
Goto’s generalized Kähler stability theorem

Gil R. Cavalcanti∗

Abstract

In these notes we give a shortened and more direct proof of Goto’s generalized Kähler
stability theorem stating that if (J 1,J 2) is a generalized Kähler structure for which J 2 is
determined by a nowhere vanishing closed form, then small deformations of J 1 can be coupled
with small deformations of J 2 so that the pair remains a generalized Kähler structure.

Introduction

Generalized Kähler structures were introduced in 2003 by Gualtieri [4] and raised immediate
interest accross fields as Gualtieri proved that the generalized Kähler condition is precisely
equivalent to the conditions required on the target space of a (2, 2)-supersymmetric sigma
model discovered by Gates, Hull and Roček [2]. Despite of the fact that the bi-Hermitian
structures of Gates, Hull and Roček had been around for 20 years, there were only a handful
of known examples which were not outright Kähler and, in the following years, we saw a
march towards finding interesting examples using generalized complex insights.

The most successful method for constructing such examples was by deforming a usual
Kähler structure into a generalized one. Indeed, Gualtieri showed in his thesis that a complex
structure can be transformed into a (non complex) generalized complex structure by use of
a holomorphic Poisson bivector. The basic idea for the generalized Kähler case was to use a
holomorphic Poisson bivector to deform the complex structure and show that the symplectic
structure could also be deformed so that the pair remained generalized Kähler. This idea
was first implemented by Hitchin in early 2005 [6]. There, he produced two examples of such
structures: one on CP 2 and one on CP 1 × CP 1. Later in the same year, these examples
were extended to several toric varieties by Lin and Tolman [10] using a quotient construction
and, in 2006, Hitchin extended the construction to arbitrary Poisson bivectors on del Pezzo
surfaces [7]. The question was then quite neatly settled in 2007, when Goto [3] proved that any
small deformation of the complex structure of a compact Kähler manifold can be completed
to a deformation of the whole generalized Kähler structure. Goto’s result goes beyond the
search of examples. In content, it is an analogue to Kodaira and Spencer’s stability theorem
of Kähler structures [8]. Precisely, Goto showed that given a generalized Kähler structure
(J 1,J 2) on a compact manifold for which J 2 is determined by a closed form, then any
deformation of J 1 can be completed by a deformation of J 2 so that the deformed pair is still
generalized Kähler.

In these notes we review the proof of Goto’s theorem. While the heart of the argument
is still the same, we use results regarding Hodge theory of generalized Kähler manifolds [5]
more judiciously as well as new results regarding the intrinsic torsion of a generalized almost
Hermitian manifold [1] to simplify nearly all of the setup used by Goto and produce a much
cleaner and clearer proof.
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1 Linear algebra

Given a vector space V m we let V = V ⊕ V ∗ be its “double”. V is endowed with a natural
symmetric pairing:

〈X + ξ, Y + η〉 = 1
2 (η(X) + ξ(Y )), X, Y ∈ V ; ξ, η ∈ V ∗.

Elements of V act on ∧•V ∗ via

(X + ξ) · ϕ = iXϕ+ ξ ∧ ϕ.

This action extends to an action of the Clifford algebra of V making ∧•V ∗ a natural repre-
sentation of the space of spinors for Spin(V).

In particular, ∧•V ∗ comes equipped with a spin invariant pairing, the Chevalley pairing:

(ϕ,ψ)Ch = −(ϕ ∧ ψt)top,

where ·t indicates transposition, an R-linear operator defined on decomposable forms by

(θ1 ∧ · · · ∧ θk)t = θk ∧ · · · ∧ θ1,

and top means taking the degree m component.
The group Spin(V) acts on both Clif(V), the Clifford algebra of V, and on spinors in a

compatible manner, namely, for γ ∈ Spin(V) and α ∈ Clifk(V) the action of γ on α is given
by Clifford conjugation

γ∗α = γαγ−1 ∈ Clifk(V).

And for ϕ ∈ ∧•V we have

γ∗α · γϕ = γαγ−1γϕ = γ(αϕ). (1.1)

Definition 1.1. A generalized metric on V is an automorphism G : V −→ V which is
orthogonal and self-adjoint with respect to the natural pairing and for which the bilinear
tensor

〈G·, ·〉 : V⊗ V −→ R

is positive definite.

Since G is orthogonal and self-adjoint we have G2 = Id, hence G splits V into its ±1-
eigenspaces: V = V+ ⊕ V−. The projection πV : V −→ V gives isomorphisms π : V± −→ V .

If V is endowed with an orientation, we can define a generalized Hodge star operator as
follows. Since πV : V+ −→ V is an isomorphism, V+ also inherits an orientation. Then we let
{e1, e2, · · · , em} be a positive orthonormal basis of V+, let ? = −em · · · · e2 · e1 ∈ Clif(V) and
define

?ϕ := ? · ϕ,

where · denotes Clifford action. With this definition, we have

(ϕ, ?ϕ)Ch > 0 if ϕ 6= 0. (1.2)

For the rest of this section we will introduce structures on V which force its dimension to
be even so we let m = 2n.
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Definition 1.2. A generalized complex structure on V is a complex structure on V which is
orthogonal with respect to the natural pairing. A generalized Hermitian structure on V is
a pair (G,J 1) of generalized metric and generalized complex structure such that J 1 and G
commute.

Given a generalized complex structure J , we let L be its +i-eigenspace. We have that
J ∈ spin(V), hence it decomposes ∧•V ∗ into the eigenspaces of its Lie algebra action on forms.
The eigenvalues of J are of the form ik with −n ≤ k ≤ n and we denote the corresponding
eigenspaces by UkJ or simply Uk if J is clear from the context. For v ∈ L and ϕ ∈ Uk we
have that

J (v · ϕ) = (J v) · ϕ+ v · Jϕ = i(k + 1)v · ϕ,

that is, Clifford action of L maps Uk into Uk+1 and similarly Clifford action of L maps Uk

into Uk−1. Hence Un corresponds to the space of forms which annihilate L. Since L is a
maximal isotropic subspace of V ⊗ C, Un is a line and it completely determines J . We call
Un the canonical line of J .

Given a generalized Hermitian structure, the automorphism J 2 = GJ 1 is also orthogonal
and squares to −Id, hence it is a generalized complex structure. Since G and J 1 commute
they induce a decomposition of VC into intersections of their eigenspaces:

V 1,0
+ = L1 ∩ (V+ ⊗ C), V 1,0

− = L1 ∩ (V− ⊗ C),

V 0,1
+ = L1 ∩ (V+ ⊗ C), V 0,1

− = L1 ∩ (V− ⊗ C),

where L1 is the +i-eigenspace of J 1.
Similarly, ∧•V ∗C splits as the intersections of the eigespaces of J 1 and J 2: Up,q = UpJ 1

∩
UqJ 2

and since the Clifford action of L1 changes the p-grading and the action of L2 changes

the q-grading in specific ways, the Clifford action of elements in V 1,0
± and V 0,1

± changes the
(p, q)-grading by ±1, as illustrated in Figure 1.

Up−1,q+1 Up+1,q+1

Up,q

V 0,1
−

ee

V 1,0
+

yy
V 1,0
−
%%

V 1,0
+

99

Up−1,q−1 Up+1,q−1

Figure 1: Action of elements of V 1,0
± and V 0,1

± on Up,q.

Finally in a generalized Hermitian manifold the generalized Hodge star is related to the

action of Ji = e
πJ i
2 , namely:

Lemma 1.3. (Gualtieri [5]) In a generalized Hermitian vector space one has

? = −J1J2.

2 The Nijenhuis tensor and integrability

In this section, we transfer to manifolds the structures defined on vector spaces in Section 1.
In this context we work on a manifold with a closed 3-form (M,H), H ∈ Ω3

cl(M). As before,
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the bundle TM is endowed with the natural pairing. Further, the space of sections of TM is
endowed with the Courant bracket, the derived bracket corresponding to dH = d+H∧:

[[X + ξ, Y + η]]dH = [X,Y ] + LXη − iY dξ − iY iXH.

If the 3-form H is clear from the context we denote this bracket simply by [[·, ·]].
Definition 2.1 (Integrability conditions).

• A generalized almost complex structure is a smooth assignment of a generalized complex
structure J to each TpM for p ∈M and J is integrable if its +i-eigenbundle is involutive
with respect to the Courant bracket, in which case we call J a generalized complex
structure on M .

• A generalized almost Hermitian structure is a smooth assignment of a generalized Her-
mitian structure, (G,J 1), to each TpM and if J 1 is integrable we call it a generalized
Hermitian structure.

• A generalized Kähler structure is a generalized Hermitian structure, (G,J 1) such that
J 2 = GJ 1 is also integrable.

Integrability of a generalized complex structure can be determined by the action of dH on
Uk, the sheaf of sections of Uk. Indeed, we have the following characterization of the behavior
of dH on generalized almost complex manifolds:

Theorem 2.2 (Cavalcanti [1]). Let J be an almost generalized complex structure and let N
be the Nijenhuis tensor of J :

N : ⊗3Γ(L) −→ Ω0(M ;C) N(X,Y, Z) = −2〈[[X,Y ]], Z〉.

Then N ∈ Γ(∧3L),
dH : Uk −→ Uk−3 ⊕ Uk−1 ⊕ Uk+1 ⊕ Uk+3

and the component of dH mapping Uk into Uk+3 is the Clifford action of N on forms. Sim-
ilarly, the component mapping Uk into Uk−3 is the action of N and they are both tensorial,
i.e., they are linear over C∞(M).

In particular we see from the above that involutivity of L is equivalent to the vanishing
of the Nijenhuis tensor which, in turn, furnishes the more usual integrability condition

dH : Uk −→ Uk+1 ⊕ Uk−1. (2.1)

established by Gualtieri in [4].
Of course, to determine the vanishing of the tensor N , or N for that matter, it is enough

to show that N acts trivially in a space where the action of ∧3L is faithful. For example, if

dH : Un −→ Un−1, (2.2)

then we conclude that N ≡ 0 and the structure is integrable
If (G,J 1) is a generalized almost Hermitian structure, according to Theorem 2.2, dH can

not change either the ‘p’ or the ‘q’ grading by more than three and it must switch parity.
Hence dH decomposes as a sum of eight operators and their complex conjugates

dH = δ+ + δ+ + δ−+ δ−+N+ +N+ +N−+N−+N1 +N1 +N2 +N2 +N3 +N3 +N4 +N4;

δ+ : Up,q −→ Up+1,q+1, δ− : Up,q −→ Up+1,q−1,

N+ : Up,q −→ Up+3,q+3, N− : Up,q −→ Up+3,q−3,

N1 : Up,q −→ Up−1,q+3, N2 : Up,q −→ Up+1,q+3,

N3 : Up,q −→ Up+3,q+1, N4 : Up,q −→ Up+3,q−1.

(2.3)
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Figure 2: Representation of the nontrivial components of dH when restricted to Up,q for a generalized
almost Hermitian structure.

and we can draw in a diagram all the possible nontrivial components of dH |Up,q as arrows
(see Figure 2).

Definition 2.3. The tensors N± and Ni, i = 1, 2, 3, 4 are the intrinsic torsion of the gener-
alized almost Hermitian structure (G,J 1).

In a generalized Hermitian manifold, integrability of J 1 implies that dH only changes
the ‘p’ grading by ±1. Yet, since J 2 is not necessarily integrable, dH can change the q
degree by ±1 and ±3. Hence, in a generalized Hermitian manifold, dH decomposes into eight
components and the Nijenhuis tensor of J 2 decomposes in two components (N1 and N2) as
shown in Figure 3.
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Figure 3: Decomposition of dH in a generalized Hermitian manifold.

Integrability of J 2 corresponds to the vanishing of the Nijenhuis tensor of J 2, hence for a
generalized Kähler manifold we can decompose dH as a sum of four operators: δ± and their
complex conjugates, as pictured in Figure 4.

Since (dH)2 = 0, we get
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Figure 4: Decomposition of dH in a generalized Kähler manifold.

Corollary 2.4. In a generalized Kähler manifold,

δ2± = 0, {δ+, δ−} = {δ+, δ−} = 0 {δ+, δ+}+ {δ−, δ−} = 0. (2.4)

Using the inner product (1.2) one can form the adjoints of the operators δ± and then
form the corresponding Laplacians, e.g., 4δ+ = δ+δ

∗
+ + δ∗+δ+. Particularly relevant for the

deformation problem are the results of Gualtieri regarding Hodge theory on a generalized
Kähler manifold. Using Lemma 1.3 and integration by parts Gualtieri proved:

Theorem 2.5 (Gualtieri [5]). In a generalized Kähler manifold

δ∗+ = −δ+ δ∗− = δ−;

4dH = 44δ+ = 44δ− = 44δ+ = 44δ− .

In paticular, the dH-Laplacian preserves the spaces Up,q and the dH-cohomology of a compact
generalized Kähler manifold, inherits a Z2-grading.

3 Deformations of generalized Kähler structures

In this section we present a proof of Goto’s theorem on stability of generalized Kähler struc-
tures. The first thing to remark is that while the usual approach to deformation of generalized
complex structures and Lie bi-algebroids from [4, 11] is useful in identifying actual deforma-
tions of a generalized complex structure, it does so by use of endomorphisms of TM which are
not orthogonal and hence are not very well suited for the study of simultaneous deformations
of two or more structures. The first lemma below, a re-working of Proposition 2.6 in Goto’s
paper [3] solves this problem. As before we let J 1 be a generalized complex structure and L1

be its +i-eigenspace.

Lemma 3.1. For each p ∈M there is a disc centered at the origin in (∧2L1⊕∧2L1)Rp , where

(·)R denotes the real elements in the vector space, such that any maximal isotropic subspace
of TpM ⊗C near L1|p corresponds to the orthogonal action of ea on L1 for a unique a in the
disc.

Proof. Indeed, the space of generalized complex structures of the same parity as J 1 on TpM
is the homogeneous space SO(TpM)/Stab(J 1) ∼= SO(n, n)/U(n, n). Hence, composing the
exponential map with the projection

so(TpM) −→ SO(TpM) −→ SO(TpM)/Stab(J 1)

gives a submersion in a neighbourhood of 0. Since the elements in so(TpM) preserving J 1

are those in (L1 ⊗ L1)R, and (∧2L1 ⊕ ∧2L1)R is a complementary subspace, we have that

(∧2L1 ⊕ ∧2L1)R −→ SO(TpM)/Stab(J 1)

6



is a local diffeomorphism. That is, for each small deformation of a generalized complex
structure J 1 on V there is a unique element a ∈ (∧2L1 ⊕ ∧2L1)R which realizes it.

Notice that for a ∈ Γ(∧2L1⊕∧2L1)R, the deformed generalized complex structure is given
by

J a = ea∗J 1e
−a
∗ .

Theorem 3.2 (Goto [3]). Let (M,H) be a compact manifold and (J 1,J 2) be a generalized
Kähler structure on M such that the canonical bundle of J 2 admits a nowhere vanishing
closed section ψ. Let J 1t be a family of deformations of the structure J 1 determined by an
analytic function a : D −→ Γ(∧2L1 ⊕ ∧2L1)R, where D is a disc around the origin in C.
Then there is an analytic family of deformations, J 2t, of J 2 determined by closed forms ψt
such that ψ0 = ψ and (J 1t,J 2t) is a generalized Kähler structure on M .

Proof. The basic idea of the proof is that we can pre-compose the deformation determined
by a by any automorphism of J 1 as this does not change the final deformation of J 1. That
is, once at ∈ Γ(∧2L1 ⊕ ∧2L1)R is chosen, we still have Γ(L1 ⊗ L1)R worth of choices on how
to change J 2 so that the pair is a generalized Hermitian structure. The quest then is to find
bt ∈ Γ(L1 ⊗ L1)R such that

J 2t = eatebtJ 2e
−bte−at

is integrable. This is done by induction using a power series argument. Finally, to finish the
proof one must show that the series obtained converges.

As we mentioned in the proof of Lemma 3.1, the elements in so(TM) whose exponen-
tial preserve J 1 are those in Γ(L1 ⊗ L1)R, so, for any b : D −→ Γ(L1 ⊗ L1)R the pair
(J 1t,J 2t) = (eatJ 1e

−at , eatebtJ 2e
−bte−at) is a generalized Hermitian structure on M . Since

the deformed structures are obtained from (J 1,J 2) by the exponential action of an element
in so(TM) = spin(TM), the corresponding decompositions of forms are related by that same
transformation:

Up,qt = eatebtUp,q. (3.1)

Since J 1t is integrable for any choice of b we have that, for any choice of b, dH splits
with respect to (J 1t,J 2t) into eight components, as depicted in Figure 3, and using the
isomorphism (3.1) we also have that e−bte−atdHeatebt splits in eight components with respect
to the decomposition of forms induced by (J 1,J 2).

The map a is analytic, say a =
∑
ajt

j , and we will solve for b given as a series, bt =∑
(βj + βj)t

j , with and βj ∈ Γ(∧V 0,1
+ ⊗ V 1,0

− ). Our task is to find bt such that dHψ(t) = 0.
The requirement that ψ(0) = ψ forces us to chose β0 = 0 and with this choice we have that
dHψ(t)|t=0 = dHψ = 0, i.e., dHψ(t) vanishes to order zero.

Assume by induction that we have chosen βj for j < k such that, as a function of t,
dHeaeb<kψ vanishes to order k − 1, where b<k =

∑
j<k(βj + βj) and now we choose βk so

that dHeaeb<k+1ψ vanishes to order k. Let P denote the order k term of dHeaeb<k+1ψ:

P = dH(eaeb<k+1ψ)k.

Since dHeaeb<k+1ψ vanishes to order k − 1, and (e−b<k+1e−a − 1) vanishes to order zero, we
see that P is the same as the order k term of e−b<k+1e−adHeaeb<k+1ψ, in particular, from
the description of the decomposition of dH on a generalized Hermitian manifold we conclude
that P ∈ U1,n−1 ⊕ U1,n−3 ⊕ U−1,n−1 ⊕ U−1,n−3.

For any choice of βk we have that

P = dH(βkψ) + ρ(a1, · · · , ak, b1, · · · , bk−1), (3.2)
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where ρ takes values in U1,n−1 ⊕ U1,n−3 ⊕ U−1,n−1 ⊕ U−1,n−3:

ρ = ρ1,n−1 + ρ1,n−3 + ρ−1,n−1 + ρ−1,n−3, with ρp,q ∈ Up,q,

since both P and dH(βkψ) lie in these spaces. Also ρ is dH -exact since both P and dHβk are.
So, in order to complete the inductive step, we must show that we can choose βk such that

dH(βkψ) = −ρ(a1, · · · , ak, b1, · · · , bk−1).

Finally, any element in U0,n−2 is of the form βψ for some β ∈ Γ(V 1,0
− ⊗ V 0,1

+ ), so finding βk
is equivalent to finding ϕ ∈ U0,n−2 such that ρ = dHϕ.

ρ−1,n−1 ∈ U−1,n−1 ρ1,n−1 ∈ U1,n−1

ϕ ∈ U0,n−2

δ+
uu

δ−

ii

δ−
))

δ+

55

ρ−1,n−3 ∈ U−1,n−3 ρ1,n−3 ∈ U1,n−3

Figure 5: We must show that the exact form ρ is in dH(U0,n−2).

Since ρ is dH -exact, we have that ρ = 4Gρ, where 4 is the Laplacian of any of the
operators δ±, δ± and G the corresponding Green’s operator, which due to Theorem 2.5 does
not depend on which of the four operators is used. Since4 and G preserve the spaces Up,q, we
have that individually ρp,q = 4Gρp,q. Further, the condition dHρ = 0, among other things,
implies the following:

δ+ρ
1,n−1 = δ+ρ

−1,n−3 = δ−ρ
1,n−3 = δ−ρ

−1,n−1 = 0, (3.3)

δ−ρ
−1,n−1 + δ−ρ

1,n−3 + δ+ρ
−1,n−3 + δ+ρ

1,n−1 = 0. (3.4)

Now, let

ϕ = G(δ−ρ
−1,n−1 + δ−ρ

1,n−3) = −G(δ+ρ
−1,n−3 + δ+ρ

1,n−1) ∈ U0,n−2, (3.5)

where the identity for the two expressions for ϕ follows from (3.4). Then we compute the
different components of dHϕ. We start with the U−1,n−3-component, which is given by δ+ϕ:

δ+ϕ = −G(δ+δ+ρ
−1,n−3) = −G ◦ (δ+δ+ + δ+δ+)(ρ−1,n−3) = G4δ+ρ−1,n−3 = ρ−1,n−3,

where in the first equality we used the second expression for ϕ, in the second equality we used
(3.3) and in the third and fourth we used Theorem 2.5. The remaining components follow
the same paradigm and we get ρ = dHϕ, which completes the induction step.

Proof of convergence uses standard elliptic estimate arguments and is done along the same
lines of Kodaira and Spencer’s original argument for deformations of complex structures (c.f.
Section 5.3 (c) in [9]). The main points of the argument being that one can (inductively)
bound the (l − 1, α)-Holder norm of the function ρ from (3.2), by the (l, α)-Holder norm
of the functions ai for i ≤ k, as ρ depends on ai, bi and their first derivative. Hence,
due the smoothing properties of the Green operator, the (l, α)-norm of ϕ defined in (3.5)
(and consequently of bk) is also bounded by the (l, α)-norm of the functions ai for i ≤ k.
Convergence of

∑
ait

i then implies convergence of
∑
bit

i in a possibly smaller radius.
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