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Abstract

We introduce blow-up and blow-down operations for generalized complex 4-manifolds.
Combining these with a surgery analogous to the logarithmic transform, we then construct
generalized complex structures on nCP 2#mCP 2 for n odd, a family of 4-manifolds which
admit neither complex nor symplectic structures unless n = 1. We also extend the notion of
a symplectic elliptic Lefschetz fibration, so that it expresses a generalized complex 4-manifold
as a fibration over a two-dimensional manifold with boundary.

Introduction

Generalized complex structures [13, 9] are a simultaneous generalization of complex and
symplectic structures. Since their introduction, it has been natural to ask whether generalized
complex manifolds encompass a genuinely larger class than complex or symplectic manifolds.
Indeed, the only obstruction for existence known is that the underlying manifold must be
almost complex [9]. Generalized complex structures in dimension 2 are either complex or
symplectic, so this question becomes nontrivial first in real dimension 4.

In [1], the authors answered the above question in the affirmative, by constructing a
generalized complex structure on 3CP 2#19CP 2. This manifold does not have complex or
symplectic structures, due to Kodaira’s classification of complex surfaces and the fact that it
has vanishing Seiberg–Witten invariants [15, 18, 21].

In this article, we develop blow-up and blow-down operations for generalized complex
manifolds. We then show how this significantly enlarges the list of manifolds which are
generalized complex but not complex or symplectic; in particular we prove that nCP 2#mCP 2

has a generalized complex structure if and only if it is almost complex, i.e. n is odd.
The four-dimensional generalized complex manifolds which we consider may be under-

stood classically as symplectic structures which acquire a singularity along a two-dimensional
submanifold called the complex or type change locus, which itself acquires a complex struc-
ture. We prove that if a point is in the complex locus, then it may be blown up, just as a point
on a complex surface. This is done by proving a normal form theorem for neighbourhoods of
such points.

Just as in the complex case, blowing up a point introduces an exceptional divisor, al-
though in our case it is not a complex curve but rather a two-dimensional submanifold which
is Lagrangian away from its intersection with the complex locus; such submanifolds are called
generalized complex branes. We then show that these branes have standard tubular neigh-
bourhoods, in analogy to Weinstein’s Lagrangian neighbourhood theorem. This allows us to
show that spherical branes intersecting the complex locus at one point may be blown down.
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Finally, we apply our blow-up and blow-down operations to generalized complex 4-manifolds
obtained from symplectic fiber sums of rational elliptic surfaces via the logarithmic transform
introduced in [1]. Describing the symplectic 4-manifolds as Lefschetz fibrations, we use the
method of vanishing cycles to find spherical branes in the associated generalized complex
four-manifolds which may be blown down. Using Kirby calculus, the resulting generalized
complex manifolds are then shown to be diffeomorphic to nCP 2#mCP 2 for n odd.

Motivated by these manipulations, we extend the notion of a (genus 1) symplectic Lef-
schetz fibration so that it applies to generalized complex 4-manifolds. The base for these
generalized Lefschetz fibrations may be any two-dimensional manifold with boundary. The
one-dimensional boundary of the base corresponds precisely to the complex locus in the 4-
manifold. A more thorough study of these fibrations is in progress.

This paper is organized as follows: in the first section, we introduce generalized complex
structures and prove a neighbourhood theorem for a point in the complex locus; in Section
2, we recall the definition of branes and prove a neighbourhood theorem for generic branes
in 4-manifolds; in Section 3, we show that it is possible to blow up points in the complex
locus as well as blow down spherical branes intersecting the complex locus transversally at
a single point; in Section 4, we recall the surgery introduced in [1] and describe its effect
on Lefschetz fibrations; in the final section, we prove that nCP 2#mCP 2 has a generalized
complex structure if n is odd. This last result requires a Kirby calculus computation, which
we provide in the Appendix.

1 Generalized complex structures

Given a closed 3-form H on a manifold M , the Courant bracket [2, 17] of sections of TM⊕T ∗M
is defined by

[X + ξ, Y + η]H = [X,Y ] + LXη − LY ξ −
1

2
d(η(X)− ξ(Y )) + iY iXH.

The bundle TM ⊕T ∗M is also endowed with a natural symmetric pairing of signature (n, n):

〈X + ξ, Y + η〉 = 1
2 (η(X) + ξ(Y )).

Definition 1.1. A generalized complex structure on (M,H) is a complex structure J on the
bundle TM ⊕ T ∗M which preserves the natural pairing and whose +i-eigenbundle is closed
under the Courant bracket.

Recall that the differential forms Ω•(M) carry a natural spin representation for the metric
bundle TM ⊕ T ∗M ; the Clifford action of X + ξ ∈ TM ⊕ T ∗M on ρ ∈ Ω•(M) is

(X + ξ) · ρ = iXρ+ ξ ∧ ρ.

The +i-eigenbundle of J is a maximal isotropic subbundle of TCM ⊕ T ∗CM , and we may
use the correspondence between maximal isotropics and pure spinors to encode J as a line
subbundle of the complex differential forms.

Definition 1.2. The canonical bundle of J is the complex line bundle K ⊂ ∧•T ∗CM annihi-
lated by the +i-eigenbundle of J .

As shown in [9], a complex differential form ρ must satisfy the following properties in
order to be a local generator of the canonical bundle of a generalized complex structure (and
hence determine J uniquely):
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1. At each point, ρ has the algebraic form

ρ = eB+iω ∧ Ω, (1.1)

where B and ω are real 2-forms and Ω is a decomposable complex form.

2. At each point, ρ satisfies the nondegeneracy condition

(ρ, ρ) = Ω ∧ Ω ∧ (2iω)n−k 6= 0. (1.2)

3. The form ρ is integrable, in the sense

dρ+H ∧ ρ = (X + ξ) · ρ,

for some section X + ξ of TM ⊕ T ∗M .

The first condition is equivalent to the fact that ρ must be a pure spinor, which is a point-
wise algebraic condition. The second condition derives from the transversality of the ±i-
eigenbundles of J , and involves the natural Spin-invariant pairing of differential forms with
values in the top degree forms:

(ρ, σ) = [ρ> ∧ σ]top.

(Here, ρ> denotes the reversal anti-automorphism of forms). We see from this condition
that the volume form i−n(ρ, ρ) defines a canonical global orientation on any 2n-dimensional
generalized complex manifold. We also derive the fact that at each point of a generalized
complex manifold, ker Ω ∧ Ω is a subspace of the real tangent space with induced symplectic
structure and transverse complex structure.

Definition 1.3. Let J be a generalized complex structure and eB+iω ∧ Ω a generator of its
canonical bundle at a point p. The type of J at p is the degree of Ω and the parity of J is
the parity of its type.

We will shortly see examples where the type of a generalized complex structure jumps
along loci in the manifold. However, its parity must clearly remain constant on connected
components of M .

Example 1.4. Let (M2n, I) be a complex manifold. Then the following operator on TM ⊕
T ∗M is a generalized complex structure:

J I =

(
−I 0
0 I∗

)
The +i-eigenspace of J I is T 0,1M ⊕ T ∗1,0M , which annihilates the canonical bundle K =
∧n,0T ∗M and is therefore of type n. The orientation induced by the generalized complex
structure is the same as the one induced by the underlying complex structure.

Example 1.5. Let (M,ω) be a symplectic manifold. Then

J ω =

(
0 −ω−1

ω 0

)
is a generalized complex structure with +i-eigenspace {X− iω(X) : X ∈ TCM} and canonical
bundle generated by the differential form eiω. Symplectic structures, therefore, have type zero.
The orientation induced by this generalized complex structure is the same as the orientation
induced by the symplectic structure.
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Example 1.6. Let (z, w) be standard complex coordinates on C2. The complex differential
form

ρ = w + dw ∧ dz

may be expressed as ρ = w exp(w−1dw ∧ dz) when w 6= 0 and as ρ = dw ∧ dz when w = 0.
Hence it is a pure spinor by (1.1). Further, it is nondegenerate since (ρ, ρ) = dw∧dw̄∧dz∧dz̄ 6=
0. Finally, we see that ρ is integrable, since

dρ = −∂z · ρ.

Hence ρ defines a generalized complex structure on C2 which undergoes type change: it has
complex type (type 2) along the locus w = 0, and symplectic type (type 0) elsewhere.

Example 1.7. Any real 2-form B gives rise to an orthogonal transformation of TM ⊕ T ∗M
via eB : X + ξ 7→ X + ξ − iXB. This transformation induces an isomophism between the H-
Courant bracket and the H + dB-Courant bracket, hence it acts by conjugation on any given
generalized complex structure J on (M,H), producing a new one e−BJ eB on (M,H + dB).
The induced action on the canonical bundle is simply

K 7→ eB ∧K = (1 +B + 1
2B ∧B + · · · ) ∧K.

Example 1.7 indicates that there are symmetries of the Courant bracket beyond the usual
diffeomorphisms. We now use this to define morphisms between generalized complex mani-
folds.

Definition 1.8. Let Mi = (Mi, Hi)i=1,2 be manifolds equipped with closed 3-forms. Then
Φ = (ϕ,B) ∈ C∞(M1,M2)×Ω2(M1,R) is called a generalized mapM1 →M2 when ϕ∗H2−
H1 = dB. When ϕ is a diffeomorphism we call Φ a B-diffeomorphism.

A generalized map establishes a correspondence between the tangent and cotangent bun-
dles which is neither covariant nor contravariant. We say that X + ξ ∈ TM1 ⊕ T ∗M1 is
Φ-related to Y + η ∈ TM2 ⊕ T ∗M2, and write

X + ξ ∼Φ Y + η,

when Y = ϕ∗X and ξ = ϕ∗η + iXB.

Definition 1.9. Let Φ :M1 →M2 be a generalized map, and let J i be generalized complex
structures on Mi. Then Φ is holomorphic1 when

J 1(X + ξ) ∼Φ J 2(Y + η)

for all (X + ξ) ∼Φ (Y + η). When Φ is a B-diffeomorphism, we say J 1,J 2 are isomorphic.

This notion of morphism specializes to a holomorphic map if the J i are usual complex
structures, and to a symplectomorphism if the structures are symplectic. In the case of
an isomorphism, we see directly that J 1 = e−B(ϕ∗J 2)eB , while on canonical bundles the
isomorphism yields

K1 = eBϕ∗K2.

We now construct further examples of generalized complex structures by deforming the
usual complex manifolds from Example 1.4.

1This notion of morphism essentially coincides with that described in [3] and [11].
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Theorem 1.10 (Gualtieri [9]). Any holomorphic Poisson bivector β on a complex manifold
(M, I) deforms the complex structure into a generalized complex structure J β, with canonical
bundle

Kβ = eβΩn,0, (1.3)

where β acts by interior product.

The action of β on TM ⊕ T ∗M giving rise to (1.3) is eP : X + ξ 7→ X − P (ξ) + ξ, for
P = β + β. Hence the deformed complex structure on TM ⊕ T ∗M is

J β = ePJ Ie−P =

(
−I Q
0 I∗

)
, (1.4)

where Q = −4Im(β).
Generalized complex structures obtained by deformation in this way do not necessarily

have constant type over M : the deformed structure has type equal to the corank of β, which
may vary along the manifold. We now investigate several examples of deformed complex
surfaces, where the resulting generalized complex structure has generic type zero (symplectic
type) jumping to type 2 (complex type) along the vanishing locus of β, an anticanonical
divisor.

Example 1.11. Let Σ be a Riemann surface and π : L → Σ be a holomorphic line bundle.
The total space of L is a complex surface S, and hence any holomorphic bivector field on S is
automatically Poisson. Using the fact that TS is an extension of π∗TΣ by π∗L, we see that
∧2TS = π∗TΣ ⊗ π∗L. By a fibrewise Taylor expansion about the zero section, we obtain a
filtration of H0(S,∧2TS) by sections of polynomial degree at most k along the fibers:

H0
k(S,∧2TS) =

k⊕
i=0

H0(Σ, L1−i ⊗ TΣ).

Taking i = 1 above, we obtain a holomorphic bivector vanishing to order 1 along the zero
section as long as TΣ is trivial, i.e. Σ is an elliptic curve. Hence we obtain a generalized com-
plex structure of generic type 0, jumping to complex type along an elliptic curve, irrespective
of the line bundle L.

Taking i = 2 above, and setting L = TΣ, we obtain a holomorphic bivector vanishing to
order 2 along the zero section, giving rise to a generalized complex structure which undergoes
type change along the zero section of TΣ, irrespective of Σ.

The preceding example suggests that the nature of the type change locus depends on a
certain order of vanishing. Indeed, a generalized complex structure of generic type 0 will
undergo type change precisely where the projection of K ⊂ ∧•T ∗CM to ∧0T ∗CM = C vanishes.
In other words, this projection defines a section s ∈ C∞(K∗) and the type change occurs at
the zero locus of s. For a 4-dimensional manifold, this is the only possible type change, since
type 2 is maximal.

Definition 1.12. A point p in the complex (type 2) locus of a generalized complex 4-manifold
is called nondegenerate if it is a nondegenerate zero of the section s ∈ Γ(K∗). If p is a zero of
order a of the section s, then we call p a degenerate complex point of order a.

In the remainder of this section, we show that Example 1.6 provides a normal form for a
neighbourhood of any nondegenerate complex point. We may view this model as a deforma-
tion of the standard C2 by the bivector β = w∂w ∧ ∂z, since

ρ = eβ · dw ∧ dz = w + dw ∧ dz. (1.5)
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Theorem 1.13. Let (M,J ) be a generalized complex 4-manifold and let p ∈ M be a non-
degenerate complex point. Then p has a neighbourhood which is B-diffeomorphic to a neigh-
bourhood of the origin in C2 with the generalized complex structure determined by

ρ = w + dw ∧ dz.

Proof. Let ρ = ρ0 +ρ2 +ρ4, deg(ρi) = i, be a trivialization of K in a neighbourhood of p with
ρ0(p) = 0. Since ρ is annihilated by the +i-eigenbundle of J , there is a unique real section
X + ξ ∈ C∞(TM ⊕ T ∗M) such that

dρ = (X + ξ) · ρ. (1.6)

Nondegeneracy implies that dρ0|p 6= 0. Hence condition (1.6) implies that X(p) 6= 0, and
therefore X is nonzero in a neighbourhood of p. So we can parametrize a neighbourhood of
p by (v, x) ∈ R3 × R, with X = ∂x. Then the closed 2-form

B(v, x) =

∫ x

0

dξ(v, t)dt

is such that
d(iXB − ξ) = LXB − dξ = 0.

Therefore, iXB − ξ = df for some function f . Finally we obtain that

d(ef+Bρ) = (df +X + ξ − iXB) · ef+Bρ = X · ef+Bρ,

so that dρ̃ = X · ρ̃ for ρ̃ = ef+Bρ. Therefore, we see that J is B-diffeomorphic, near p, to
a generalized complex structure, which we henceforth denote J , whose canonical bundle is
generated by a form ρ which satisfies dρ = X · ρ for a real vector field X. An immediate
consequence of this is that LXρ = 0, and hence J is invariant in the X direction.

Now consider the real section JX = Y +η: since J isX-invariant, we see that LX(Y +η) =
0, implying that [X,Y ] = 0 and X · dη = 0 (since η(X) = 〈X,JX〉 = 0, by orthogonality of
J ).

Since J is a complex structure at p, the real vector field Y is nonvanishing near p. Since
[X,Y ] = 0, we may choose coordinates (v, x, y) ∈ R2 × R × R near p such that X = ∂x and
Y = ∂y. Then define the closed 2-form

B = B̃ + dy ∧ (η − iY B̃),

where B̃ is the closed 2-form defined by

B̃(v, x, y) =

∫ y

0

dη(v, x, t)dt.

The form B is constructed precisely so that iXB = 0 while iYB = η. Therefore we obtain

e−BJ eBX = Y,

showing that J is B-diffeomorphic, near p, to a generalized complex structure (henceforth
denoted J ) with generator ρ satisfying dρ = X · ρ and such that JX = Y , for nonvanishing
real vector fields X,Y .

A direct result is that X − iY lies in the +i-eigenbundle of J , which annihilates ρ. In
particular, (X − iY ) · ρ4 = 0, which implies ρ4 = 0. Therefore, we have ρ = ρ0 + ρ2,
with nondegeneracy guaranteeing ρ2 ∧ ρ2 6= 0 and integrability giving dρ2 = 0. Therefore
ρ2 determines a complex structure in the neighbourhood of p. Integrability also implies
dρ0 ∧ ρ2 = 0, meaning ρ0 is a holomorphic function; define w = ρ0 and choose z so that
ρ2 = dw ∧ dz. These coordinates therefore render J into the desired normal form.
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Theorem 1.13 allows us to determine what structures are inherited by the complex locus
from the ambient generalized complex geometry. Let Ui be neighbourhoods for which the
above theorem holds, with generalized complex structures defined by ρi = wi +dwi ∧dzi. On
the overlaps Ui ∩ Uj we have

ρi = gije
Bijρj , (1.7)

for gij : Ui ∩ Uj → C∗ and Bij ∈ Ω2
cl(Ui ∩ Uj ,R) smooth Čech cocycles. In degrees 0 and 2,

this equation becomes

wi = gijwj (1.8)

dwi ∧ dzi = gijdwj ∧ dzj + wjgijBij . (1.9)

Differentiating (1.8) and subtracting from (1.9), we obtain

gijdwj ∧ (dzj − dzi) = wj(gijBij + dgij ∧ dzi), (1.10)

which vanishes on the complex locus Σ, defined by wj = 0. Expanding (1.10) along Σ, we
obtain

gijdwj ∧ (dzj − ∂zi
∂zj

dzj − ∂zi
∂z̄j

dz̄j − ∂zi
∂w̄j

dw̄j)
∣∣
Σ

= 0, (1.11)

This implies that zj is a holomorphic function of zi on Σ, and furthermore ∂zj/∂zi = 1.
Hence the complex locus, where it is nondegenerate, inherits a complex structure with a dis-
tinguished trivialization of its holomorphic tangent bundle. This trivialization ∂z corresponds
precisely to the vector field X + iY in the proof of Theorem 1.13.

Taking the Lie derivative of (1.9) in the zj direction and restricting to the complex locus,
we see that ∂gij/∂zj = 0, showing that the conormal bundle of Σ inherits a holomorphic
structure. Summarizing, we obtain the following result, extending work in [1].

Corollary 1.14. Let Σ be the set of nondegenerate type changing points of a 4-dimensional
generalized complex manifold M . Then Σ is a smooth 2-dimensional submanifold and inherits
a holomorphic structure (i.e. it is a Riemann surface) as well as a distinguished trivialization
Z of its holomorphic tangent bundle (of course, this determines a holomorphic differential
Ω = Z−1). It follows immediately that any compact component of Σ must be an elliptic curve.
Furthermore, the conormal bundle N∗Σ inherits the structure of a holomorphic bundle.

Remark. The holomorphic vector field Z = X + iY induced on the nondegenerate complex
locus Σ has no canonical extension to the whole 4-manifold M . However, there is a natural
extension of Y to a global class in the Poisson cohomology of M with respect to a real Poisson
structure P obtained from the generalized complex structure (see [10] for details). In fact
this extension is the modular class of the Poisson structure P in the sense of Weinstein [19].

2 Branes

Generalized complex branes [10] are a natural class of submanifolds defined for any generalized
complex manifold. For usual complex manifolds the definition specializes to the notion of
complex submanifold. In the symplectic case, Lagrangian submanifolds provide examples. It
is appropriate to call these (D)-branes since they provide boundary conditions in topological
open string theory.

Definition 2.1. A brane in a generalized complex manifold (M,H,J ) is a submanifold
ι : Σ ↪→ M together with a 2-form F ∈ Ω2(Σ) satisfying dF = ι∗H and such that the
subbundle τF ⊂ (TM ⊕ T ∗M)|N , defined by

τF = {X + ξ ∈ TΣ⊕ T ∗M : ι∗ξ = iXF},

is invariant under J (i.e. τF is a complex subbundle).
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Note that τF is a maximal isotropic subbundle isomorphic to TΣ⊕N∗Σ ⊂ TM ⊕ T ∗M .
When (M,J ) is a 2n-manifold of symplectic type, with canonical bundle generated by eB+iω,
the branes of lowest dimension are Lagrangian submanifolds ι : Σ → M with F = ι∗B.
As shown in [9], there may exist non-Lagrangian branes on a symplectic 2n-manifold, of
dimension n + 2k, corresponding to the coisotropic A-branes discovered by Kapustin and
Orlov [14]. On the other hand, when (M,J ) is a usual complex structure, then (Σ, F ) is a
brane if and only if Σ is a complex submanifold and F is a (1, 1)-form.

It follows from these extremal cases that even generalized complex 4-manifolds may only
have 0, 2, or 4-dimensional branes. Branes of dimension zero coincide with points in the
complex locus, since points of a symplectic manifold are not branes. It is shown in [10] that
branes of dimension 4 only occur when (M,J ) is a deformation of a complex manifold via
Theorem 1.10. We therefore concentrate on the description of branes of dimension 2.

Proposition 2.2. Let (M,H,J ) be an even generalized complex 4-manifold, and let Σ ⊂ M
be a 2-dimensional submanifold intersecting the complex locus transversally at nondegenerate
points. Then there exists F ∈ Ω2(Σ) such that (Σ, F ) is a brane if and only if Σ is Lagrangian
away from the complex locus. Furthermore, F is unique when it exists.

Proof. One implication follows from the description of branes for complex and symplectic
structures. For the other implication, let U be the dense open set where the structure is of
symplectic type, i.e. given by the form eB+iω. Then F = B|Σ is the unique 2-form on Σ ∩ U
such that τF is J -invariant over Σ ∩ U . Since J -invariance is a closed condition, τF will be
J -invariant over all of Σ as long as F extends smoothly to Σ. Therefore it remains to show
that F extends smoothly to the points where Σ intersects the complex locus.

Near a nondegenerate complex point, Proposition 1.13 provides the following normal form
for J : it is defined by

ρ = w + dw ∧ dz,

with w = 0 defining the complex locus. In coordinates (w, z) = (x+ iy, u+ iv), we have that
ρ = weB+iω, for

B = 1
x2+y2 (x(dx ∧ du− dy ∧ dv) + y(dx ∧ dv + dy ∧ du)),

ω = 1
x2+y2 (x(dx ∧ dv + dy ∧ du)− y(dx ∧ du− dy ∧ dv)).

Since Σ is transversal to the complex locus, we can parametrize it as X(x, y) = (x, y, u(x, y), v(x, y))
where u and v vanish at 0. Since Σ is Lagrangian, we have ω(Xx,Xy) = 0, yielding

x(vy − ux)− y(uy + vx) = 0. (2.1)

In particular, there exists a smooth function f : R2 −→ R such that uy + vx = x f and we
can compute

B(Xx,Xy) = 1
x2+y2 (x(uy + vx) + y(vy − ux))

= 1
x2+y2 (x(uy + vx) + y2

x (uy + vx))

= 1
x (uy + vx) = f,

where in the second equality we used (2.1). Hence the restriction of B to Σ extends smoothly
to w = 0, showing F is well defined on all of Σ.

In the case that J is obtained by deforming a complex structure via Theorem 1.10, there is
a rich source of examples of such 2-dimensional branes; in fact, curves in the original complex
surface remain branes after the deformation, as we now show.
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Proposition 2.3. Let J β be the generalized complex structure obtained by deforming the
complex surface (M, I) by the holomorphic bivector β. Then any smooth complex curve Σ ⊂M
with respect to I is a brane for J β, with F = 0.

Proof. Σ is a curve for I, hence

τ0 = {X + ξ ∈ TΣ⊕ T ∗M : ξ|Σ = 0} = TΣ⊕N∗Σ

is invariant under J I . By Theorem 1.10, we have J β = ePJ Ie−P , for P = β + β. The
result then follows from the fact that eP τ0 = τ0, which we now show. If X + ξ ∈ τ0, then
eP (X + ξ) = X − P (ξ) + ξ. But P (N∗Σ) ⊂ TΣ, i.e. Σ is P -coisotropic, since Σ is of type
(1, 1) with respect to I while P is of type (2, 0) + (0, 2).

Example 1.11 provides examples of β-deformed complex structures on the total space of
a holomorphic line bundle π : L → Σ over a Riemann surface; holomorphic bivectors of
homogeneous degree i along the fibres are again given by

H0(Σ,K−1
Σ ⊗ L1−i). (2.2)

Before deformation, complex curves in these examples include the zero section Σ, as well as
any fiber π−1(p), p ∈ Σ. Therefore, by Proposition 2.3, all these give examples of 2-branes for
J β . Taking i = 0, we obtain examples where the zero section Σ is a generically Lagrangian
brane, as follows.

Example 2.4. Let Σ be a Riemann surface, and D =
∑
aipi, ai > 0 an effective divisor

on Σ, for p1, . . . , pn points in Σ. Let O(D) be the associated holomorphic line bundle, with
section β ∈ H0(Σ,O(D)) such that D = (β). By (2.2), β defines a deformation of the complex
structure on the total space of L = KΣ(D) which is constant along the fibres and vanishes
precisely on the fibres π−1(pi) above the divisor. Hence the zero section Σ is a brane for J β
which is generically Lagrangian but intersects the complex locus transversally at the points
pi ∈ Σ; at these points the complex locus is degenerate of order ai.

This structure is easily described in coordinates: let U0 = Σ\{p1, . . . , pn} and let zi : Ui →
C be coordinates such that zi(pi) = 0 and Ui ∩ Uj = ∅ for nonzero i, j unless i = j. The
bundle O(D) is taken to be trivial on the Ui, with transition functions fi0(zi) = zaii . The
defining section for the divisor D is given by the functions zaii (in Ui, i 6= 0) and the constant
function 1 in U0.

The line bundle L = KΣ(D) is described by tensoring the above trivialization of O(D)
with KΣ = T ∗Σ. To specify the generalized complex structure, we give differential forms ρi
on Ũi = T ∗Ui and cocycles gij , Bij such that (1.7) holds. Let wi be the canonically conjugate
coordinate to zi on T ∗Ui, let Ω = B + iω be the natural holomorphic symplectic form on
T ∗Σ, i.e. Ω|Ui

= dzi ∧ dwi, and define

ρ0 = eiω|Ũ0
,

ρi = zaii + dzi ∧ dwi,
gi0(zi) = zaii ,

Bi0 = B|Ũi∩Ũ0
.

Note that we glue T ∗Ui to T ∗U0 via the diffeomorphism ϕi0 : (zi, wi) 7→ (zi, z
ai
i wi), due to

the twisting by D. Therefore we have ρi = ϕ∗i0z
ai
i (1 + dzi ∧ dwi) = ϕ∗i0gi0e

Bi0ρ0 in U0 ∩ Ui,
as required.

The generalized complex structure in the previous example does not depend on the holo-
morphic structure of the initial Riemann surface Σ, or on the locations of the points pi, since
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a (orientation-preserving) diffeomorphism ψ : Σ → Σ′ may always be chosen to send pi to
p′i and to take zi to z′i in a neighbourhood of the points pi, p

′
i. The symplectic form on T ∗Σ

is diffeomorphism invariant, hence we obtain ψ∗ρ′i = ρi for all i, yielding an isomorphism of
generalized complex structures. This suggests the following more general example.

Example 2.5. Let Σ be a real smooth 2-manifold and D =
∑
aipi, ai > 0, be a smooth

effective divisor, i.e. a positive integer linear combination of points pi of Σ. Choose complex
coordinates zi in neighbourhoods Ui ⊂ Σ of pi and canonically conjugate coordinates wi in
Ũi = T ∗Ui, so that dzi ∧ dwi = Bi + iω, where ω is the canonical real symplectic form on
T ∗Σ. Then setting Ũ0 = T ∗(Σ\{p1, . . . , pn}), the forms

ρ0 = eiω|Ũ0
,

ρi = zaii + dzi ∧ dwi,
gi0(zi) = zaii ,

Bi0 = Bi|Ũi∩Ũ0
.

define a generalized complex structure on the total space Ω1
Σ(D) of the cotangent bundle of

Σ twisted by the line bundle with Euler class Poincaré dual to D.
When Σ is non-orientable, this generalized complex structure depends only on the diffeo-

morphism class of Σ and the set a = {ai, . . . , an} of multiplicities; we denote this generalized
complex manifold by Ω1

Σ(a), and simply Ω1
Σ(n) if all ai = 1.

When Σ is oriented, however, the chosen complex coordinates zi may not be compatible
with the orientation; indeed, we may divide the points into two groups {p1, . . . , pk}, {pk+1, . . . , pn}
according to whether zi is compatible with orientation or not, respectively. Then the gener-
alized complex structure depends only on the diffeomorphism class of the oriented 2-manifold
Σ and the two sets of multiplicities a+ = {a1, . . . , ak}, a− = {ak+1, . . . , an}. We denote this
generalized complex manifold by Ω1

Σ(a+, a−), and simply Ω1
Σ(k, n − k) if all ai = 1. In this

case, therefore, we obtain a generalized complex structure on Ω1
Σ(D) such that the zero section

Σ defines an oriented 2-brane which intersects the complex loci π−1(pi), i ≤ k positively and
the remaining complex loci π−1(pi), i > k negatively, with respect to the natural orientation
on the complex locus.

We have seen that 2-branes in even generalized complex 4-manifolds are generically La-
grangian; we now prove that such 2-branes have a standard tubular neighbourhood up to
B-diffeomorphism, just as in the familiar case of Lagrangian submanifolds of symplectic man-
ifolds. We restrict to the case where the 2-brane intersects the complex locus transversally;
in this case, the standard neighbourhood is given by a neighbourhood of the zero section in
Ω1

Σ(n) or Ω1
Σ(k, n− k) from Example 2.5.

Theorem 2.6 (Brane neighbourhood theorem). Let (Σ, F )
ι
↪→ (M,J ) be a compact 2-brane

in an even generalized complex 4-manifold which intersects the complex locus transversally at
n nondegenerate points.

i) If Σ is non-orientable, then it has a tubular neighbourhood isomorphic to a neighbourhood
of the zero section in Ω1

Σ(n).

ii) Otherwise, orient Σ and let k be the number of points where its intersection with the
complex locus is positive. Then Σ has a tubular neighbourhood isomorphic to a neigh-
bourhood of the zero section in Ω1

Σ(k, n− k).

The proof will require the following two preliminary results.
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Lemma 2.7. Under the hypotheses of Theorem 2.6, one can find coordinates around a point
in the intersection of the brane with the complex locus so that the generalized complex
structure is determined by

ρ = w + dw ∧ dz (2.3)

and the brane is given by z = 0.

Proof. According to Theorem 1.13, a neighbourhood of a nondegenerate point in the complex
locus is B-diffeomorphic to a neighbourhood of the origin in C2, equipped with the generalized
complex structure given by

w + dw ∧ dz = w exp(dw∧dzw ).

Choose such coordinates so that the origin is a point p in the intersection of Σ with the
complex locus.

Now let B + iω = dw∧dz
w . Since (Σ, F ) is a brane, F = B|Σ is a well defined 2-form.

Since Σ is transversal to w = 0 at p, in a neighbourhood around p we can write F = ι∗F̃ ,
where F̃ = −ib(w,w)dw ∧ dw, for a real function b. Note that F̃ is a closed 2-form on a
neighbourhood of 0 in C2.

Now we can perform a B-field transform by F̃ to obtain:

e−F̃ ρ = w + dw ∧ dz − iwbdw ∧ dw
= w + dw ∧ (dz − iwbdw)

= w + dw ∧ dz̃,

for new complex coordinates (w, z̃). Since Σ is a brane, ω|Σ = 0 and by construction (B −
F )|Σ = 0, hence dw ∧ dz̃ annihilates TΣ, which shows that Σ is a complex submanifold of C2

with respect to this new complex structure. Therefore there is a holomorphic function f(w)
such that Σ = {(w, f(w))} and hence (w, z) := (w, z̃ − f(w)) are the required coordinates
in which the generalized complex structure has the standard form (2.3) and Σ is given by
{z = 0}.

Lemma 2.8. Under the hypotheses of Theorem 2.6, the normal bundle to Σ is diffeomorphic
to Ω1

Σ(D), i.e. the cotangent bundle twisted by the complex line bundle Poincaré dual to [D] ∈
H0(Σ,Zω) (homology with orientation-twisted coefficients). Here D =

∑
pi, for {p1, . . . , pn}

the intersection of Σ with the complex locus.

Proof. The bundle τF is an extension of the form

0 −→ N∗Σ −→ τF −→ TΣ −→ 0.

composing J with the projection onto the tangent bundle πT , we obtain a map

πT ◦ J : N ∗ −→ TΣ.

Fibrewise, this map vanishes precisely at the intersection points {pi} of Σ with the complex
locus; otherwise it is an isomorphism.

By Lemma 2.7, near an intersection point, we can find coordinates so that the structure
is given by (2.3) and Σ is given by {z = 0}. In this case, dz is a section of N∗Σ and
πJ dz = 2iw∂w. Therefore this point contributes with a +1 to the Euler characteristic of TΣ,
i.e.

χ(TΣ) = χ(N∗Σ) + n.

11



Hence, as differentiable bundles, we have

NΣ ∼= Ω1
Σ(D).

Proof of Theorem 2.6. By Lemma 2.8, a tubular neighbourhood of Σ is diffeomorphic to a
neighbourhood of the zero section in Ω1

Σ(D), for D =
∑
pi given by the sum of the intersection

points with the complex locus. This diffeomorphism can be chosen so that the generalized
complex structure J agrees, at the points {pi}, with the normal form J 0 given in Example 2.5,
namely Ω1

Σ(n) (for case i)) or Ω1
Σ(k, n− k) (for case ii)).

According to Lemma 2.7, there is a B-diffeomorphism identifying J with J 0 in neigh-
bourhoods of the intersection points {pi}. Away from these neighbourhoods, J ,J 0 have the
form exp(B + iω), exp(B0 + iω0), and Σ is simply a Lagrangian submanifold for the sym-
plectic structure ω, by Proposition 2.2. Moser’s argument then furnishes a diffeomorphism
ψ, compactly supported in the symplectic locus and fixing Σ, and such that ψ∗ω = ω0 in a
tubular neighbourhood of Σ. Finally we apply the B-field transform by B0−ψ∗B to identify
J with J 0 on the tubular neighbourhood, as required.

3 Blowing up and down

A common feature of complex and symplectic manifolds is that any point p may be blown
up to obtain a new complex or symplectic manifold, where p has been replaced by a complex
projective space of real codimension 2, called the exceptional divisor. In the complex case,
the blowup is uniquely determined by the choice of point; the exceptional divisor may be
canonically identified with the projectivized tangent space to p. In the symplectic case, the
blowup is not unique: it depends on a real parameter measuring the symplectic size of the
exceptional divisor.

A point of symplectic type in a generalized complex manifold has a neighbourhood B-
diffeomorphic to a symplectic structure. Hence, symplectic blow-up may be used to produce
new generalized complex manifolds just as is done in symplectic geometry. Since this con-
struction is based on the symplectic blow-up, the generalized complex structure obtained is
non-unique.

In this section, we show that a nondegenerate complex point p in a generalized complex 4-
manifold M may be blown up in a canonical fashion, just as for a complex manifold. Since the
tangent space TpM is complex, we may identify the exceptional divisor Σ with the complex
projective line CP(TpM), which contains a distinguished point p̃ corresponding to the tangent
line to the locus of complex points near p. A neighbourhood of Σ is then isomorphic to a
neighbourhood of the zero section in the tautological line bundle over Σ, equipped with the
generalized complex structure from Example 2.4 with D = p̃; that is, Σ becomes a 2-brane
which is Lagrangian away from p̃.

Conversely, we show that any 2-brane Σ in a generalized complex 4-manifold M̃ which
intersects the complex locus transversally in a single nondegenerate point p̃ may be blown
down, yielding a generalized complex 4-manifold M , with a marked nondegenerate complex
point p. This is analogous to the result that any rational −1-curve in a complex surface may
be blown down.

By Theorem 1.13, a nondegenerate complex point p ∈M has a coordinate neighbourhood
U with generalized complex structure J β given, in complex coordinates (w, z), by

ρ = w + dw ∧ dz = eβ(dw ∧ dz), (3.1)
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for the bivector β = w∂w ∧ ∂z. Let Ũ be the usual complex blowup of U at p, so that
Ũ may be described as a neighbourhood of the zero section Σ of O(−1) over CP 1. The
anticanonical section β naturally lifts to a bivector β̃ on the blowup, which then defines a
generalized complex structure J β̃ on Ũ as in Example 1.11. Furthermore, as in Example 2.4,

the exceptional divisor Σ becomes a 2-brane in Ũ which is Lagrangian except at its intersection
with the complex point p̃ = [z1 = 0].

Choosing affine charts Ũ1 = {(w, z̃) = (w, z/w)}, Ũ2 = {(w̃, z) = (w/z, z)} for the blowup,
the bivector β̃ may be written as

β̃ =

{
∂w ∧ ∂z̃ in Ũ1

w̃∂w̃ ∧ ∂z in Ũ2,

giving a generalized complex structure J̃ on Ũ described by the forms

ρ̃ =

{
1 + dw ∧ dz̃ in Ũ1

w̃ + dw̃ ∧ dz in Ũ2.
(3.2)

This allows us to see explicitly that the exceptional divisor is a generically Lagrangian 2-brane
(since dw ∧ dz̃ is a (2, 0)-form, and hence vanishes upon pullback to Σ).

Proposition 3.1. Let π : Ũ → U be the blowup projection map. With respect to the gen-
eralized complex structures described above, the generalized map Π = (π, 0) is holomorphic.
Further, its restriction Ũ\π−1(p)→ U\{p} is an isomorphism.

Proof. Let πi : Ũi → U be the blowup projection restricted to the Ũi, so that π1 : (w, z̃) 7→
(w,wz̃) while π2 : (w̃, z) 7→ (w̃z, z). Calculating the pullback of ρ = w + dw ∧ dz, we have

π∗1ρ = w + wdw ∧ dz̃ = w(1 + dw ∧ dz̃)
π∗2ρ = w̃z + zdw̃ ∧ dz = z(w̃ + w̃ ∧ dz).

Comparing with (3.2), we see that π∗ρ defines the same generalized complex structure as ρ̃,
away from the exceptional divisor. Since holomorphicity is a closed condition, we conclude
that the generalized map (π, 0) is holomorphic, as required.

Proposition 3.2. Any generalized complex automorphism Φ = (ϕ,B) of U fixing p has a
canonical lift to an automorphism Φ̃ = (ϕ̃, B̃) of the blowup Ũ making the following diagram
commute, where Π denotes the generalized holomorphic projection (π, 0).

Ũ
Π //

Φ̃
��

U

Φ

��
Ũ

Π
// U

(3.3)

Proof. Since Φ is a generalized complex automorphism which fixes p, and since p is a complex
point, dϕ|p must be a complex linear automorphism of TpU (and B|p must be of type (1, 1)).

Hence ϕ lifts to a diffeomorphism ϕ̃ : Ũ → Ũ which acts via P(dϕ|p) on the exceptional

divisor P(TpU) and which coincides with ϕ elsewhere. Then we may take B̃ = π∗B, yielding

Π ◦ Φ̃ = Φ ◦Π, and Φ̃ must be an automorphism since Π−1 ◦Φ ◦Π is an isomorphism on the
dense set π−1(U\{p}).
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Theorem 3.3 (Blowing up). For any nondegenerate complex point p ∈ M in a general-
ized complex 4-manifold, there exists a generalized complex 4-manifold M̃ and a generalized
holomorphic map π : M̃ → M which is an isomorphism M̃\π−1(p) → M\{p} and which is
equivalent to π : Ũ → U as above in a neighbourhood of π−1(p) ∼= CP(TpM). The pair (M̃, π)
is called the blowup of M at p, and is unique up to canonical isomorphism.

Proof. Choose a coordinate neighbourhood U of p which is standard in the sense of (3.1) and
let π : Ũ → U be the standard complex blowup as above. Then define M̃ = M\{p} ∪π Ũ
and extend π by the identity map to all of M̃ . Then by Proposition 3.2, M̃ is canonically
independent of the chosen coordinates.

By Theorem 2.6, any 2-brane which intersects the complex locus in a single nondegenerate
point has a standard tubular neighbourhood; in particular, such a 2-brane must have self-
intersection −1. Observing that the exceptional divisor Σ = π−1(p) of the blowup described
above is precisely such a 2-brane, we obtain the following result.

Theorem 3.4 (Blowing down). A generalized complex 4-manifold M̃ containing a 2-brane
Σ ∼= S2 intersecting the complex locus in a single nondegenerate point may be blown down;
i.e. there is a generalized holomorphic map π : M̃ → M to a generalized complex manifold
M which is an isomorphism M̃\Σ → M\{p = π(Σ)}, and which is equivalent to π : Ũ → U
as above in a neighbourhood of Σ.

4 C∞ log transform

In [1], the authors introduced a construction of generalized complex manifolds, wherein a
symplectic 4-manifold (M,ω) undergoes surgery along an embedded symplectic 2-torus with
trivial normal bundle to yield a generalized complex manifold with type change along a 2-
torus. This type of 4-manifold surgery is called a C∞ log transform [7]. We now clarify this
construction and study its effect on a Lefschetz fibration.

Let T ↪→ M be a symplectic 2-torus with trivial normal bundle and symplectic area A.
By Moser’s argument, we may choose polar coordinates (r, θ1) transverse to T and angular
coordinates (θ2, θ3) along T such that the symplectic form becomes, for r < ε,

ω = rdr ∧ dθ1 + A
4π2 dθ2 ∧ dθ3. (4.1)

Let U0 = M\{(r, θ1, θ2, θ3) : r ≤ ε
2}, and equip it with the given symplectic structure

ρ0 = eiω|U0
.

We now compare this to the singular symplectic structure near the complex locus of a gener-
alized complex manifold.

Consider the quotient of the generalized complex structure from Example 1.6 by the lattice
Γ = 〈A, iA〉 ⊂ C, where γ ∈ Γ acts via γ : (z, w) 7→ (z + γ,w). Then the complex locus Σ =
{w = 0} is an elliptic curve with modular parameter τ = i. As per Corollary 1.14, Σ inherits a
canonical holomorphic differential Ω = dz, which in turn defines A via A2 =

∫
Σ
iΩ∧ Ω̄. With

respect to polar coordinates w = r̃eiθ̃1 and angular coordinates θ̃2 = 2π
A Re(z), θ̃3 = 2π

A Im(z),
the generalized complex structure is given by

ρ1 = r̃eiθ̃1(1 + A
4π2 (d log r̃ + idθ̃1) ∧ (dθ̃2 + idθ̃3)),

which is proportional to eB̃+iω̃ for the singular forms

B̃ = A
4π2 (d log r̃ ∧ dθ̃2 − dθ̃1 ∧ dθ̃3),

ω̃ = A
4π2 (d log r̃ ∧ dθ̃3 + dθ̃1 ∧ dθ̃2).
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We then observe that ω̃ (for r̃ > r̃0 > 0) is symplectomorphic to ω (for r > 0) via the
coordinate transformation

ϕr̃0 : (r, θ1, θ2, θ3) 7→ (r̃, θ̃1, θ̃2, θ̃3) = (r̃0e
2π2A−1r2 , θ2, θ3, θ1).

If we glue the open set U0 to the open set U1 = {(r̃, θ̃1, θ̃2, θ̃3) : r̃ < 1} along the neck

ε/2 < r < ε, using the diffeomorphism ϕr̃0 , with r̃0 = e−2π2A−1ε2 (so that, for ε/2 < r < ε

we have r̃0e
π2ε2

2A < r̃ < 1), then we observe that, in U0 ∩ U1, we have

eB01ϕ∗r̃0ρ1 = eiω = ρ0,

for the closed 2-form B01 ∈ Ω2(U ∩ V,R) given by

B01 = −rdr ∧ dθ3 − A
4π2 dθ1 ∧ dθ2. (4.2)

Choosing a Čech trivialization B01 = (B1−B0)|U0∩U1
for Bi ∈ Ω2(Ui,R), we see that {eBiρi}

defines a generalized complex structure on the surgered manifold M̂ = U0 ∪ϕr̃0
U1, which

has symplectic type in U0 and which changes type in U1 along an elliptic curve. While the
underlying 3-form of the original symplectic manifold (M,ω) vanishes, this is not the case for
M̃ , where the 3-form is given by H|Ui

= −dBi.
The cohomology class [H] may be easily described, since for any closed 1-form ξ, we have∫

M̂

H ∧ ξ = −
∫
T 3'U0∩U1

B01 ∧ ξ.

Hence by (4.2), [H] is Poincaré dual to A times the circle parametrized by θ3. Since θ3

corresponds to θ̃2 in the gluing, we may describe this circle as an integral circle of the real part
of the canonical holomorphic vector field Z = ∂/∂z on Σ. The 4-manifold surgery described
above is known as a C∞ logarithmic transform of multiplicity zero. We now summarize the
above discussion.

Theorem 4.1 (Cavalcanti–Gualtieri [1]). Let (M,ω) be a symplectic 4-manifold, T ↪→ M
be a symplectic 2-torus of area A with trivial normal bundle. Then the multiplicity zero C∞

logarithmic transform of M along T , denoted M̂ , admits a generalized complex structure such
that:

1. The complex locus is given by an elliptic curve Σ with modular parameter τ = i, and
the induced holomorphic differential Ω has periods 〈A, iA〉.

2. Integrability holds with respect to a 3-form H, which is Poincaré dual to A times the
homology class of an integral circle of Re(Ω−1) in Σ.

Example 4.2 (Lefschetz fibrations). Let (M,ω) be a symplectic 4-manifold which is ex-
pressed as a symplectic Lefschetz fibration (in the sense of [4]) π : M → B whose generic
fiber has genus 1. If T is a smooth fiber, then it is a symplectic 2-torus with trivial normal
bundle. Trivialize the fibration near T so that a neighbourhood of T is diffeomorphic to
D2 × T 2, where π is the first projection. In coordinates, we have π(r, θ1, θ2, θ3) = (r, θ1).

We may now apply an isotopy, supported in a sufficiently small neighbourhood of T ,
taking ω into the standard form (4.1) in some neighbourhood of T and such that π remains
a symplectic Lefschetz fibration.

Now, let M̂ be the C∞ logarithmic transform of M along T as in Theorem 4.1. Then,
using the preceding notation, the fibration projection π is still well defined on U0. We extend
π to U1, and hence to all of M̂ , as follows. For points in U0∩U1 (for which r̃ > r̃0e

π2ε2(2A)−1

),
the projection may be written
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π : (r̃, θ̃1, θ̃2, θ̃3) 7→ (r, θ1) = (( A
2π2 log r̃

r̃0
)1/2, θ̃3). (4.3)

To extend this to all of U1, we choose f : [0, 1]→ [ε/4, ε] to be a smooth monotone function

of r̃ such that f(0) = ε/4 and f agrees with r = r(r̃) (see (4.3)) for r̃0e
(2A)−1π2ε2 < r̃ < 1.

Then we define, for all r̃ ∈ [0, 1],

π̂|U1
: (r̃, θ̃1, θ̃2, θ̃3) 7→ (f(r̃), θ̃3).

This defines a projection of U1 onto an open-closed annulus ε/4 ≤ r < 1; together with the
projection π : U0 → B\{r ≤ ε}, we obtain a projection of M̂ onto the surface with boundary
B̂ = B\D2

ε/4:

π̂ : M̂ −→ B̂ = B\{(r, θ) : r < ε/4}.

This map is a symplectic Lefschetz fibration away from the boundary ∂B̂ = {r = ε/4}, where
the fiber degenerates to a circle; indeed π̂−1(∂B̂) is precisely the elliptic curve forming the
complex locus of the generalized complex manifold. The fibers over boundary points are the
integral circles for Re(Z), and we obtain from π̂∗Im(Z) a vector field along the boundary
with period A. Note also that since we are not changing the Lefschetz fibration outside a
neighbourhood of ∂B̂, the monodromy about any path homotopic to the boundary is trivial.

The generalized Lefschetz fibration described above provides a pictorial description of the
behaviour of the generalized complex structure: the geometry is symplectic over the interior
B̂\∂B and complex over the boundary ∂B. Furthermore, the generalized complex structure is
integrable with respect to a closed 3-form H which is Poincaré dual to A times the homology
class of the circle π̂−1(p), for p ∈ ∂B̂.

Figure 1: A symplectic genus 1 Lefschetz fibration undergoes surgery along a smooth fiber T , becoming a
generalized Lefschetz fibration of a generalized complex 4-manifold over a surface with boundary.

5 Examples

In this section, we use the tools introduced above, namely blowing up and down as well as the
C∞ log transform, in conjunction with the representation of a generalized complex 4-manifold
as a generalized elliptic Lefschetz fibration, to produce new examples of generalized complex
manifolds. In particular, we show that the connected sum of any odd number of copies of
CP 2 has a generalized complex structure.

Example 5.1 (Fiber sums). Given symplectic manifolds M1,M2, each equipped with a genus
1 Lefschetz fibration over bases B1, B2 respectively, we may produce their symplectic fiber
sum (see [6]), denoted M1#fM2, using a symplectic identification of smooth fibers. The
fiber sum is then a Lefschetz fibration over the connected sum B1#B2.
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The C∞ log transform ̂M1#fM2 then has a generalized Lefschetz fibration over a manifold
with boundary which is precisely the boundary connected sum of the surfaces with boundary
B̂1, B̂2 which form the bases of the generalized Lefschetz fibrations associated to the C∞

log transforms M̂1, M̂2. We therefore obtain a connected sum operation for the generalized
Lefschetz fibrations described above along the boundary fiber.

Figure 2: The connected sum of generalized Lefschetz fibrations over B̂1, B̂2 along the boundary fiber is itself a
generalized Lefschetz fibration over the boundary connected sum B̂1#∂B̂2.

Example 5.2 (Branes and blow down). A standard tool in symplectic topology, described
in [4], is the construction of Lagrangian spheres in symplectic manifolds by the method of
vanishing cycles. This proceeds essentially by choosing a path in the base of a Lefschetz
fibration connecting two nodal fibers which is such that the same cycle degenerates at each
end of the path. Using a connection determined by the symplectic orthogonal of the fibers, a
representative of the vanishing cycle traces out a Lagrangian sphere fibering over the original
path.

For a generalized complex 4-manifold presented as a generalized Lefschetz fibration, we
may use the method of vanishing cycles to construct two types of branes in addition to the
Lagrangian spheres which exist in the symplectic locus. The first is obtained by connecting
two boundary points in the base by a path such that the same cycle degenerates near each end.
In this case we obtain a 2-sphere which is Lagrangian in the symplectic locus and intersects
the complex locus transversally at two points. Proposition 2.2 then implies that this sphere
is a brane, which according to Theorem 2.6 has trivial normal bundle.

The more interesting case arises when connecting a boundary point in the base with
the base point of a nodal fiber in such a way that the same cycle degenerates at each end.
Then we obtain a 2-sphere brane intersecting the complex locus transversally at precisely
one nondegenerate point (hence by Theorem 2.6 it has self-intersection −1). According to
Theorem 3.4 we may blow down such a spherical brane to obtain a new generalized complex
manifold. Note that the blow down does not inherit a Lefschetz fibration; rather, it may be
viewed as an analogue of a Lefschetz pencil.

In the final example, we show that the connected sum of any odd number of copies of
CP 2 admits a generalized complex structure. This is of particular interest for the following
reasons. First, due to the Kodaira classification of complex surfaces and a fundamental result
in Seiberg–Witten theory, the manifolds nCP 2#mCP 2 have neither complex nor symplectic
structures when n > 1 [15, 18, 21]. Therefore, this example produces a family of generalized
complex manifolds which do not admit complex or symplectic structures. Second, due to
results of Hirzebruch and Hopf [12], an oriented simply connected 4-manifold admits an
almost complex structure if and only if b+2 is odd. Since generalized complex manifolds are
necessarily almost complex [10], this example shows that for connected sums of CP 2 and
CP 2, there is no obstruction to the existence of a generalized complex structure besides that
of being almost complex.
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Figure 3: The path γ1 joins a boundary fiber to a nodal fiber with equal vanishing cycle and lifts to a 2-sphere
brane Σ with self-intersection −1. The path γ2 joins boundary fibers with equal vanishing cycle and lifts to a

2-sphere brane with trivial normal bundle. The path γ3 joins nodal fibers with same vanishing cycle, and lifts to
a usual Lagrangian sphere in the symplectic locus.

Example 5.3 (A generalized complex structure on (2n − 1)CP 2). The blow up of CP 2 at
the 9 points of intersection of two generic cubics provides a basic example of a symplectic
4-manifold equipped with an elliptic Lefschetz fibration. This manifold is sometimes denoted
by E(1), and E(n) is the fiber sum of n copies of E(1). For example, E(2) is diffeomorphic
to a K3 surface. A relevant fact concerning the manifolds E(n) is that the multiplicity zero

C∞ logarithmic transform along a smooth fiber, Ê(n), “dissolves” [8]:

Ê(n) = (2n− 1)CP 2#(10n− 1)CP 2.

For n = 1 we obtain the diffeomorphism Ê(1) = CP 2#9CP 2 = E(1). In light of Example

5.2, we can see the nine −1 spheres in the generalized complex manifold Ê(1) explicitly in
the following way. The Lefschetz fibration of E(1) over S2 has twelve nodal fibers with
critical values which we label {y1, y2, y3, x1, . . . , x9}. Choose a smooth fiber F0 about which
to perform the C∞ log transform. With respect to a fixed set of paths joining F0 to the nodal
fibers, and using a basis {a, b} for H1(F0,Z), the degenerating cycles are a+ 3b, a, a− 3b for
the fibers over y1, y2, y3, and b for the remaining 9 fibers over xi (see e.g., Example 8.2.11 in
[8]). We now perform the C∞ log transform about F0, collapsing the cycle b. We obtain a

generalized Lefschetz fibration of Ê(1) over a disk with boundary, as in Figure 4.
Since the paths joining the points xi to F0 have vanishing cycle b, after the surgery they

become paths joining nodal fibers to boundary points with equal vanishing cycles, and hence
lift to a configuration of nine 2-sphere branes intersecting the complex locus at single points.
By Theorem 3.4, we may blow down each of these spheres and obtain a generalized complex
structure on the blow down, which by Proposition 5.4 in the Appendix, is diffeomorphic
to CP 2. Generalized complex structures on CP 2 similar to this one may alternatively be
obtained by deforming the complex structure by a Poisson bivector as in Theorem 1.10.

For a more interesting example, construct the connected sum of Ê(1) with itself along the
boundary fiber, as in Example 5.1, obtaining a new generalized Lefschetz fibration over the
boundary connected sum, as in Figure 5. When performing the fiber sum, we must choose
an identification of the tori which fiber over the boundary circles. If (ai, bi), i = 1, 2 form a
basis for the first homology of a smooth fiber on each summand, then we require that b2 is
identified with b1. We obtain in this way a generalized complex 4-manifold containing nine
2-sphere branes from each summand, resulting in 18 clearly visible 2-sphere branes which
intersect the complex locus in single points. There is some freedom in the identification of a1

in the connected sum; if we set a2 = a1− 7b1, then using the monodromy around a1− 3b1 we
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Figure 4: A generalized Lefschetz fibration of Ê(1) over a disk with boundary, where the C∞ log transform along
F0 ⊂ E(1) collapses the b cycle at the boundary fiber. The chosen paths are shown, and the vanishing cycles at

nodal fibers are labeled.

Figure 5: A generalized Lefschetz fibration of Ê(2) = 3CP 2#19CP 2, over the boundary connect sum of closed
discs from Figure 4. The boundary vanishing cycle b1 is identified with b2 in the connect sum, hence we

immediately see 18 2-sphere branes of self-intersection −1.

can change the cycle a2 +3b2 = a1−4b1 into −b1. The new path which realizes this vanishing
cycle is denoted by γ in Figure 6.

Therefore, in the boundary fiber connected sum Ê(2), we find 19 2-sphere branes inter-

secting the complex locus in single nondegenerate points. Since Ê(2) = 3CP 2#19CP 2, we
would like to conclude that upon blowing down these 19 spheres, we obtain a generalized
complex structure on the differentiable manifold 3CP 2. In Proposition 5.4 (see Appendix),
we use Kirby calculus to verify this claim.

The procedure above may be iterated, taking successive boundary connect sum with Ê(1),
so that with each new summand we obtain 10 more 2-sphere branes intersecting the complex
locus in nondegenerate points. Therefore we obtain 10n−1 spherical branes of self-intersection

−1 in the generalized complex manifold Ê(n) which can be blown down. Using Kirby calculus
again, we prove that the resulting manifold is precisely (2n − 1)CP 2, which therefore has a
generalized complex structure.

Remark. While we use Kirby calculus in the above example to prove that the manifold
obtained after blowing down the (10n − 1)CP 2 is diffeomorphic to (2n − 1)CP 2, there is a
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Figure 6: Using the monodromy around the a1 − 3b1 critical value, we reveal a 19th 2-sphere brane of
self-intersection −1, fibering over the path γ.

Figure 7: Iterating the boundary fiber connected sum, we find (10n− 1) 2-sphere branes in

Ê(n) = (2n− 1)CP 2#(10n− 1)CP 2 intersecting the complex locus in single points. Blowing down each of these,
we obtain a generalized complex structure on (2n− 1)CP 2.

simple argument establishing a homotopy equivalence. Indeed, after blowing down all the
CP 2, we obtain a smooth 1-connected manifold with positive intersection form. By results
of Donaldson [5], the only possible intersection form is the diagonal (2n − 1)1. Since this
manifold has the same intersection form as (2n− 1)CP 2, they must be homotopic [20, 16].

Appendix 1 – Kirby calculus

In the previous section we obtained a manifold, Ê(n), as a boundary fiber connected sum of

n copies of Ê(1), or equivalently, as a C∞ log transform applied to the symplectic fiber sum
of n copies of E(1) = CP 2#9CP 2. In this section we give a handlebody decomposition of

Ê(n) which makes clear the effect of blowing down the (10n − 1)CP 2. This will show that
the resulting manifold is indeed (2n− 1)CP 2.

Proposition 5.4. The manifold obtained in Example 5.3 as the blow-down of the specified

(10n− 1)CP 2 in Ê(n) is diffeomorphic to (2n− 1)CP 2.

Proof. The first step is to simplify the vanishing cycle information in the description of

Ê(n) in Figure 6. Using the monodromy, we can bundle the (10n − 1) singular fibers with
degenerating cycle b together. Furthermore, we can make some symmetry evident by replacing
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a by a+ 4(n− 1)b. We then obtain the following vanishing cycles
a+ (4n− 1)b,

a+ 4kb, for k = n− 1, · · · , 1− n,
a− (4n− 1)b,

(10n− 1) cycles of type b,

arranged as in Figure 8.

Figure 8: Generalized Lefschetz fibration of Ê(n) over a closed disk.

The Kirby diagram for E(n) with a regular fiber removed is obtained by attaching −1

framed 2-handles to T 2×D2 for each of the nodal fibers. Then Ê(n), the surgered manifold, is
obtained from that diagram by attaching a 0-framed 2-handle corresponding to the cycle in T 2

which is collapsed by the surgery [8]. This diagram is shown in Figure 9, where the 2-handles
corresponding to the vanishing cycles a+(4n−1)b, a+4(n−1)b, · · · , a−4(n−1)b, a−(4n−1)b
are denoted by αn, αn−1, · · · , α−n+1, α−n, the 2-handles corresponding to the vanishing cycles
b are denoted by β1, · · ·β10n−1 and the 0-framed 2-handle introduced by the surgery is denoted
by γ

4n − 1 4(n − 1) 4(n − 2) · · ·

· · ·

4(n − 2) 4(n − 1) 4n − 1

10n − 1

0

0· · ·

· · ·· · ·

· · ·

αn αn−1 αn−2

α−n+2 α−n+1 α−n

βiγ

α0

λ

Figure 9: 1 and 2-handles of the Kirby diagram for Ê(n). All 2-handles are blackboard −1-framed, except for the
outermost, λ, and one of the 2-handles running over the vertical 1-handle, γ. The latter represents the b-cycle on

the fibers which collapses on the boundary of the base.

If we slide all the handles represented by βi (the circles through the vertically symmetric
squashed spheres in Figure 9) over the 0-framed 2-handle γ, also representing the b-cycle, we
obtain (10n− 1) −1-framed unknots which split out of the diagram. These are precisely the
(10n− 1)CP 2 described in Example 5.3, hence removing them from the diagram corresponds
to blowing down those cycles. We can also slide each of the other −1-framed 2-handles over
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a number of copies of γ so that the only 2-handle intersecting the top and bottom spheres
is γ itself. Finally, we can cancel the 1-handle representing b with γ. If we let A(n) be the
manifold obtained after blowing down, the argument above shows its Kirby diagram is as
shown in Figure 10.

0

· · ·

4n − 1 4(n − 1) 4(n − 2) 4(n − 2) 4(n − 1) 4n − 1
| {z } | {z } | {z } | {z } | {z } | {z }

αn αn−1 αn−2 α−n+2 α−n+1 α−n

λ

α0

Figure 10: 1 and 2-handles of the Kirby diagram of A(n). All 2-handles are blackboard −1-framed, except for λ,
which is 0-framed.

Now observe that the 2-handle represented by λ can be pushed through the 1-handle and
becomes a zero framed unknot disjoint from the rest of the diagram which can therefore be
cancelled against a 3-handle.

Then we can slide all the remaining handles through the handle labeled α0 in Figure 10,
so that we can cancel the remaining 1-handle with α0 and obtain Figure 11 as the Kirby
diagram for A(n).

· · ·

4n − 1 4(n − 1) 4(n − 2) 4(n − 2) 4(n − 1) 4n − 1

−1

| {z } | {z } | {z } | {z } | {z } | {z }

αn αn−1 αn−2 α−n+2 α−n+1 α−n

Figure 11: A(n) as a 2-handlebody. All 2-handles are blackboard −1-framed.

Now that all the 1-handles are gone, we can abandon the blackboard framing and use
instead the Seifert framing. Further, we observe that we can move αn and α−n so that their
crossings with the other handles in the diagram are simplified, obtaining Figure 12 as the
diagram for A(n).
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· · ·

4(n − 1) 4(n − 2) 4(n − 2) 4(n − 1)

−1

| {z } | {z } | {z } | {z }

4n − 3

4n − 6

4n − 10

αn−1 αn−2 α−n+2 α−n+1

αn

α−n

Figure 12: A(n) as a 2-handlebody. The boldfaced numbers indicate the canonical framing of the respective
handles.

And then we can move αn−1 so that it wraps around αn and after that move αn−2 so that
it wraps around αn and αn−1 and so on. This way, the handles αi with i > 0 will only knot
with the αi with i < 0 in the −1 box and we obtain the more symmetric Kirby diagram for
A(n) shown in Figure 13.

· · ·

· · ·

4n − 5

4n − 9

4n − 5

4n − 9

4n − 3
4n − 6

4n − 10

αn

αn−1

αn−2

α−n

α−n+1

α−n+2

Figure 13: A(n) as a 2-handlebody. The boldfaced numbers indicate the canonical framing of the respective
handles.

We now prove by induction that this manifold is (2n−1)CP 2. In the case when n = 1, the
diagram in Figure 13 becomes a pair of 1-framed 2-handles linked in a Hopf link. A handle
slide separates them (see Figure 14), rendering a 1-framed 2-handle and a 0-framed 2-handle.
The 0-framed 2-handle cancels with a 3-handle and the result is CP 2, as required.

In the general case, we can slide αn over αn−1 as well as slide α−n over α−n+1, turning
them into 1-framed 2-handles knotting only α±(n−1). Splitting out the 1-framed 2-handles
(see Figure 15), we obtain the diagram for 2CP 2#A(n− 1), proving the induction step.

Acknowledgements. We would like to thank Denis Auroux, Nigel Hitchin, David Martinez
and Vicente Muñoz for useful conversations.
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1 1 1 0

Figure 14: A simple handle slide shows that A(1) = CP 2.

· · ·

· · ·

4n − 9

4n − 9

4n-6

4n-10

1

1

· · ·

· · ·

4n − 9

4n − 9

4n-7

4n-10

1

1

αn−1

αn−2

α−n+1

α−n+2

αn−1

αn−2

α−n+1

α−n+2

Figure 15: In the general case, two handle slides imply A(n) = A(n− 1)#2CP 2.
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Nacional Autónoma de México and UNESCO, Mexico City, 1958.
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