∂M and satisfies
|dr|∂M = 1 (with respect to the given Hermitian metric). We denote by σ(∂̄∗ε2 , dr) the symbol
of ∂̄∗ε2 evaluated on the one-form dr.

Proposition 4.10 ([14]). There exists a self-adjoint unbounded operator �ε2 on L2(ΛqT ∗0,1M)
whose domain satisfies

Dom(�ε2) ∩ Ω0,q(M) = {ϕ ∈ Ω0,q(M)| σ(∂̄∗ε2 , dr)ϕ|∂M = 0, σ(∂̄∗ε2 , dr)∂̄ε2ϕ|∂M = 0}, (4.2)

on which �ε2 agrees with with ∆ε2 .

The following theorem provides Hodge decompositions for the operator �ε2 .

Theorem 4.11 ([27]). Let (M, I) be a compact complex manifold with boundary which is
q-convex (see Def.4.3). Then there exists a neighbourhood B ⊂ Ω0,1(T 1,0M) of zero and an
integer b ∈ Z≥0 such that the following hold for every ε2 ∈ B:

1) If ϕ ∈ Dom(�ε2) has the property that �ε2ϕ is smooth, then ϕ is smooth as well and

||ϕ||k+1 ≤ L(|ε2|k+b; ||�ε2ϕ||k) + L(|ε2|k+b; ||ϕ||) (4.3)

for all ϕ ∈ Dom(�ε2) ∩ Ω0,q(M) and all k ∈ Z≥0.

2) The image of �ε2 is closed and we have an orthogonal decomposition

L2(ΛqT ∗0,1M) = Im(�ε2)⊕Hε2 , (4.4)

with Hε2 := Ker(�ε2) ⊂ Ω0,q(M) finite dimensional.

The decomposition (4.4) gives rise to the Neumann operator Nε2 on L2(ΛqT ∗0,1M), which by
definition is zero on Hε2 and satisfies Nε2�ε2ϕ = (1 − πε2)ϕ for ϕ ∈ Dom(�ε2), where πε2
denotes the projection to Hε2 .
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3) For every fixed ε2 the operator Nε2 is bounded, self-adjoint and induces bounded operators
Nε2 : L2

k(ΛqT ∗0,1M) → L2
k+1(ΛqT ∗0,1M). For every ϕ ∈ L2(ΛqT ∗0,1M) we have ϕ =

�ε2Nε2ϕ+ πε2ϕ, and if ϕ ∈ Dom(�ε2) then also ϕ = Nε2�ε2ϕ+ πε2ϕ.

4) If H0 = 0 then, after possibly shrinking B, we have Hε2 = 0 for all ε2 ∈ B and

|Nε2ϕ|k ≤ L(|ε2|k+b; |ϕ|k+b), (4.5)

holds for all ϕ ∈ Ω0,q(M) and all k ∈ Z≥0.

We will make precise what inequalities of the form (4.3) or (4.5) mean in Section 7.1 where
we introduce Leibniz bounds and give some simple examples of those. For now it is enough
to understand that these inequalities describe bounds on the Lk+1

2 and Ck+1 norms of the
left hand side in terms of bounds on the corresponding norms of the right hand side, which
includes information about the size of the deformation parameter. That is, these inequalities
provide uniform bounds for the Neumann operator of nearby complex structures.

Remark 4.12. By this theorem, if M is q-convex and ϕ ∈ Ω0,q(M) then ϕ = ∆ε2Nε2ϕ+πε2ϕ.
However, only if ϕ satisfies the two Neumann boundary conditions in (4.2) do we have

ϕ = Nε2∆ε2ϕ+ πε2ϕ. (4.6)

5 Main results

With Hodge theory under our belts we have nearly all the analytical tools to prove our main
theorems. Since the proof is rather technical, we will first state our main results in this
section, discuss some applications in Section 6 and provide the proof in the final section of
this paper.

5.1 Statement of the main theorems

Let M be a compact manifold with boundary, I be an integrable complex structure on M
and σ be a holomorphic Poisson structure on (M, I). Our first main result concerns small
deformations of the generalized complex structure that corresponds to (I, σ).

Theorem 5.1. Let (M, I, σ) be a compact holomorphic Poisson manifold with boundary.
Suppose that (M, I) is 2- and 3-convex and that H0,2(M, I) = 0. Then any sufficiently small
generalized complex deformation of (M, I, σ) is B-field equivalent to another holomorphic
Poisson structure on M for some exact two-form B on M .

Our second main result concerns neighbourhoods of submanifolds in generalized complex
geometry. Specifically, let (M,H, J) be a generalized complex manifold and i : Y ↪→ M a
compact submanifold with the structure of an Abelian Poisson brane on it (see Def.2.16).
Here M and Y are manifolds without boundary. From Lemmas 2.17 and 2.18 we know that
Y is equipped with a complex structure IY and that the normal bundle NY is a holomorphic
vector bundle over (Y, IY ). The total space of NY therefore comes equipped with an integrable
complex structure denoted by I, which depends only on the brane-structure of Y .

Theorem 5.2. Let (M,H, J) be a generalized complex manifold and (Y, τ) ⊂ M a compact
Abelian Poisson brane. Denote by I the induced complex structure on the total space of NY . If
there exists a neighbourhood U of Y in NY so that (U, I) is 2- and 3-convex and H0,2(U, I) = 0,
then there exists a neighbourhood V of Y in M and an exact two-form B ∈ Ω2(V ) so that J
is B-field equivalent to a holomorphic Poisson structure on V .

Even though this theorem is inspired by Theorem 2.9, which describes generalized complex
structures around points, the general case of Y being a point is not covered by Theorem 5.2
because of the assumption that N∗Y is Abelian. Nevertheless, when Y is a point, the methods
for proving Theorem 5.2 are readily adjusted to re-obtain Theorem 2.9. Interestingly though,
this adjustment only works when Y is a point.

Theorem 5.3 ([4]). Let (M, J) be a generalized complex manifold and y ∈ M a point in the
complex locus of J. Then there exists a neighbourhood V of y in M and an exact two-form
B ∈ Ω2(V ) such that J is B-field equivalent to a holomorphic Poisson structure on V .
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It is worth mentioning that the proof of Theorem 5.3 will produce only a two-form. In
contrast, the proof in [4] produces a two-form and a diffeomorphism, and the resulting complex
structure of the holomorphic poisson structure is already linearized. Of course, we can obtain
that diffeomorphism by an application of the Newlander-Nirenberg theorem [25].

5.2 Codimension-one Abelian Poisson branes

The good thing about Theorem 5.2 is that the conditions are all phrased in terms of the
holomorphic vector bundle NY and do not refer to the ambient manifold (M, J). In practise
though it may be difficult verifying whether there exists a 2- and 3-convex neighbourhood
U ⊂ NY and whether H0,2(U) = 0. We present here an important special case where the
situation can be considerably simplified.

Suppose that Y has (complex) codimension 1 and that the line bundle NY is negative in
the sense of Example 4.8. It follows from that example that NY contains a neighbourhood U
which is q-convex for all q ≥ 1. We interpret Y as a complex submanifold of U of codimension
1, denote by OU the sheaf of holomorphic functions on U and by m ⊂ OU the ideal of functions
vanishing on Y . For every integer k ≥ 0 we have an exact sequence

0→ mk+1 → mk → mk/mk+1 → 0,

where m0 = OU . Since mk/mk+1 ∼= i∗(N
∗Y )⊗k, where i : Y → U denotes the inclusion, the

associated long exact sequence yields

. . .→ H1(Y, (N∗Y )⊗k)→ H2(U,mk+1)→ H2(U,mk)→ H2(Y,N∗Y )⊗k)→ . . .

In particular, whenH1(Y,N∗Y ⊗k) = H2(Y,N∗Y ⊗k) = 0 for all k ≥ 0 we see thatH2(U,OU ) ∼=
H2(U,mk) for all k ≥ 0. By the vanishing theorem [15, Satz 2 (page 357)], H2(U,mk) = 0 for
k sufficiently large, yielding H2(OU ) = 0. Combining this discussion with Theorem 5.2, we
obtain the following result.

Theorem 5.4. Let (Y, τ) ⊂ (M, J) be an Abelian Poisson brane of complex codimension 1.
Suppose that NY is a negative line bundle and that H1(Y,N∗Y ⊗k) = H2(Y,N∗Y ⊗k) = 0 for
every integer k ≥ 0. Then there is a neighbourhood of Y in M on which J is B-field equivalent
to a holomorphic Poisson structure.

5.3 Interpreting H0,2 as the space of obstructions

We give some examples of generalized complex structures which fail to admit holomorphic
gauges, due to failure of the hypotheses of either Theorem 5.1 or Theorem 5.2. The Abelianity
condition should be seen, less as an obstruction, and more as a way of choosing a canonical
holomorphic structure on the normal bundle, and the 2– and 3-convexity conditions are just
so that we can do Hodge theory and therefore deformation theory. The condition on H0,2,
however, is more along the lines of the vanishing of an obstruction map, and readily furnishes
counterexamples.

Example 5.5 (Twisted complex structure on a compact manifold). Let S be a compact
complex manifold for which the map H2(S) → H0,2(S) (taking the (0, 2)–part of any repre-
sentative) is not surjective. Notice, in particular, that such S will not be Kähler.

Let ε3 ∈ Ω0,2(S) represent a class in H0,2(S) not in the image of H2(S). Then the given
complex structure on S deforms as a generalized complex structure by

ε = 0 + 0 + ε3. (5.1)

Because H2(S) → H0,2(S) is not surjective, Theorem 5.1 does not apply. Indeed, in this
case, the deformed generalized complex structure does not have a holomorphic gauge. A
holomorphic gauge corresponds to a deformation whose (0, 2) part vanishes, and a B-field
acting on the deformation ε just acts by adding its (0, 2) part—since we assumed [ε3] was not
in the image of H2(S), there is no such real closed B-field.

For a concrete example of such a complex manifold, S, we can take SU(5). The basic
topology of the classical Lie groups is well understood. In the case at hand, SU(5) is known
to be 2-connected and then Hurewicz’s theorem tells us that H2(SU(5)) ∼= π2(SU(5)) ∼= 0.
But there is a complex structure on SU(5) for which H0,2(SU(5)) ∼= C (see [19], an application
of the techniques in [1]).
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Example 5.6. The above example can be extended to the case of a neighbourhood of a
brane. Let S and ε3 be as above, and let X = S × C, with w a coordinate for the second
factor. Then we deform the complex structure on X via the (0, 2)–form wε3. Note that, along
S × {0}, where w = 0, the generalized complex structure is unchanged by the deformation,
so the standard splitting of TS ⊕ T ∗S gives a brane structure on S ⊂ X.

We remark that the Poisson structure, being trivial, is Abelian about S, and X is also 2–
and 3–convex. However, Theorem 5.2 fails to apply because H0,2(X) 6= 0. Indeed, we can see
that there is no B-transform which puts the deformed structure into a holomorphic gauge:

Suppose, to the contrary, that B is a real, closed 2-form on X with B0,2 = −wε3 (thus,
B-transforming the deformed structure by this 2-form would cancel wε3 and hence yield a
holomorphic gauge). Because B is closed, 0 = (dB)1,2 = ∂̄B1,1−∂(wε3). We can differentiate
this equation in the direction of the vector field ∂w+∂w̄, and using that the complex structure
on X = S × C is constant in the C direction, we obtain

0 = L∂w+∂w̄ ∂̄B
1,1 − L∂w+∂w̄∂(wε3)

= ∂̄L∂w+∂w̄B
1,1 − ∂ε3. (5.2)

Denote by i : S ∼= S × {0} → X the inclusion, and define a real two-form on S by

B̃ := −ε̄3 + i∗
(
L∂w+∂w̄B

1,1)− ε3.

Then B̃0,2 = −ε3, while from (5.2) we see that dB̃ = 0. But, by our assumption that [ε3] was
not in the image of H2(S), such a B̃ should not exist.

6 Applications

6.1 The complex locus in four dimensions

As a first application of our results, we will show in Theorem 6.7 that the complex locus of
any four-dimensional generalized complex manifold has a holomorphic neighbourhood. To
this end, we first prove some needed results about gluing different holomorphic gauges in a
neighbourhood of a point.

6.1.1 Interpolation lemmas

The basic tools for our four-dimensional result regard the interpolation between holomorphic
gauges of a generalized complex structure, as developed in [5]. The first result is a local
interpolation lemma.

Lemma 6.1 ([5, Theorem 2.1]). Suppose J is a generalized complex structure which is of
complex type at a point x, and suppose B0 and B1 are two holomorphic gauges for J. Then, in
a sufficiently small neighbourhood of x, there is a smooth family, Bt, t ∈ [0, 1], of holomorphic
gauges interpolating between B0 and B1.

The second result is a global version of the lemma above. To state it we need a little
setup. Given a holomorphic Poisson structure (I, σ), with σ = − 1

4
(IP + iP ), and a smooth

family of real functions ft, t ∈ [0, 1], there are two families of generalized complex structures
one can construct, and both of them rely on the flow of the P -Hamiltonian vector field of ft,
Xt = P (dft). The first, which we denote by Jσt , is obtained by flowing (I, σ) by Xt, that is,
Jσt is a holomorphic Poisson structure (It, σt), which solves the ODE{

(I0, σ0) = (I, σ)
d
dt

(It, σt) = LXt(It, σt).
(6.1)

The second structure, which we denote by JBt , is the B-field transform of Jσ by the real
closed 2-form Bt which solves the initial value problem{

B0 = 0
d
dt
Bt = −2i∂t∂̄tft,

(6.2)

where ∂t∂̄t is calculated with respect to the complex structure It, the solution to (6.1).
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Lemma 6.2. Let (I, σ) be a holomorphic Poisson structure, with σ = − 1
4
(IP + iP ) and Jσ

be the corresponding generalized complex structure. For any family of smooth real functions
ft, t ∈ [0, 1], the generalized complex structures Jσt and JBt agree.

Conversely, if Bt is a family of real closed 2-forms, with B0 = 0, which are holomorphic
gauges for Jσ, that is, JBt = Jσ̃t for a (unique) family of holomorphic Poisson structures (Ĩt, σ̃t)
and if dBt

dt
= −2i∂t∂̄tft for some family of real functions, then (Ĩt, σ̃t) is the P -Hamiltonian

flow by ft of (I, σ).

Proof. We start with the first statement. Given ft and letting (It, σt) and Bt be as above,
we have that σt = − 1

4
(ItP + iP ) and hence Jσt and JBt are given by

Jσt =

(
−It P
0 I∗t

)
, JBt =

(
−(I + PBt) P

−(BtI + (I∗ +BtP )Bt) Ĩ∗ +BtP

)
.

The automorphism part of JBt , Ĩt := I + PBt, therefore satisfies Ĩ0 = I and

dĨt
dt

=
d

dt
PBt = −2iP∂t∂̄tft = −(4σt∂t∂̄tft + c.c.) = 2i∂̄tX

1,0
t + c.c. = LXtIt, (6.3)

where c.c. stands for the complex conjugate of the term preceding it and we have used that,
by construction, LXtIt = 2i∂̄tX

1,0
t + c.c.. Therefore Ĩt and It are solutions to the same initial

value problem and hence must be the same endormorphism.
As a consequence we have that Ct, the 2-form part of JBt , is given by

Ct = BtI + (I∗ +BtP )Bt = Bt(I + PBt) + (I∗ +BtP )Bt −BtPBt
= BtIt + I∗t Bt −BtPBt.

It is clear that C0 = 0 and we have further

dCt
dt

=
d

dt
(BtIt + I∗t Bt −BtPBt)

= ḂtIt +Btİt + İ∗t Bt + I∗t Ḃt − ḂtPBt −BtPḂt
= Btİt + İ∗t Bt − ḂtPBt −BtPḂt
= BtPḂt + ḂtPBt − ḂtPBt −BtPḂt
= 0,

where in the third equality we used that Ḃt is of type (1,1) for It, hence ḂtIt + I∗t Ḃt = 0
and in the fourth equality we used that, as we have established, It = I + PBt. From this we
conclude that Ct ≡ 0 and JBt = Jσt .

Conversely, given a family, Bt, of holomorphic gauges for Jσ such that Ḃt = −2i∂t∂̄tft
with respect to the corresponding complex structure, Ĩt = I + PBt, then (6.3) shows that Ĩt
satisfies the same differential equation as It, the P -hamiltonian flow of I by ft, hence they
agree and

Jσt = JBt =

(
−It P
0 I∗t

)
which is the P -Hamiltonian flow of Jσ.

6.1.2 Gluing different holomorphic gauges about a point

Proposition 6.3. Suppose that J is a generalized complex structure which is of complex
type at point x, and suppose that B0 and B1 are holomorphic gauges for J. Then, for any
neighbourhood V of x, there exists a holomorphic gauge B and a neighbourhood U ⊂ V of x
such that B = B0 outside of V and B = B1 inside of U .

Proof. In fact, we will construct a family, Ct, t ∈ [0, 1], of holomorphic gauges such that
C0 = B0 and C1 equals the desired B of the Proposition.

First, we invoke Lemma 6.1, to produce a family, Bt, of holomorphic gauges interpolating
between B0 and B1, defined on some neighbourhood V ′ ⊂ V of x. We call the corresponding
family of holomorphic Poisson structures (It, σt), with σt = − 1

4
(ItP + iP ). The complex
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Poincaré lemma allows us to find (on a sufficiently small neighbourhood V ′′ ⊂ V ′ of x) a
smooth family of ∂∂̄–primitves for Ḃt, i.e., a smooth family of functions, ft, such that

d

dt
Bt = −2i∂t∂̄tft (6.4)

(where ∂t∂̄t is always calculated with respect to the complex structure, It, of the holomorphic
gauge Bt). By Lemma 6.2, we conclude that the family (It, σt) is also generated by the
P -Hamiltonian flow of ft.

Next, we define ht = ψft, where ψ is a smooth function which vanishes outside of V ′′

and which equals 1 on some neighbourhood of x. The function ht generates a family of P -
Hamiltonian diffeomorphisms about x and, by pushing forward (I0, σ0) through this family,
we get a family, (Jt, βt) of holomorphic Poisson structures, with (J0, β0) = (I0, σ0), related
by this P -Hamiltonian flow. By Lemma 6.2, we conclude that the (Jt, βt) are also related by
a family of B-transforms eCt , where

d

dt
Ct = i∂t∂̄tht (6.5)

(where ∂t∂̄t is taken with respect to Jt).
Since P vanishes at x, x is a fixed point of both Hamiltonian flows. Then since ht = ft on

a neighbourhood of x, there is some neighbourhood U ⊂ V ′′ of x on which both Hamiltonian
flows—and thus the two families (It, σt) and (Jt, βt)—are equal for all t ∈ [0, 1].

Therefore, on U , the right hand sides of (6.4) and (6.5) are equal, and thus so are Bt and
Ct. Setting B = C1, we have a holomorphic gauge for which B = B1 on U . But since ht = 0
outside of V , we also have that C1 = C0 = B0 outside of V .

Corollary 6.4. Suppose that Y0 and Y1 are closed subsets of generalized complex man-
ifold (M, I) intersecting at isolated points of complex type, and suppose that Y0 and Y1

have neighbourhoods W0 and W1 with holomorphic gauges B0 and B1. Then there exists a
neighbourhood W of Y0 ∪ Y1 with a common holomorphic gauge B which equals B0 near Y0

and—except in an arbitrarily small neighbourhood of Y0 ∩ Y1–B1 near Y1.

Proof. We work with just one x ∈ Y0∩Y1 at a time. We let V ⊂W0∩W1 be a neighbourhood
of x, and now we are in the setting of Proposition 6.3 applied to W0. This gives us a new
holomorphic gauge B on W0 which equals B0 outside of V and B1 on a neighbourhood U of
x. By shrinking the neighbourhoods W0 and W1 (and ignoring other, far-away intersection
points) we can get that W0 ∩W1 ⊂ U . Then B extends to W := W0 ∪W1 by taking the value
B1 on W1.

6.1.3 A neighbourhood theorem for the complex locus in four dimensions

The following lemma also follows from the well-known Serre-Leray spectral sequence for H2

of the structure sheaf on a vector bundle.

Lemma 6.5. The total space of a holomorphic vector bundle K → Y over a complex manifold
has Dolbeault cohomology H0,top(K) = 0.

Proof. Suppose dimC Y = n and rankCK = k. Let β ∈ Ω0,n+k(K) be any ∂̄–closed (0, n+k)–
form. Let (w, z) := (w1, . . . , wk, z1, . . . , zn) be coordinates for a local trivialization of K → Y ,
with the zero section Y ⊂ K corresponding to w = 0, and z being coordinates along Y . Then

β = f dw̄ ∧ dz̄ := f dw̄1 ∧ . . . ∧ dw̄k ∧ dz̄1 ∧ . . . ∧ dz̄n (6.6)

for some smooth function f . Locally in Y , we can find a ∂̄-primitive for β by finding a ∂̄
primitive, α, for f dw̄ along each fiber, and taking the (0, n+ k − 1)–form α ∧ dz̄.

Choose a smooth partition of unity subordinate to a nice cover of Y (whose open sets have
coordinate charts). This pulls back to a partition of unity over K, whose bump functions we
call φ(i), with i indexing the open set. Let z(i) be the corresponding local coordinates on
Y , and α(i) ∧ dz̄(i) the corresponding local primitive for β, constructed as above. Then each
∂̄φ(i) is basic, i.e., ∂̄φ(i) ∧ dz̄(i) = 0. Thus, the globally-defined form

∑
i φ

(i)α(i) ∧ dz̄(i) is a
∂̄–primitive for β.
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Corollary 6.6. The total space of a holomorphic line bundle K → Y over a smooth complex
curve has Dolbeault cohomology H0,2(K̂) = 0 for some neighbourhood K̂ of the zero section.

We can finally prove the promised unconditional result about generalized complex 4-
manifolds:

Theorem 6.7. Suppose Y is the compact complex locus inside a generalized complex 4-
manifold (M, J). Then J is equivalent to a holomorphic Poisson structure in a neighbourhood
of Y in M .

Proof. Locally about any point, Y looks like the vanishing locus of a holomorphic section
of a line bundle (the anticanonical bundle) on C2. Therefore it has components of complex
dimensions 1 and 2. On any component of complex dimension 2, the result is trivial; so we
assume Y locally has the structure of a complex curve.

However, Y need not be smooth. Therefore, we will take a certain resolution of Y and
M , and we shall see that Theorem 5.2 does in fact apply to this resolution. Then we will use
the earlier results of this section to show that the local holomorphic gauge on the resolution
passes to Y in M .

The authors studied generalized complex blow-ups previously in [2]. In 2 complex dimen-
sions the blow-up of a point of complex type, y ∈ Y ⊂M , can be described as follows: Using
Theorem 5.3, choose a local holomorphic gauge in a neighbourhood of y ∈ M . Then blow
up M at y just as a complex manifold, giving π : M̃ → M with exceptional divisor E ⊂ M̃
and π : M̃ \ E → M \ {y} an isomorphism. By a result of Polishchuk [26], the holomorphic
Poisson structure about y pulls back to a holomorphic Poisson structure about E. Then the
generalized complex structure on M \{y} pulls back to M̃ \E, which then glues to the pullback
holomorphic Poisson structure to give a generalized complex structure on M̃ . It is true that
this blow-up does not depend on the choice of gauge used to describe it [2], but this fact is
unimportant here.

Singularities of a complex curve may be resolved by, at each singular point, applying a
sequence of blow-ups. Thus, we apply the above blow-up construction recursively to the
singular points, {y1, y2, . . .}, of Y and its blow-ups, giving a full resolution,

π : M̃ →M, (6.7)

with exceptional divisor E = π−1({y1, y2, . . .}) ⊂ M̃ and

π : M̃ \ E →M \ {y1, y2, . . .} (6.8)

an isomorphism, such that the smooth proper transform6 Ỹ ⊂ M̃ surjects onto Y . Note that
the generalized complex structure, J̃, on M̃ comes with a choice, B0, of holomorphic gauge
in a neighbourhood of E, coming from the fact that, in this neighbourhood, J̃ is constructed
just as a holomorphic Poisson blow-up.

By construction, the proper transform Ỹ ⊂ M̃ is a smooth complex curve. Any generalized
complex structure of complex type in 1 complex dimension is automatically of block diagonal
form, and thus in a holomorphic gauge—therefore Ỹ carries a brane structure. Furthermore,
since NỸ has complex rank 1, it automatically contains a 2- and 3-convex neighbourhood of
Y . By Corollary 6.6, we may choose this neighbourhood with H0,2 = 0. Finally, since Ỹ has
complex codimension 1, it is an Abelian brane. Thus, Theorem 5.2 applies, and we have a
holomorphic gauge, B1, in some neighbourhood of Ỹ .

The gauges B1 and B0 may not agree where they are both defined. However, by Corollary
6.4, there is another holomorphic gauge, B, defined in a neighbourhood of Ỹ ∪E, which equals
B0 in a neighbourhood of E. Since π : M̃ \E →M \{y1, y2, . . .} is an isomorphism, away from
E, B is a pullback of a holomorphic gauge in a neighbourhood of Y \ {y1, y2, . . .}. But near
E, B = B0 is, by construction, the pullback of a holomorphic gauge in a neighbourhood of
{y1, y2, . . .}. Therefore, B is a pullback of a holomorphic gauge in a neighbourhood of Y .

6This is by definition the closure of π−1(Y ), where π is the map given by (6.8).
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6.2 Blowing down submanifolds

In [2] the authors extended the technique of blowing up submanifolds from symplectic and
complex geometry to generalized complex geometry. One of the results in [2] states that
if Y ⊂ (M, J) is a generalized Poisson submanifold such that the Lie algebra structure on
N∗Y is degenerate7, then Y can be blown up in a generalized complex manner. What this
entails exactly is explained in [2], but roughly it means that there is a generalized complex

manifold (M̃, J̃) together with a blow-down map p : M̃ →M , inducing a generalized complex
isomorphism

M̃\p−1(Y ) ∼= M\Y

with the property that the exceptional divisor Ỹ := p−1(Y ) is isomorphic to P(NY ) as a
smooth fiber bundle over Y . Here P(NY ) denotes the complex projectivization of the complex
vector bundle NY . In particular, blowing up Y in M effectively replaces Y with a codimension
one submanifold Ỹ , within the category of generalized complex manifolds. Conversely we can
ask whether a given codimension 1 submanifold Ỹ ⊂ (M̃, J̃) may be replaced by a submanifold
of larger codimension. This notion is referred to as blowing-down, and plays an important
role for instance in the minimal model program in algebraic geometry (where the process is
also referred to as contraction). The rigorous definition of blowing down a submanifold as
well as finding concrete examples is more difficult than for blowing up, but using our normal
form results obtained thus far we can prove the following.

Theorem 6.8. Let (M̃, J̃) be a generalized complex manifold and Ỹ ⊂ (M̃, J̃) an Abelian

Poisson brane. Suppose that Ỹ is diffeomorphic to CPn−1, that NỸ ∼= OCPn−1(−1) as complex

line bundles, and that the induced complex structure on Ỹ coincides with the standard complex
structure on CPn−1. Then there exists a generalized complex manifold (M, J) and a point

y ∈M such that (M̃, J̃) is the blow-up of Y = {y} in M with exceptional divisor Ỹ .

Proof. By the classification of holomorphic line bundles on CPn−1 we know that NỸ ∼=
OCPn−1(−1) as holomorphic line bundles and hence that H1(Ỹ , NỸ ⊗k) = H2(Ỹ , NỸ ⊗k) = 0

for all k ≥ 0. By Theorem 5.4 we can apply a global B-field transform to (M̃, J̃) after which

a neighbourhood of Ỹ is given by a holomorphic Poisson structure. According to [15, Satz 7
(page 363)] a neighbourhood of Y is isomorphic, as a complex manifold, to a neighbourhood
of the zero section in OCPn−1(−1). This neighbourhood can therefore be blown down, as a
complex manifold, reducing Y to a point. Finally we observe that [26, Proposition 8.4] implies
that the Poisson bivector descends to a unique Poisson structure on the blow-down. Since
the generalized complex structure is given by the holomorphic Poisson structure around Y ,
the blow-down is one of generalized complex manifolds as well.

Remark 6.9. Basically we used the neighbourhood theorem Theorem 5.2 to reduce the blowing
down problem to the category of complex manifolds, and this strategy also applies if we want
to blow down to something different than a point. Note that the condition on the complex
structure on CPn−1 is non-trivial for n ≥ 3 as it is unknown in general whether the complex
structure on projective space is unique.

Corollary 6.10. Let Y be a real two-dimensional surface in the complex locus of a four-
dimensional generalized complex manifold, diffeomorphic to CP1 and with self-intersection
−1. Then Y can be blown down to a point.

7 Proof of the main results

7.1 Leibniz bounds

In order to work efficiently with the estimates in this paper we will introduce some notation,
taken from [4]. Let E and F be vector bundles over M with sections u ∈ C∞(E) and
v ∈ C∞(F ). For integers k, l ≥ 0 we write

L(|u|k; ||v||l) := Poly(|u|bk/2c+1) · ||v||l + Poly(|u|bk/2c+1) · |u|k · ||v||bl/2c+1. (7.1)

7A lie algebra g is degenerate if the map Λ3g→ S2g given by x ∧ y ∧ z 7→ x[y, z] + y[z, x] + z[x, y] vanishes.
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Here Poly denotes a polynomial with non-negative coefficients that depends only on k, l and
the C0-norm of u. Furthermore, bxc denotes the biggest integer bounded by x and | · | and || · ||
denote the Ck-norms and Sobolev norms, respectively, defined with respect to some auxiliary
metrics on M , E and F . We think of L(|u|k; ||v||l) as a polynomial that is linear in v and for
which every monomial contains at most one high derivative-norm (of order k or l), the rest
being low derivative norms (of order k/2 or l/2). The letter L stands for Leibniz, on account
of the estimate

||uv||k =
∑
|α|≤k

||∂α(uv)|| ≤
∑
|α|≤k

∑
β+γ=α

|∂βu| · ||∂γv|| ≤ L(|u|k; ||v||k)

for functions u, v ∈ C∞(M). Here are some more examples to illustrate how we will use this
notation.

Example 7.1. Let ε2 ∈ Ω0,1(T 1,0M) denote a deformation of an almost complex structure
I and let ϕ ∈ Ω0,q(M). Then we have

||∂̄ε2ϕ||k = ||∂̄ϕ+ Jε2, ϕK||k ≤ L(|ε2|k+1; ||ϕ||k+1).

Similarly, if ∆ε2 = ∂̄∗ε2 ∂̄ε2 + ∂̄ε2 ∂̄
∗
ε2 denotes the Laplacian, then

||∆ε2ϕ||k ≤ L(|ε2|k+2; ||ϕ||k+2). (7.2)

Note that in this example the left-hand side is linear in ϕ but not in ε2.

Remark 7.2. When dealing with estimates like (7.2) we will often replace |ε2|k+2 and ||ϕ||k+2

by |ε2|k+b and ||ϕ||k+b where b is some fixed large integer. The important thing is that b is
fixed and independent of k.

We will also make use of L(|u|k; |v|k), which is given by the same expression as (7.1) but
with ||v|| replaced by |v|.
Example 7.3. Combined with the Sobolev inequality (7.2) yields the estimate

|∆ε2ϕ|k ≤ L(|ε2|k+b; |ϕ|k+b),

for some integer b (which incorporates the dimension of M).

7.2 Proof of the rigidity theorem

This subsection is devoted to the proof of Theorem 5.1, which is stated again below but more
quantitatively. In what follows we will fix auxiliary Hermitian metrics on our manifolds and
vector bundles. We will also use the terminology of Section 3, in particular we will use the
action of two forms on deformations and the decomposition (3.5) for generalized complex
deformations of a complex structure.

Theorem 7.4. Let (M, I, σ) be a compact holomorphic Poisson manifold with boundary such
that (M, I) is 2- and 3-convex and for which H0,2(M, I) = 0. Then there exists an integer
a ∈ Z>0 and a real constant δ > 0 with the following property. For any generalized complex
deformation ε of (I, σ) that satisfies

|ε|a < δ, (7.3)

there exists a one-form ξ ∈ Ω1(M) with the property that (edξ · ε)3 = 0.

The proof of Theorem 7.4 starts on page 31. We will first sketch the overall strategy,
provide some necessary lemmas and set up a Nash-Moser type algorithm that will be used in
the proof.

Strategy

We will construct the one-form of Theorem 7.4 as an infinite sum ξ =
∑∞
i=0 ξ

(i) using an

iterative algorithm. The idea is to construct ξ(0) from ε(0) := ε so that ε(1) := edξ
(0)

· ε(0)

satisfies8 ε
(1)
3 < ε

(0)
3 . Then we construct ξ(1) from ε(1) so that ε(2) := edξ

(1)

· ε(1) satisfies

8We will give precise meanings to these kind of inequalities later by using Ck-norms.
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ε
(2)
3 < ε

(1)
3 , and so on. Setting things up correctly, the sum ξ =

∑
i ξ

(i) will converge in
C∞(T ∗M) and satisfy

(edξ · ε)3 = lim
n→∞

(ed
∑n

i=0 ξ
(i)

· ε)3 = lim
n→∞

ε
(n+1)
3 = 0.

The construction of ξ(i) from ε(i) is a bit involved, mainly because ε
(i)
2 is not necessarily

integrable as an almost complex deformation of I. Modulo some details though, ξ(i) will be
given by a ∂̄

ε
(i)
2

-primitive of ε
(i)
3 (recall that ∂̄

ε
(i)
2

ε
(i)
3 = 0 because ε is integrable, c.f. 3.9). The

fact that we can construct such primitives follows from the Hodge theory of Theorem 4.11
combined with the assumptions that (M, I) is 2-convex and that H0,2(M, I) = 0. The reason
that we also need 3-convexity is because of a technicality in Lemma 7.9.

The precise definition of ξ(i) will be given later, but there is one technical aspect in its
definition that deserves to be mentioned here. To ensure that ξ =

∑
i ξ

(i) converges we

need suitable estimates on all the Ck-norms |ξ(i)|k. Since ξ(i) is constructed from ε
(i)
3 using

the Neumann operator associated to ε
(i)
2 , (4.5) bounds the Ck-norms of ξ(i) by those of ε

(i)
2

and ε
(i)
3 and therefore by induction by those of ε

(0)
2 and ε

(0)
3 . There is however a shift of

the norm degrees in these estimates which becomes bigger as i increases, preventing us from
expressing |ξ(i)|k directly in terms of the starting data |ε(0)

2 |k and |ε(0)
3 |k. This phenomenon

is sometimes called a “loss of derivatives”, because information about a certain Ck-norm of
ε(0) only provides information for a smaller Ck-norm of ξ(i). To overcome this issue we have
to modify the elements ξ(i) with the help of so-called smoothing operators, which compensate
the loss of derivatives at each iterative step. This technique was first introduced by Hamilton
in [18].

The necessary estimates

Throughout this section we let (M, I, σ) denote a fixed compact holomorphic Poisson manifold
with boundary. Let

D := C∞(Λ2T 1,0M)⊕ C∞(T ∗0,1M ⊗ T 1,0M)⊕ C∞(Λ2T ∗0,1M),

G := C∞(T ∗M),

be the spaces parametrizing generalized complex deformations of (I, σ) and one-forms (thought
of as exact B-field transformations) on M , respectively. Denote by | · |k the Ck-norms on these
Fréchet spaces. As explained in Section 3, the group G acts on the set of deformations D

(ξ, ε) 7→ edξ · ε,

which is well defined when |ξ|1 is small compared to |σ + ε1|0 (c.f. Remark 3.2).
In order to construct the sequence of one-forms of the algorithm (c.f. the strategy above),

we will use the map Φ : D → G defined by

Φ(ε) := −∂̄∗ε2Nε2ε3 − (1 + ε2)(1− ε2ε2)−1(∂̄∗ε2Nε2ε3 + ε2(∂̄∗ε2Nε2ε3)). (7.4)

If (M, I) is 2-convex, Theorem 4.11 implies that there exists an integer a0 > 0 and a constant
δ0 > 0 such that Φ(ε) is well defined whenever |ε2|a0 < δ0.

Remark 7.5. The definition of Φ is chosen to ensure that Φ(ε) is real and satisfies

Φ(ε)0,1 − ε2(Φ(ε)1,0) = −∂̄∗ε2Nε2ε3. (7.5)

The left-hand side equals the (0, 1)-part of Φ(ε) with respect to the deformed almost complex
structure Iε2 , while the right-hand side will turn out to give an approximate ∂̄ε2 -primitive of
ε3 whenever ∂̄ε2ε3 = 0 and H0,2(M, I) = 0.

Lemma 7.6. Suppose that (M, I) is 2-convex and that H0,2(M, I) = 0. Then there exist
a0 ∈ Z>0 and δ0 > 0 with the following property. For all ε ∈ D satisfying |ε|a0 < δ0 we have
(abbreviating Φ := Φ(ε))

(edΦ · ε)3 =∂̄∗ε2 ∂̄ε2Nε2ε3 − Jε3, (σ + ε1)(Φ1,0)K

+
(
ε2dΦ2,0 − dΦ1,1)(σ + ε1)

(
1 + dΦ2,0(σ + ε1)

)−1(
dΦ1,1 + dΦ2,0ε2

)
. (7.6)
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Proof. Because of 2-convexity we know that Φ(ε) ∈ G is well-defined for |ε2|a0 < δ0 when a0

is sufficiently large and δ0 sufficiently small. We may assume that δ0 < 1 so that |σ + ε1|0 ≤
|σ|0 + δ0 < |σ|0 + 1, and because Φ : D → G is continuous we may enlarge a0 and shrink δ0
(depending on |σ|0) so that edΦ · ε ∈ D is well-defined whenever |ε|a0 < δ0 (c.f. Remark 3.2).

Since H0,2(M, I) = 0, Theorem 4.11 4) implies that H0,2
ε2 = Ker(∆ε2) = 0 for |ε2|a0 < δ0

(after possibly enlarging a0 and shrinking δ0). Consequently, using (7.5) we deduce that

∂̄ε2(Φ0,1 − ε2(Φ1,0)) = −∂̄ε2 ∂̄
∗
ε2Nε2ε3 = −∆ε2Nε2ε3 + ∂̄∗ε2 ∂̄ε2Nε2ε3 = −ε3 + ∂̄∗ε2 ∂̄ε2Nε2ε3.

This equation, combined with (3.13) and (3.15), implies (7.6).

We will think of Φ(ε) as a one-form designed to make sure that (edΦ(ε) ·ε)3 is smaller than
ε3. Eventually we will achieve this by using that the right hand side of (7.6) is quadratic in
ε3. Since Φ = Φ(ε) depends linearly on ε3 we see that this is indeed true for all terms in (7.6),
except possibly for the first term. We will now set out to prove that this first term can be
bounded by something that is quadratic in ε3 (Lemma 7.9 below). We will make use of the
following estimates, whose proofs can be found in [18].

Proposition 7.7 ([18]). Let M be a compact manifold with boundary.
1) For every triple of integers 0 ≤ k ≤ l ≤ m we have

|f |l ≤C|f |
m−l
m−k

k |f |
l−k
m−k
m ∀f ∈ C∞(M). (7.7)

2) For every integer k ≥ 0 we have

|fg|k ≤C(|f |k|g|0 + |f |0|g|k) ∀f, g ∈ C∞(M). (7.8)

3) If (i, j) lies on the line segment joining (k, l) and (m,n), we have

|f |i|g|j ≤C(|f |k|g|l + |f |m|g|n) ∀f, g ∈ C∞(M). (7.9)

(In all three cases C denotes a constant that depends only on i, j, k, l,m)

Remark 7.8. These inequalities also hold for multiplicative operations involving tensors. For
example, for a Dirac structure L ⊂ TMC we have

|Ju, vK|k ≤ C(|u|k+1|v|1 + |u|1|v|k+1) ∀u, v ∈ C∞(Λ•L). (7.10)

Lemma 7.9. Suppose that (M, I) is 2- and 3- convex. Then there exist a0, b0 ∈ Z>0 and
δ0 > 0 with the following property. For every k ∈ Z≥0 and every integrable ε ∈ D satisfying
|ε2|a0 < δ0, we have

|∂̄∗ε2 ∂̄ε2Nε2ε3|k ≤
(
L(|ε1|k+b0 ; |ε3|k+b0) + L(|ε2|k+b0 ; |ε3|k+b0)

)
· |ε3|a0 (7.11)

Proof. For suitable a0 and δ0 we know that the Neumann operator Nε2 is well-defined in
degrees 2 and 3 when |ε2|a0 < δ0. Since for every ϕ ∈ Ω0,•(M) we have (see Example 7.1)

|∂̄∗ε2ϕ|k ≤L(|ε2|k+1; |ϕ|k+1),

it suffices to focus our attention on ϕ := ∂̄ε2Nε2ε3 ∈ Ω0,3(M). We would like to apply (4.6)
to ϕ, but in order to do so we need ϕ ∈ Dom(�ε2). The first Neumann boundary condition
σ(∂̄∗ε2 , dr)ϕ|∂M = 0 holds because Nε2ε3 ∈ Dom(�ε2), but the second Neumann boundary
condition requires that

σ(∂̄∗ε2 , dr)∂̄ε2ϕ|∂M = σ(∂̄∗ε2 , dr)∂̄
2
ε2Nε2ε3|∂M

is equal to zero, and this is not guaranteed because ∂̄2
ε2 is not necessarily zero. To get around

this, let r be a boundary-defining function as in Proposition 4.10 and consider the function

f := σ(∂̄∗ε2 , dr)∂̄ε2r.

Since f = − 1
2

on ∂M when ε2 = 0, f is non-vanishing around ∂M for small |ε2|1. Conse-
quently, f−1 is well-defined near ∂M and can be extended smoothly to all of M by multiplying
it with a fixed bump function that is supported near ∂M . Define

α := f−1σ(∂̄∗ε2 , dr)∂̄ε2ϕ = −f−1σ(∂̄∗ε2 , dr)JJσ + ε1, ε3K, Nε2ε3K, (7.12)
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where in the second equality we used (3.8). We claim that

ϕ̃ := ϕ− rα ∈ Dom(�ε2).

Indeed, the first Neumann condition holds because ϕ̃ = ϕ on ∂M . For the second Neumann
condition, we use that σ(∂̄∗ε2 , dr) is a derivation and that σ(∂̄∗ε2 , dr)α = 0 to obtain

σ(∂̄∗ε2 , dr)∂̄ε2 ϕ̃|∂M = σ(∂̄∗ε2 , dr)(∂̄ε2ϕ− ∂̄ε2r ∧ α)|∂M = (fα− fα)|∂M = 0.

Since ϕ̃ ∈ Dom(�ε2) we can apply (4.6) to ϕ̃ which, in combination with (4.5), yields

|ϕ̃|k ≤L(|ε2|k+b; |∆ε2 ϕ̃|k+b) + |πε2 ϕ̃|k
≤L(|ε2|k+b; |∆ε2ϕ|k+b) + L(|ε2|k+b; |∆ε2(rα)|k+b) + |πε2(rα)|k. (7.13)

Note that πε2ϕ = 0 because Im(∂̄ε2) is orthogonal to Hε2 . We will estimate the above three
terms individually. Since ∂̄ε2∆ε2Nε2ε3 = ∂̄ε2ε3 = 0, we have

∆ε2ϕ = [∆ε2 , ∂̄ε2 ]Nε2ε3 =(∂̄∗ε2 ∂̄
2
ε2 − ∂̄

2
ε2 ∂̄
∗
ε2)Nε2ε3

=− ∂̄∗ε2JJσ + ε1, ε3K, Nε2ε3K + JJσ + ε1, ε3K, ∂̄∗ε2Nε2ε3K, (7.14)

where in the last step we used (3.8). Next, since ∆ε2 is a second-order operator we obtain

L(|ε2|k+b; |∆ε2(rα)|k+b) ≤ L(|ε2|k+b+2; |rα|k+b+2). (7.15)

Finally, using the Sobolev estimate and (4.3) we conclude that

|πε2(rα)|k ≤ C||πε2(rα)||k+b ≤ L(|ε2|k+2b; ||πε2(rα)||) ≤ L(|ε2|k+2b; |rα|). (7.16)

Combining (7.12)-(7.16), we obtain the estimate

|ϕ|k ≤ L(|ε2|k+2b; |Θ(ε)|k+2b) (7.17)

where

Θ(ε) := JJσ + ε1, ε3K, Nε2ε3K + JJσ + ε1, ε3K, ∂̄∗ε2Nε2ε3K.

Applying (7.10) repeatedly together with (4.5) we obtain

|Θ(ε)|k+2b ≤
(
L(|ε1|k+2b+2; |ε3|k+2b+2) + L(|ε2|k+3b+2; |ε3|k+3b+2)

)
· |ε3|a0 .

This proves the lemma if we set b0 := 3b+ 2.

The following lemma summarizes all the estimates that we will need for the proof of
Theorem 5.1. Together with Proposition 7.12 below, this forms the input for the Nash-Moser
algorithm.

Lemma 7.10. Suppose that (M, I) is 2- and 3-convex and that H0,2(M, I) = 0. Then there
exist a0, b0 ∈ Z>0 and δ0 ∈ (0, 1) with the following property. For every k ∈ Z≥0, every
integrable ε ∈ D satisfying |ε|a0 < δ0 and every ξ ∈ G satisfying |ξ|2 < (1 + |σ|0)−1 we have

|(edξ · ε)i|k ≤ |εi|k + C|ε|k|ξ|1 + C|ξ|k+1, for i = 1, 2, 3, (7.18)

|Φ(ε)|k ≤ L(|ε2|k+b0 ; |ε3|k+b0), (7.19)

|(edΦ(ε) · ε)3|k ≤
(
L(|ε1|k+b0 ; |ε3|k+b0) + L(|ε2|k+b0 ; |ε3|k+b0)

)
· |ε3|a0 (7.20)

Proof. We start with (7.18): Since |ξ|1 < (1 + |σ|0)−1 we know that edξ · ε is well-defined.
The reason we require the bound on |ξ|2 is to simplify the estimates a little in the following
sense. Consider

κ := 1 + dξ2,0(σ + ε1) : T 1,0M → T 1,0M,

which is invertible by assumption. Then there exists a constant C depending on k, |κ−1|0
and |κ|1 (the latter depends on |ξ|2) such that

|κ−1|k ≤ C(1 + |κ|k). (7.21)
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This can be proved by induction on k, using κκ−1 = 1 and (7.9). Combining

κ−1 = 1− dξ2,0(σ + ε1)κ−1,

(7.8), (7.21) and Lemma 3.1, we obtain Eq.(7.18).
The proof of equation (7.19) follows from the definition of Φ, Theorem 4.11 4) and Propo-

sition 7.7.
Finally we turn to (7.20). An explicit expression for (edΦ(ε) · ε)3 is given in (7.6). The

first term in that expression was bounded in Lemma 7.9, while the remaining terms can be
bounded more directly using again claim 4) from Theorem 4.11 and Proposition 7.7.

Remark 7.11. Whenever we use (7.18) we will have a prescribed uniform bound on |ξ|2, so
that C effectively only depends on k.

The final tool needed for the algorithm is the concept of smoothing operators.

Proposition 7.12 ([18]). There exists a family {St}t>1 of endomorphisms on G = C∞(T ∗M)
satisfying

|Stξ|p ≤ Ctp−q|ξ|q (7.22)

|(1− St)ξ|q ≤ Ctq−p|ξ|p (7.23)

for every p ≥ q, where C is a constant depending only on p and q.

Remark 7.13. Note that (7.22) allows us to trade a high derivative norm | · |p for a low
derivative norm | · |q, while (7.23) implies that Stξ converges to ξ as t goes to infinity. As
t→∞, the right hand side of (7.22) blows up while the right hand side of (7.23) goes to zero.

The Nash-Moser algorithm

We will now set up the algorithm that is required to prove Theorem 5.1. We will follow
the strategy employed in [23], but since the setting is rather different we present things

here independently. For a given constant t0 > 1 we define the sequence ti via ti+1 := t
3/2
i .

Subsequently, for a small and integrable ε ∈ D we define the sequence (ε(i), ξ(i)) recursively
via ε(0) := ε and, for every i ≥ 0,

ξ(i) := StiΦ(ε(i)), ε(i+1) := edξ
(i)

· ε(i). (7.24)

Here Φ(ε) is given by (7.4) and St denotes the smoothing operator of Proposition 7.12. The
goal is to show that the series

∑
i ξ

(i) converges in G to a smooth one-form ξ with the property
that (edξ · ε)3 = 0. We will establish this by means of two separate lemmas. The first will
imply that our sequence is actually well-defined and that

∑
i ξ

(i) converges with respect to a
certain fixed Ck-norm. The second lemma will upgrade this convergence to all Ck-norms.

Lemma 7.14. With the set-up and notation of Lemma 7.10, define

B := 11 + 2b0, l := max(a0, (4b0 + 2)(12 + 2b0) + 1). (7.25)

Then there exists t0 > 1 with the following property: if ε(0) ∈ D is integrable and satisfies

|ε(0)|l <
δ0
2
, |ε(0)|2l < tB0 and |ε(0)

3 |l < t−1
0 , (7.26)

then the sequence (ε(i), ξ(i)) given by (7.24) is well-defined and for all i ∈ Z≥0 we have

(1) |ε(i)|l < δ0 · i+1
i+2

(2) |ε(i)|2l < tBi

(3) |ε(i)
3 |l < t−1

i

(4) |ξ(i)|l+b0 < t
−1/2
i

Remark 7.15. Note that (1) and (4) imply that at each stage in the sequence we can apply
the Neumann operator and hence the map Φ, as well as Lemma 7.10. This means that our
sequence is in fact well defined. Moreover, (4) implies that the sequence ξ(i) converges to zero
fast enough so that the sum

∑
i ξ

(i) converges in the Cl+b0 -topology. Property (3) then shows

that the error terms ε
(i)
3 converge to zero as desired. All of this comes at a price, for we have

to allow |ε(i)|2l to grow at the rate indicated in (2).
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Proof. We initially set (say) t0 := 2 and throughout the proof, which will proceed by induction
on i ≥ 0, we will enlarge t0 a finite number of times. For i = 0 only (4) needs proof, as the
first three estimates are precisely the starting assumptions. We have

|ξ(0)|l+b0 = |St0Φ(ε(0))|l+b0 ≤ C|Φ(ε(0))|l+b0 ≤ L(|ε(0)
2 |l+2b0 ; |ε(0)

3 |l+2b0).

Here we used (7.22) and (7.19). Since l ≥ 2b0 + 2 we can use (7.7) to obtain

|ε(0)
2 |l+2b0 ≤ C|ε

(0)
2 |

(l−2b0)/l
l |ε(0)

2 |
2b0/l
2l ≤ C( δ0

2
)(l−2b0)/lt

2b0B/l
0 ≤ Ct2b0B/l0 (7.27)

and, by a similar calculation, |ε(0)
2 |b(l+2b0)/2c+1 ≤ C and |ε(0)

3 |l+2b0 ≤ Ct
(2b0+2b0B−l)/l
0 . Note

that we allow the constant C (which depends on l) to change from one inequality to the next.
By definition we have

L(|ε(0)
2 |l+2b0 ; |ε(0)

3 |l+2b0) =Poly(|ε(0)
2 |b(l+2b0)/2c+1)|ε(0)

3 |l+2b0 (7.28)

+ Poly(|ε(0)
2 |b(l+2b0)/2c+1)|ε(0)

2 |l+2b0 |ε
(0)
3 |b(l+2b0)/2c+1,

from which it follows that

|ξ(0)|l+b0 ≤ Ct
(2b0+2b0B−l)/l
0 = Ct

(4b0+4b0B−l)/2l
0 t

−1/2
0 . (7.29)

Since l > 4b0(1 + B), (4) holds if t0 is chosen sufficiently large with respect to the constant
C, which in turn only depends on l. This is the first update of t0.

Now suppose that (1)-(4) hold for some i ≥ 0, we will show that they hold for i + 1 as
well. For (1) we compute, using (7.18),

|ε(i+1)|l = |edξ
(i)

· ε(i)|l ≤|ε(i)|l + C(|ε(i)|l|ξ(i)|2 + |ξ(i)|l+1) ≤ δ0 ·
i+ 1

i+ 2
+ Ct

−1/2
i ,

which we would like to bound by δ0 · i+2
i+3

. Slightly rewritten, this amounts to showing that

t
1/2
i ≥ C(i+ 2)(i+ 3)/δ0.

Since the right hand side is a polynomial in i and t
1
2
i = t

1
2
·( 3

2
)i

0 grows exponentially in i, this
estimate holds for all sufficiently large i and therefore for all i if t0 is chosen sufficiently large
with respect to C (which depends only on l) and δ0. This is the second update of t0.

For (2), we use (7.18) to compute

|ε(i+1)|2l ≤ |ε(i)|2l(1 + C|ξ(i)|1) + C|ξ(i)|2l+1 ≤ C(tBi + |ξ(i)|2l+1). (7.30)

Using (7.22) and (7.19), we obtain

|ξ(i)|2l+1 = |StiΦ(ε(i))|2l+1 ≤Ctb0+3
i |Φ(ε(i))|2l−b0−2 ≤ tb0+3

i · L(|ε(i)
2 |2l−2; |ε(i)

3 |2l−2)

Combining the induction hypothesis with (7.28) we conclude that |ξ(i)|2l+1 ≤ Ctb0+3+B
i ,

which we can substitute into (7.30) to obtain

|ε(i+1)|2l ≤ Ctb0+3+B
i = Ct

1
3

(2b0+6−B)

i+1 tBi+1.

Since B > 2b0 + 6 we obtain (2) for t0 sufficiently large with respect to C (which depends
only on l and not on i). This is the third update of t0.

Next, to obain (3) we use (7.20) to compute

|ε(i+1)
3 |l = |(edΦ(ε(i)) · ε(i))3|l ≤

(
L(|ε(i)

1 |l+b0 ; |ε(i)
3 |l+b0) + L(|ε(i)

2 |l+b0 ; |ε(i)
3 |l+b0)

)
· |ε(i)

3 |a0 .

Using (7.7) we can replace the norm | · |l+b0 that appears in this expression by suitable powers
of the norms | · |l and | · |2l, just as we did in (7.27). This gives

|ε(i+1)
3 |l ≤ Ct(b0(B+1)−2l)/l

i = Ct
(2b0(B+1)−l)/3l
i+1 t−1

i+1

which is bounded by t−1
i+1 for t0 sufficiently large, because l > 2b0(B + 1) (again, C depends

only on l). This is the fourth update on t0.
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Finally, to derive (4) we use the by now proven inequalities (1), (2) and (3) at step i+ 1,
and proceed as in the case of i = 0 above to obtain

|ξ(i+1)|l+b ≤ Ct(4b0(1+B)−l)/2l
i+1 t

−1/2
i+1 .

Note that the constant C here is the same as in (7.29), for the bounds and the Leibniz
polynomials that are involved only depend on l. In particular, because ti+1 > t0 there is no
need to further enlarge t0 to obtain (4).

In the end, to make the induction steps work we needed to enlarge t0 four times with
respect to data that depends only on the fixed integer l. This establishes the lemma.

At this point we have fixed t0 and therefore the sequence (ε(i), ξ(i)) (for given starting data
ε(0)), we know that it converges in the Cl+b0 -topology with the desired limit and so we now
have to upgrade this to convergence in the C∞-topology. We can not repeat the exact same
strategy of the previous lemma because we lost the freedom of adjusting t0, but fortunately
it suffices at this point to obtain estimates that are weaker than those of Lemma 7.14.

Lemma 7.16. With the set-up and notation of Lemma 7.14, let k ≥ l be an integer and
suppose that there exists a constant Dk and an integer dk such that for all i ≥ dk we have9

|ε(i)|k ≤ Dk ·
i+ 1

i+ 2
, |ε(i)|2k ≤ DktBi and |ε(i)

3 |k ≤ Dkt
−1
i . (7.31)

Then there exist a constant Dk+1 and an integer dk+1 > dk such that for all i ≥ dk+1 we have

(1) |ξ(i)|k+1+b0 ≤ t
−1/2
i (3) |ε(i)|2(k+1) ≤ Dk+1t

B
i

(2) |ε(i)|k+1 ≤ Dk+1 ·
i+ 1

i+ 2
(4) |ε(i)

3 |k+1 ≤ Dk+1t
−1
i

Proof. We start with (1). Using (7.22) and (7.19), we compute

|ξ(i)|k+1+b0 = |StiΦ(ε(i))|k+1+b0 ≤L(|ε(i)
2 |k+1+2b0 ; |ε(i)

3 |k+1+2b0).

As in the proof of Lemma 7.14, we can use (7.7) to replace the norm | · |k+1+2b0 by the norms
| · |k and | · |2k. If i ≥ dk, the hypothesis (7.31) implies that

|ξ(i)|k+1+b0 ≤Ct
(2b0+1)(1+B)

k
−1

i = Ct
(2b0+1)(1+B)

k
− 1

2
i t

−1/2
i .

Since k ≥ l > (4b0 + 2)(B+ 1) (c.f. (7.25)), the term that multiplies t
−1/2
i above is a negative

power of ti, hence (1) will hold for i ≥ dk+1 when dk+1 is sufficiently large with respect to
the constant C (which depends only on k).

Next we consider (2). Using (7.18) and the by now proven inequality (1), we obtain

|ε(i)|k+1 = |edξ
(i−1)

· ε(i−1)|k+1 ≤|ε(i−1)|k+1(1 + C|ξ(i−1)|1) + C|ξ(i−1)|k+2

≤|ε(i−1)|k+1(1 + Ct
−1/2
i−1 ) + Ct

−1/2
i−1 . (7.32)

If we would have a bound of the form |ε(i−1)|k+1 ≤ Dk+1 · i
i+1

, then the above inequality

would imply |ε(i)|k+1 ≤ Dk+1 · i+1
i+2

, provided that

t
1/2
i−1 ≥ C(i+ 1)(i+ 2)

( 1

Dk+1
+

i

i+ 1

)
. (7.33)

Therefore, we first enlarge dk+1 sufficiently so that (7.33), with Dk+1 temporarily set to 1,
holds for all i ≥ dk+1. Then, we enlarge Dk+1 sufficiently so that

|ε(dk+1)|k+1 ≤ Dk+1 ·
dk+1 + 1

dk+1 + 2
. (7.34)

This procedure makes sense because enlarging Dk+1 does not spoil the bound (7.33). Now
(2) follows by induction on i ≥ dk+1, the base case being (7.34) and the induction step using
(7.32) and (7.33). Next, for (3) we compute

|ε(i)|2k+2 = |edξ
(i−1)

· ε(i−1)|2k+2 ≤ |ε(i−1)|2k+2(1 + C|ξ(i−1)|2) + C|ξ(i−1)|2k+3. (7.35)

9Note that the case where k = l and dl = 0 is precisely the conclusion of Lemma 7.14.
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Using (7.22) and (7.19), we deduce that

|ξ(i−1)|2k+3 = |Sti−1Φ(ε(i−1))|2k+3 ≤Ct5+b0
i−1 |Φ(ε(i−1))|2k−b0−2

≤t5+b0
i−1 L(|ε(i−1)

2 |2k−2; |ε(i−1)
3 |2k−2)

≤Ct5+b0+B
i−1 ,

where in the last step we used (7.31). Substituting this into (7.35) yields

|ε(i)|2k+2 ≤ C(|ε(i−1)|2k+2 + t
2
3

(5+b0+B)

i ) = C(|ε(i−1)|2k+2 + t
2
3

(5+b0−B
2

)

i tBi ). (7.36)

Because B > 10 + 2b0 (c.f. (7.25)) we can ensure that Ct
2
3

(5+b0−B
2

)

i ≤ 1/2 by enlarging dk+1

sufficiently. Subsequently, we enlarge Dk+1 so that

|ε(dk+1)|2k+2 ≤ Dk+1t
B
dk+1

. (7.37)

Then (3) follows by induction on i ≥ dk+1, the base case being (7.37) and the inductive step
being (7.36) which becomes

|ε(i)|2k+2 ≤ C(Dk+1t
−B/3
i + t

2
3

(5+b0−B
2

)

i )tBi ≤ 1
2
(Dk+1 + 1)tBi ≤ Dk+1t

B
i .

Finally, for (4) we use (7.20) to compute

|ε(i)
3 |k+1 = |(edξ

(i−1)

· ε(i−1))3|k+1 ≤ L(|ε(i−1)
1 |k+b0+1 + |ε(i−1)

2 |k+b0+1; |ε(i−1)
3 |k+b0+1) · |ε(i−1)

3 |a0 .

Using the by now familiar trick to replace | · |k+1+b0 by powers of | · |k and | · |2k, together
with the hypothesis (7.31), we obtain

|ε(i)
3 |k+1 ≤ Ct

2
3

(
(1+b0)(1+B)

k
−2)

i = Ct
1
3

(
2(1+b0)(1+B)

k
−1)

i t−1
i .

As before, the term multiplying t−1
i is bounded with respect to i, and so (4) will hold if we

enlarge Dk+1 sufficiently. In the end, we needed to enlarge dk+1 and Dk+1 three times with
respect to data that depends only on k. This establishes the lemma.

Proof of Theorem 7.4

Proof. Let (M, I, σ) be a compact holomorphic Poisson manifold with boundary so that
(M, I) is 2- and 3-convex and for which H0,2(M, I) = 0. Let a0, b0 and δ0 be the associated
constants of Lemma 7.10, define l and B by (7.25) and let t0 be the constant of Lemma 7.14.
Define

a := 2l and δ := min( δ0
2
, t−1

0 , tB0 ).

Now let ε ∈ D be integrable such that |ε|a < δ. Then ε satisfies the hypotheses of Lemma
7.14, providing us with the corresponding sequence (ε(i), ξ(i)) that satisfies the estimates of
both Lemma 7.14 and Lemma 7.16. In particular, the series

ξ :=

∞∑
i=0

ξ(i)

converges in C∞(T ∗M) and has the property that

(edξ · ε)3 = lim
n→∞

(ed
∑n

i=0 ξ
(i)

· ε(0))3 = lim
n→∞

(ε(n+1))3 = 0.

This is what we set out to prove.
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7.3 Proof of the neighbourhood theorem

Proof of Theorem 5.2. Let (Y, τ) be an Abelian Poisson brane in (M, J). Recall that there is
an induced complex structure on Y and a holomorphic vector bundle structure on NY . In
particular, the total space of NY is a complex manifold whose complex structure we denote
by I. By choosing a tubular embedding we may pull back J to a neighbourhood of Y in NY ,
so we may assume without loss of generality that M = NY and that Y is the zero section.
For t ∈ [0, 1] we denote by mt : M → M the fiber-wise rescaling, which for t = 0 equals
the projection to Y . Our first step is to show that Jt := m∗t (J) converges, as t → 0, to a
holomorphic Poisson structure on M whose complex structure agrees with I.

Let us choose a convenient splitting of the exact Courant algebroid E as follows. Consider
a splitting E = TM ⊕ T ∗M so that the induced splitting EY = TY ⊕ T ∗Y coincides with
the splitting induced by the brane structure τ . In particular, the three-form H on M satisfies
i∗H = 0, where i : Y ↪→ M denotes the inclusion. Since M is a vector bundle over Y , this
implies that H = dB for some two-form B that vanishes on Y , so we may change the original
splitting by B to arrange for H = 0. Next, we write J in this splitting as

J =

(
−A π
β A∗

)
(7.38)

for an endomorphism A : TM → TM , bi-vector π : T ∗M → TM and two-form β : TM →
T ∗M . Because Y is a Poisson brane we have:

A∗(N∗Y ) = N∗Y, π(N∗Y ) = 0, i∗β = 0. (7.39)

Here the first two equations are a consequence of J(N∗Y ) = N∗Y . The third equation
follows from the fact that the induced generalized complex structure on TY ⊕ T ∗Y = (TY ⊕
T ∗M)/N∗Y is holomorphic Poisson.

Lemma 7.17. The generalized complex structure Jt converges, as t → 0, to a generalized
complex structure J0 which is given by a holomorphic Poisson structure.

Proof. It suffices to look at a single coordinate chart. Consider a chart in Y with coor-
dinates (y1, . . . , yk) over which M = NY is trivialized as a vector bundle, with fiber co-
ordinates (x1, . . . , xl). We will abbreviate the resulting coordinates on M by (y, x) :=
(y1, . . . , yk, x1, . . . , xl), dropping the indices to enhance readability. Then mt is given by
mt(y, x) = (y, tx) while the tensors A, π, β can be decomposed as

A(y,x) =Axx(y,x)dx⊗ ∂x +Axy(y,x)dx⊗ ∂y +Ayx(y,x)dy ⊗ ∂x +Ayy(y,x)dy ⊗ ∂y,

π(y,x) =πxx(y,x)∂x ∧ ∂x + πxy(y,x)∂x ∧ ∂y + πyy(y,x)∂y ∧ ∂y,

β(y,x) =βxx(y,x)dx ∧ dx+ βxy(y,x)dx ∧ dy + βyy(y,x)dy ∧ dy.

The indices have been dropped in these expressions, and the subscript (y, x) denotes a point
in M . With respect to these decompositions, (7.39) reduces to

Ayx(y,0) = 0, πxx(y,0) = πxy(y,0) = 0, βyy(y,0) = 0.

Furthermore, the Lie algebra structure on N∗Y is given by

[dxi, dxj ] =

l∑
r=1

(∂xrπ
xx,ij)(y,0)dx

r,

so the fact that N∗Y is Abelian is equivalent to (∂xπ
xx)(y,0) = 0 (again dropping indices).

All together, these five conditions imply that the rescalings of A, π and β, which are given by

(m∗tA)(y,x) =Axx(y,tx)dx⊗ ∂x + tAxy(y,tx)dx⊗ ∂y +
1

t
Ayx(y,tx)dy ⊗ ∂x +Ayy(y,tx)dy ⊗ ∂y,

(m∗tπ)(y,x) =
1

t2
πxx(y,tx)∂x ∧ ∂x +

1

t
πxy(y,tx)∂x ∧ ∂y + πyy(y,tx)∂y ∧ ∂y,

(m∗tβ)(y,x) =t2βxx(y,tx)dx ∧ dx+ tβxy(y,tx)dx ∧ dy + βyy(y,tx)dy ∧ dy, (7.40)

converge as t→ 0, with m∗t (β) converging to zero. That means that Jt converges, as a tensor,
to a holomorphic Poisson structure J0 on M .
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It now remains to show that the complex structure underlying J0, which we denote by
I0, agrees with I. Recall that the latter is obtained from the holomorphic structure on NY ,
which is induced by the generalized complex structure J. For t > 0 we have Jt = m∗t (J), and
we know that mt is a diffeomorphism which is the identity on Y and whose derivative is the
identity on NY . As such, every Jt for t > 0 induces the same holomorphic structure on NY
and therefore so does the limiting structure J0. Consequently, the complex structure I0 on
M induces the holomorphic structure on NY from which I is derived. In addition, we have
I0 = m∗t (I0) for all t > 0 because J0 is per construction scale-invariant. The fact that I = I0
then follows from the following general lemma.

Lemma 7.18. Let Y be a real manifold and p : M → Y a real vector bundle over Y ,
with mt : M →M denoting the fiberwise rescaling map. Let I0 be a scale-invariant complex
structure on M for which Y is a complex submanifold. Then I0 coincides with the holomorphic
vector bundle structure that it induces on M .

Proof. It suffices to show that (M, I0) is a holomorphic vector bundle, which we can prove by
constructing local holomorphic trivializations over Y . For any point in Y we can pick an open
neighbourhood U ⊂ M together with holomorphic functions f1, . . . , fk ∈ O(U) that cut out
Y as a complex submanifold. Since I0 is scale-invariant, we know that m∗t (f1), . . . ,m∗t (fk)
are also holomorphic on m−1

t (U) and also cut out Y as a complex submanifold. The limits
of these functions as t → 0 exist, and are linear holomorphic functions on p−1U ⊂ M . This
constitutes the desired holomorphic trivialization (f1, . . . , fk) : p−1(U)→ U × Ck.

Right now we know that the family of rescalings Jt = m∗t (J) converges to a holomorphic
Poisson structure J0 whose underlying complex structure equals I, the complex structure
associated canonically with the brane Y . One of the hypotheses on Y in Theorem 5.2 is that
there exists a neighbourhood U in M (recall that M = NY here) such that (U, I) is 2- and
3- convex and for which H0,2(U, I) = 0. These are exactly the hypotheses of Theorem 5.1,
hence for t0 > 0 sufficiently small we obtain an exact two-form B = dξ that transforms Jt0
into a holomorphic Poisson structure on U . Since Jt0 = m∗t0(J), this implies that

(mt0)∗B = d(mt0)∗ξ

transforms J into a holomorphic Poisson structure as well, but on the smaller neighbourhood
V := mt0(U) ⊂ U . This completes the proof.

Remark 7.19. In the proof we showed that the limit J0 is given by a holomorphic Poisson
structure whose complex structure agrees with the canonical holomorphic structure on NY .
It is then natural to wonder whether a similar statement holds for the Poisson structure
underlying J0. It turns out that an Abelian Poisson brane Y carries a canonical holomorphic
Poisson structure on NY , which then can be shown to agree with the limit J0. In other words,
the limit J0 that we obtain by a scaling argument using a choice of tubular neighbourhood is
actually canonically associated to Y from the fact that it is an Abelian Poisson brane. We
will not give any details here because they are not relevant for the proof. This is because
the Poisson bivector plays no role in the rigidity statement (Theorem 5.1) and the final claim
is only that J is equivalent to some holomorphic Poisson structure, which may very well be
different from J0. If we wanted to obtain a normal form, i.e. show that J is actually equivalent
to J0 itself, we would have to study the bivector as well (in particular we would need to impose
restrictions on cohomology groups that involve the bivector).

The case of a point

Here we will prove Theorem 5.3, which deals with the special case when Y is a point in the
complex locus of J. The proof of Theorem 5.2 above only works when the normal bundle is
Abelian, which in turn was needed to show that the sequence m∗t (J) converges as t goes to
zero. When Y is a point we can get around this as follows. For t > 0 we define a map λt on
TM by

λt(X + ξ) := tX + 1
t
ξ.

For u, v ∈ TM we have

〈λt(u), λt(v)〉 = 〈u, v〉, Jλt(u), λt(v)KH = tλt(Ju, vKt2H),
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which shows that λt is never a symmetry of TM . However, in the special case that H = 0
we do see that λt(L) is Dirac for any Dirac structure L. So when H = 0 we can apply λt to
a generalized complex structure to obtain another one. The last main feature of λt is that it
preserves holomorphic Poisson structures, specifically we have

λt(J(I,σ)) = J(I,t2σ).

Proof of Theorem 5.3. Similarly to the proof of Theorem 5.2, we first use a chart to reduce
to the case where M = Cn and Y is the origin, with a splitting in which H = 0, and write J
as in (7.38). We know that m∗tπ does not converge in general, so we consider the following
family of generalized complex structures instead:

J̃t := λ√t(m
∗
t J) =

(
−m∗tA t ·m∗tπ
1
t
·m∗tβ (m∗tA)∗

)
.

If (x) denotes a set of coordinates around Y (dropping indices again) we have

(t ·m∗tπ)(x) =
1

t
πxx(tx)∂x ∧ ∂x, ( 1

t
·m∗tβ)(x) = tβxx(tx)dx ∧ dx.

Since Y lies in the complex locus we have πxx(0) = 0, which means that J̃t converges (as t

goes to zero) to a holomorphic Poisson structure J̃0. The underlying complex structure of J̃0

is the standard one on Cn, so the unit ball D ⊂ Cn is 2- and 3- convex and H0,2(D) = 0.
Once again we are in the position to apply our rigidity result (Theorem 5.1), implying that

J̃t0 is equivalent to a holomorphic Poisson structure via some exact two-form B ∈ Ω2(D).
Since λt preserves holomorphic Poisson structures, this implies that J itself is equivalent to a
holomorphic Poisson structure on mt(D) via the two-form (mt)∗(tB).

Remark 7.20. Note that this strategy does not work when Y is not a point. One can still
consider J̃t which does converge as t goes to zero, but the limit is not guaranteed to be
holomorphic Poisson. The reason is that 1

t
·m∗tβ does not necessarily converge to zero when

Y is not a point, as can be seen from (7.40).
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