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INTRODUCTION

In [1, 2, 10] Babenko–Taimanov and Rudyak–Tralle give examples of non-formal
simply-connected compact symplectic manifolds of any evendimension bigger than
or equal to 10. Babenko and Taimanov raise the question of theexistence of non-
formal simply-connected compact symplectic manifolds of dimension 8, which cannot
be constructed with their methods. In [6], it is constructedthe first example of a simply-
connected compact symplectic 8-dimensional manifold which is non-formal, thereby
completing the solution to the question of existence of non-formal symplectic manifolds
for all allowable dimensions. This example is constructed by starting with a suitable
complex 8-dimensional compact nilmanifoldM which has a symplectic form (but is not
Kähler). Then one quotients by a suitable action of the finitegroupZ3 acting symplec-
tically and freely except at finitely many fixed points. This gives a symplectic orbifold
M̂ = M/Z3, which is non-formal and simply-connected thanks to the choice of Z3-
action. The last step is a process of symplectic resolution of singularities to get a smooth
symplectic manifold. The symplectic resolution of isolated orbifold singularities has
been described in detail in [4]. The non-formality ofM̂ is checked via a newly defined
product in cohomology. This is a product of Massey type, which is calleda-product, and
it is discussed at length in [4].

The purpose of the present note is to give a new description ofthe symplectic orbifold
M̂ defined in [6]. The description presented here is in terms of real nilpotent Lie groups.
Secondly, we prove the non-formality of̂M by using higher order Massey products
instead ofa-products. It remains thus open the question of the existence of a smooth
8-manifold with non-zeroa-products but trivial (higher order) Massey products.

http://arxiv.org/abs/0801.4248v1
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Let G be the simply connected nilpotent Lie group of dimension 6 defined by the
structure equations

dβi = 0, i = 1,2
dγi = 0, i = 1,2
dη1 = −β1∧ γ1 +β2∧ γ1 +β1∧ γ2+2β2∧ γ2,
dη2 = 2β1∧ γ1+β2∧ γ1+β1∧ γ2−β2∧ γ2,

(1)

where{βi ,γi,ηi ;1 ≤ i ≤ 2} is a basis of the left invariant 1–forms onG. Because the
structure constants are rational numbers, Mal’cev theorem[7] implies the existence of a
discrete subgroupΓ of G such that the quotient spaceN = Γ\G is compact.

Using Nomizu’s theorem [9] we can compute the real cohomology of N. We get

H0(N) = 〈1〉,
H1(N) = 〈[β1], [β2], [γ1], [γ2]〉,
H2(N) = 〈[β1∧β2], [β1∧ γ1], [β1∧ γ2], [γ1∧ γ2], [β1∧η2−β2∧η1], [γ1∧η2− γ2∧η1],

[β1∧η1+β1∧η2+β2∧η2], [γ1∧η1 + γ1∧η2+ γ2∧η2]〉,
H3(N) = 〈[β1∧β2∧η1], [β1∧β2∧η2], [γ1∧ γ2∧η1], [γ1∧ γ2∧η2], [β1∧ γ1∧ (η1+2η2)],

[β1∧ γ1∧η2−β1∧ γ2∧η1], [β1∧ γ2∧η1−β1∧ γ2∧η2], [β2∧ γ2∧ (η2 +2η1)],

[β2∧ γ2∧η1−β2∧ γ1∧η2], [β2∧ γ1∧η2−β2∧ γ1∧η1]〉,
H4(N) = 〈[β1∧β2∧ γ1∧η1], [β1∧β2∧ γ1∧η2], [β1∧β2∧η1∧η2], [β1∧ γ1∧ γ2∧η2],

[β2∧ γ1∧ γ2∧η2], [γ1∧ γ2∧η1∧η2], [β1∧ γ2∧η1∧η2−β2∧ γ1∧η1∧η2],

[β1∧ γ2∧η1∧η2+β1∧ γ1∧η1∧η2+β2∧ γ2∧η1∧η2]〉,
H5(N) = 〈[β1∧β2∧ γ1∧η1∧η2], [β1∧β2∧ γ2∧η1∧η2], [β1∧ γ1∧ γ2∧η1∧η2],

[β2∧ γ1∧ γ2∧η1∧η2]〉,
H6(N) = 〈[β1∧β2∧ γ1∧ γ2∧η1∧η2]〉.

We can give a more explicit description of the groupG. As a differentiable manifold
G = R6. The nilpotent Lie group structure ofG is given by the multiplication law

m : G×G −→ G

((y′1,y
′
2,z

′
1,z

′
2,v

′
1,v

′
2),(y1,y2,z1,z2,v1,v2)) 7→

(
y1 +y′1,y2+y′2,z1+z′1,z2+z′2,

v1+v′1 +(y′1−y′2)z1− (y′1 +2y′2)z2,

v2+v′2− (2y′1+y′2)z1+(y′2−y′1)z2

)
.

(2)
We also need a discrete subgroup, which it could be taken to beZ6 ⊂ G. However, for

later convenience, we shall take the subgroup

Γ = {(y1,y2,z1,z2,v1,v2) ∈ Z
6 |v1 ≡ v2 (mod 3)} ⊂ G,

and define the nilmanifold
N = Γ\G .



In terms of a (global) system of coordinates(y1,y2,z1,z2,v1,v2) for G, the 1–formsβi ,
γi andηi , 1≤ i ≤ 2, are given by

βi = dyi , 1≤ i ≤ 2,

γi = dzi, 1≤ i ≤ 2,

η1 = dv1−y1dz1+y2dz1+y1dz2 +2y2dz2,

η2 = dv2+2y1dz1+y2dz1+y1dz2−y2dz2.

Note thatN is a principal torus bundle

T2 = Z〈(1,1),(3,0)〉\R
2 →֒ N −→ T4 = Z

4\R
4,

with the projection(y1,y2,z1,z2,v1,v2) 7→ (y1,y2,z1,z2).

The Lie groupG can be also described as follows. Consider the basis{µi ,νi,θi ;1≤
i ≤ 2} of the left invariant 1–forms onG given by

µ1 = β1+
1+

√
3

2
β2, µ2 = β1+

1−
√

3
2

β2,

ν1 = γ1+
1+

√
3

2
γ2, ν2 = γ1+

1−
√

3
2

γ2,

θ1 =
2√
3

η1+
1√
3

η2, θ2 = η2.

Hence, the structure equations can be rewritten as

dµi = 0, 1≤ i ≤ 2,
dνi = 0, 1≤ i ≤ 2,
dθ1 = µ1∧ν1−µ2∧ν2,
dθ2 = µ1∧ν2 + µ2∧ν1.

(3)

This means thatG is the complex Heisenberg groupHC, that is, the complex nilpotent
Lie group of complex matrices of the form

(
1 u2 u3
0 1 u1
0 0 1

)
.

In fact, in terms of the natural (complex) coordinate functions (u1,u2,u3) on HC, we
have that the complex 1–forms

µ = du1, ν = du2, θ = du3−u2du1

are left invariant anddµ = dν = 0, dθ = µ ∧ν. Now, it is enough to takeµ1 = ℜ(µ),
µ2 = ℑ(µ), ν1 = ℜ(ν), ν2 = ℑ(ν), θ1 = ℜ(θ), θ2 = ℑ(θ) to recover equations (3),
whereℜ(µ) andℑ(µ) denote the real and the imaginary parts ofµ, respectively.

Lemma 1 Let Λ ⊂ C be the lattice generated by1 and ζ = e2π i/3, and consider the
discrete subgroupΓH ⊂ HC formed by the matrices in which u1,u2,u3 ∈ Λ. Then there
is a natural identification of N= Γ\G with the quotientΓH\HC.



Proof We have constructed above an isomorphism of Lie groupsG → HC, whose
explicit equations are

(y1,y2,z1,z2,v1,v2) 7→ (u1,u2,u3),

where

u1 =

(
y1 +

1+
√

3
2

y2

)
+ i

(
y1+

1−
√

3
2

y2

)
,

u2 =

(
z1+

1+
√

3
2

z2

)
+ i

(
z1+

1−
√

3
2

z2

)
,

u3 =
1√
3

(2v1+v2 +3z1y2 +3z2y1 +3z2y2)+ i (v2 +2z1y1 +z2y1 +z1y2−z2y2) .

Note that the formula foru3 can be deduced from

du3−u2du1 = θ =

(
2√
3

η1 +
1√
3

η2

)
+ iη2 .

Now the groupΓ ⊂ G corresponds under this isomorphism to
{

(u1,u2,u3)|u1,u2 ∈ Z

〈
1+ i,

1+
√

3
2

+
1−

√
3

2
i

〉
,u3 ∈ Z

〈
2
√

3,
√

3+ i
〉}

.

Using the isomorphism of Lie groupsHC → HC given by

(u1,u2,u3) 7→ (u′1,u
′
2,u

′
3) =

(
u1

1+ i
,

u2

1+ i
,

u3

(1+ i)2

)
,

we get thatu′1,u
′
2,u

′
3 ∈ Λ = Z〈1,ζ 〉, which completes the proof. �

Remark 2 If we had considered the discrete subgroupZ6 ⊂ G instead ofΓ ⊂ G, then
we would not have obtained the fact u′

3 ∈ Λ in the proof of Lemma 1. Note that N=
Γ\G ։ Z6\G is a3 : 1covering.

Under the identificationN = Γ\G∼= ΓH\HC, N becomes the principal torus bundle

T2 = Λ\C →֒ N −→ T4 = Λ2\C
2,

with the projection(u1,u2,u3) 7→ (u1,u2).
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We define the 8–dimensional compact nilmanifoldM as the product

M = T2×N.



By Lemma 1 there is an isomorphism betweenM and the manifold(ΓH\HC)× (Λ\C)
studied in [6, Section 2] (we have to send the factorT2 of M to the factorΛ\C). Clearly,
M is a principal torus bundle

T2 →֒ M
π−→ T6.

Let (x1,x2) be the Lie algebra coordinates forT2, so that(x1,x2,y1,y2,z1,z2,v1,v2)
are coordinates for the Lie algebraR2×G of M. Thenπ(x1,x2,y1,y2,z1,z2,v1,v2) =
(x1,x2,y1,y2,z1,z2). A basis for the left invariant (closed) 1–forms onT2 is given as
{α1,α2}, whereα1 = dx1 and α2 = dx2. Then{αi ,βi,γi ,ηi ;1 ≤ i ≤ 2} constitutes a
(global) basis for the left invariant 1–forms onM. Note that{αi ,βi,γi;1 ≤ i ≤ 2} is a
basis for the left invariant closed 1–forms on the baseT6. (We use the same notation
for the differential forms onT6 and their pullbacks toM.) Using the computation of
the cohomology ofN, we get that the Betti numbers ofM are: b0(M) = b8(M) = 1,
b1(M) = b7(M) = 6, b2(M) = b6(M) = 17, b3(M) = b5(M) = 30, b4(M) = 36. In
particular,χ(M) = 0, as for any nilmanifold.

Consider the action of the finite groupZ3 onR2 given by

ρ(x1,x2) = (−x1−x2,x1),

for (x1,x2) ∈ R2, ρ being the generator ofZ3. Clearlyρ(Z2) = Z2, and soρ defines an
action ofZ3 on the 2-torusT2 = Z2\R2 with 3 fixed points:(0,0), (1

3, 1
3) and(2

3, 2
3).

The quotient spaceT2/Z3 is the orbifold 2–sphereS2 with 3 points of multiplicity 3. Let
x1, x2 denote the natural coordinate functions onR

2. Then the 1–formsdx1, dx2 satisfy
ρ∗(dx1) = −dx1−dx2 andρ∗(dx2) = dx1, henceρ∗(−dx1−dx2) = dx2. Thus, we can
take the 1–formsα1 andα2 on T2 such that

ρ∗(α1) = −α1−α2, ρ∗(α2) = α1. (4)

Define the following action ofZ3 on M, given, at the level of Lie groups, byρ :R2×
R

6 −→ R
2×R

6,

ρ(x1,x2,y1,y2,z1,z2,v1,v2) = (−x1−x2,x1,−y1−y2,y1,−z1−z2,z1,−v1−v2,v1).

Note thatm(ρ(p′),ρ(p)) = ρ(m(p′, p)), for all p, p′ ∈ G, wherem is the multiplication
map (2) forG. Also Γ ⊂ G is stable byρ since

v1 ≡ v2 (mod 3) =⇒−v1−v2 ≡ v1 (mod 3).

Therefore there is a induced mapρ :M → M, and this covers the actionρ : T6 → T6

on the 6–torusT6 = T2×T2×T2 (defined as the actionρ on each of the three factors
simultaneously). The action ofρ on the fiberT2 = Z〈(1,1),(3,0)〉 has also 3 fixed
points:(0,0), (1,0) and(2,0). Hence there are 34 = 81 fixed points onM.

Remark 3 Under the isomorphism M∼= (ΓH\HC)×(Λ\C), we have that the action ofρ
becomesρ(u1,u2,u3) = (ζ̄u1, ζ̄u2,ζu3), whereζ = e2π i/3. Composing the isomorphism
of Lemma 1 with the conjugation(u1,u2,u3) 7→ (v1,v2,v3) = (ū1, ū2, ū3) (which is an
isomorphism of Lie groups HC → HC leavingΓH invariant), we have that the action of
ρ becomesρ(v1,v2,v3) = (ζv1,ζv2,ζ 2v3). This is the action used in [6].



We take the basis{αi ,βi,γi ,ηi;1 ≤ i ≤ 2} of the 1–forms onM considered above.
The 1–formsdyi , dzi, dvi , 1 ≤ i ≤ 2, on G satisfy the following conditions similar
to (4): ρ∗(dy1) = −dy1−dy2, ρ∗(dy2) = dy1, ρ∗(dz1) = −dz1−dz2, ρ∗(dz2) = dz1,
ρ∗(dv1) = −dv1−dv2, ρ∗(dv2) = dv1. So

ρ∗(α1) = −α1−α2, ρ∗(α2) = α1,
ρ∗(β1) = −β1−β2, ρ∗(β2) = β1,
ρ∗(γ1) = −γ1− γ2, ρ∗(γ2) = γ1,
ρ∗(η1) = −η1−η2, ρ∗(η2) = η1.

(5)

Remark 4 If we define the1–formsα3 = −α1−α2, β3 = −β1−β2, γ3 = −γ1− γ2 and
η3 =−η1−η2, then we haveρ∗(α1) = α3, ρ∗(α2) = α1, ρ∗(α3) = α2, and analogously
for the others.

Define the quotient space
M̂ = M/Z3,

and denote byϕ : M → M̂ the projection. It is an orbifold, and it admits the structure of
a symplectic orbifold (see [4] for a general discussion on symplectic orbifolds).

Proposition 5 The2–formω on M defined by

ω = α1∧α2+η2∧β1−η1∧β2+ γ1∧ γ2

is a Z3-invariant symplectic form on M. Therefore it inducesω̂ ∈ Ω2
orb(M̂), such that

(M̂, ω̂) is a symplectic orbifold.

Proof Clearlyω4 6= 0. Using (5) we have thatρ∗(ω) = (−α1−α2)∧α1+η1∧(−β1−
β2)+(η1+η2)∧β1+(−γ1− γ2)∧ γ1 = ω, soω is Z3-invariant. Finally,

dω = dη2∧β1−dη1∧β2 = (β2∧ γ1−β2∧ γ2)∧β1− (−β1∧ γ1 +β1∧ γ2)∧β2 = 0.

�

It can be seen (cf. proof of Proposition 2.3 in [6]) thatM̂ is simply connected.
Moreover, its cohomology can be computed using that

H∗(M̂) = H∗(M)Z3 .

We get

H1(M̂) = 0,

H2(M̂) = 〈[α1∧α2], [α1∧β2−α2∧β1], [α1∧β1 +α1∧β2+α2∧β2],
[α1∧ γ2−α2∧ γ1], [α1∧ γ1+α1∧ γ2+α2∧ γ2], [β1∧β2], [β1∧ γ2−β2∧ γ1],
[β1∧ γ1+β1∧ γ2+β2∧ γ2], [β1∧η2−β2∧η1], [β1∧η1 +β1∧η2 +β2∧η2],
[γ1∧ γ2], [γ1∧η2− γ2∧η1], [γ1∧η1 + γ1∧η2 + γ2∧η2]〉,

H3(M̂) = 0.



Remark 6 The Euler characteristic of̂M can be computed via the formula for finite
group action quotients: letΠ be the cyclic group of order n, acting on a space X almost
freely. Then

χ(X/Π) =
1
n

χ(X)+∑
p

(
1− 1

#Πp

)
,

whereΠp ⊂ Π is the isotropy group of p∈ X. In our caseχ(M̂) = 1
3χ(M)+81(1− 1

3) =
54.

Using this remark and the previous calculation, we get thatb1(M̂) = b7(M̂) = 0,
b2(M̂) = b6(M̂) = 13, b3(M̂) = b5(M̂) = 0 and b4(M̂) = 26. Note thatM̂ satisfies
Poincaré duality sinceH∗(M̂) = H∗(M)Z3 andH∗(M) satisfies Poincaré duality.

NON-FORMALITY OF THE SYMPLECTIC ORBIFOLD

Formality is a property of the rational homotopy type of a space which is of great im-
portance in symplectic geometry. This is due to the fact thatcompact Kähler manifolds
are formal [5] whilst there are compact symplectic manifolds which are non-formal
[11, 3, 6]. A general discussion of the property of formalitycan be found in [11].

The non-formality of a space can be detected by means of Massey products. Let us
recall its definition. The simplest type of Massey product isthe triple (also known as
ordinary) Massey product. LetX be a smooth manifold and letai ∈ H pi (X), 1≤ i ≤ 3,
be three cohomology classes such thata1∪a2 = 0 anda2∪a3 = 0. The (triple) Massey
product of the classesai is defined as the set

〈a1,a2,a3〉 = {[α1∧η +(−1)p1+1ξ ∧α3] | ai = [αi ], α1∧α2 = dξ , α2∧α3 = dη}

insideH p1+p2+p3−1(X). We say that〈a1,a2,a3〉 is trivial if 0 ∈ 〈a1,a2,a3〉.
The definition of higher Massey products is as follows (see [8, 11]). The Massey

product〈a1,a2, . . . ,at〉, ai ∈ H pi(X), 1≤ i ≤ t, t ≥ 3, is defined if there are differential
formsαi, j on X, with 1≤ i ≤ j ≤ t, except for the case(i, j) = (1, t), such that

ai = [αi,i], dαi, j =
j−1

∑
k=i

ᾱi,k∧αk+1, j , (6)

whereᾱ = (−1)deg(α)α. Then the Massey product is

〈a1,a2, . . . ,at〉 =

{[
t−1

∑
k=1

ᾱ1,k∧αk+1,t

]
| αi, j as in (6)

}
⊂ H p1+···+pt−(t−2)(X) .

We say that the Massey product is trivial if 0∈ 〈a1,a2, . . . ,at〉. Note that for
〈a1,a2, . . . ,at〉 to be defined it is necessary that〈a1, . . . ,at−1〉 and 〈a2, . . . ,at〉 are
defined and trivial.

The existence of a non-trivial Massey product is an obstruction to formality, namely,
if X has a non-trivial Massey product thenX is non-formal.



In the case of an orbifold, Massey products are defined analogously but taking the
forms to beorbifold forms(see [4, Section 2]).

Now we want to prove the non-formality of the orbifold̂M constructed in the previous
section. By the results of [11],M is non-formal since it is a nilmanifold which is not a
torus. We shall see that this property is inherited by the quotient spaceM̂ = M/Z3. For
this, we study the Massey products onM̂.

Lemma 7 M̂ has a non-trivial Massey product if and only if M has a non-trivial
Massey product with all cohomology classes ai ∈ H∗(M) beingZ3-invariant cohomol-
ogy classes.

Proof We shall do the case of triple Massey products, since the general case is similar.
Suppose that〈a1,a2,a3〉, ai ∈ H pi(M̂), 1 ≤ i ≤ 3 is a non-trivial Massey product on
M̂. Let ai = [αi], whereαi ∈ Ω∗

orb(M̂). We pull-back the cohomology classesαi via
ϕ∗ : Ω∗

orb(M̂) → Ω∗(M) to get a Massey product〈[ϕ∗α1], [ϕ∗α2], [ϕ∗α3]〉. Suppose that
this is trivial onM, thenϕ∗α1∧ϕ∗α2 = dξ , ϕ∗α2∧ϕ∗α3 = dη, with ξ ,η ∈ Ω∗(M),
andϕ∗α1∧η +(−1)p1+1ξ ∧ϕ∗α3 = d f . Thenη̃ = (η +ρ∗η +(ρ∗)2η)/3, ξ̃ = (ξ +
ρ∗ξ + (ρ∗)2ξ )/3 and f̃ = ( f + ρ∗η + (ρ∗)2η)/3 are Z3-invariant andϕ∗α1 ∧ η̃ +

(−1)p1+1ξ̃ ∧ϕ∗α3 = d f̃ . Writing η̃ = φ∗η̂, ξ̃ = φ∗ξ̂ , f̃ = φ∗ f̂ , for η̂, ξ̂ , f̂ ∈ Ω∗
orb(M̂),

we getα1∧ η̂ +(−1)p1+1ξ̂ ∧α3 = d f̂ , contradicting that〈a1,a2,a3〉 is non-trivial.
Conversely, suppose that〈a1,a2,a3〉, ai ∈H pi(M)Z3, 1≤ i ≤ 3, is a non-trivial Massey

product onM. Then we can representai = [αi] by Z3-invariant differential forms
αi ∈ Ωpi(M). Let α̂i be the induced form on̂M. Then〈[α̂1], [α̂2], [α̂3]〉 is a non-trivial
Massey product on̂M. For if it were trivial then pulling-back byϕ, we would get
0∈ 〈ϕ∗[α̂1],ϕ∗[α̂2],ϕ∗[α̂3]〉 = 〈a1,a2,a3〉. �

In our case, all the triple and quintuple Massey products onM̂ are trivial. For instance,
for a Massey product of the form〈a1,a2,a3〉, all ai should have even degree, since
H1(M̂) = H3(M̂) = H5(M̂) = H7(M̂) = 0. Therefore the degree of the cohomology
classes in〈a1,a2,a3〉 is odd, hence they are zero.

Since the dimension of̂M is 8, there is no room for sextuple Massey products or
higher, since the degree of〈a1,a2, . . . ,as〉 is at leasts+ 2, as degai ≥ 2. Fors = 6, a
sextuple Massey product of cohomology classes of degree 2 would live in the top degree
cohomology. For computing an element of〈a1, . . . ,a6〉, we have to chooseαi, j in (6).
But then adding a closed formφ with a1 ∪ [φ ] = λ [M̂] ∈ H8(M̂) to α2,6 we can get
another element of〈a1, . . . ,a6〉 which is the previous one plusλ [M̂]. For suitableλ the
we get 0∈ 〈a1, . . . ,a6〉.

The only possibility for checking the non-formality of̂M via Massey products is to
get a non-trivial quadruple Massey product.

From now on, we will denote by the same symbol aZ3-invariant form onM and that
induced onM̂. Notice that the 2 formsγ1∧γ2, β1∧β2 andα1∧γ1+α2∧γ1+α2∧γ2 are
Z3-invariant forms onM, hence they descend to the quotientM̂ = M/Z3. We have the
following:



Proposition 8 The quadruple Massey product

〈[γ1∧ γ2], [β1∧β2], [β1∧β2], [α1∧ γ1+α2∧ γ1 +α2∧ γ2]〉

is non-trivial onM̂. Therefore, the spacêM is non-formal.

Proof First we see that

(γ1∧ γ2)∧ (β1∧β2) = dξ ,

(β1∧β2)∧ (α1∧ γ1 +α2∧ γ1 +α2∧ γ2) = dς ,

whereξ andς are the differential 3–forms on̂M given by

ξ = −1
6

(γ1∧ (β1∧η2 +β2∧η2 +β2∧η1)+ γ2∧ (β1∧η2+β1∧η1 +β2∧η1)) ,

ς =
1
3

(−α1∧ (η2∧β1 +η1∧β1 +η1∧β2)+α2∧ (η2∧β2−η1∧β1)) .

Therefore, the triple Massey products〈[γ1∧ γ2], [β1∧β2], [β1∧β2]〉 and〈[β1∧β2], [β1∧
β2], [α1∧ γ1 +α2∧ γ1 +α2∧ γ2]〉 are defined, and they are trivial because all the (triple)
Massey products on̂M are trivial. (Notice that the formsξ andς areZ3-invariant onM
and so descend tôM.) Therefore, the quadruple Massey product〈[γ1∧γ2], [β1∧β2], [β1∧
β2], [α1∧γ1+α2∧γ1+α2∧γ2]〉 is defined onM̂. Moreover, it is trivial onM̂ if and only
if there are differential formsfi ∈ Ω3(M̂), 1≤ i ≤ 3, andg j ∈ Ω4(M̂), 1≤ j ≤ 2, such
that

(γ1∧ γ2)∧ (β1∧β2) = d(ξ + f1),

(β1∧β2)∧ (β1∧β2) = d f2,

(β1∧β2)∧ (α1∧ γ1 +α2∧ γ1 +α2∧ γ2) = d(ς + f3),

(γ1∧ γ2)∧ f2− (ξ + f1)∧ (β1∧β2) = dg1,

(β1∧β2)∧ (ς + f3)− f2∧ (α1∧ γ1+α2∧ γ1+α2∧ γ2) = dg2,

and the 6–form given by

Ψ = −(γ1∧ γ2)∧g2−g1∧ (α1∧ γ1 +α2∧ γ1 +α2∧ γ2)+(ξ + f1)∧ (ς + f3)

defines the zero class inH6(M̂). Clearly f1, f2 and f3 are closed 3–forms. Since
H3(M̂) = 0, we can writef1 = d f ′1, f2 = d f ′2 and f3 = d f ′3 for some differential 2–forms
f ′1, f ′2 and f ′3 ∈ Ω2(M̂). Now, multiplying [Ψ] by the cohomology class[σ ] ∈ H2(M̂),
whereσ = 2α1∧ γ2−α2∧ γ1 +α1∧ γ1 +α2∧ γ2 we get

σ ∧Ψ =−1
3
(α1∧α2∧β1∧β2∧γ1∧γ2∧η1∧η2)+d(σ ∧ξ ∧ f ′3+σ ∧ς ∧ f ′1+σ ∧ f ′1∧d f ′3).

Hence,[2α1∧ γ2−α2∧ γ1+α1∧ γ1+α2∧ γ2]∪ [Ψ] 6= 0, which implies that[Ψ] is non-
zero inH6(M̂). This proves that the Massey product〈[γ1∧ γ2], [β1∧β2], [β1∧β2], [α1∧
γ1+α2∧ γ1 +α2∧ γ2]〉 is non-trivial, and sôM is non-formal. �



Finally, there is a way to desingularize(M̂, ω̂) to get a smooth symplectic manifold.

Theorem 9 There is a smooth compact symplectic8-manifold(M̃, ω̃) which is simply-
connected and non-formal.

Proof By [4, Theorem 3.3], there is a symplectic resolutionπ : (M̃, ω̃)→ (M̂, ω̂), which
consists of a smooth symplectic manifold(M̃, ω̃) and a mapπ which is a diffeomor-
phism outside the singular points.

To prove the non-formality of̃M, we work as follows. All the forms of the proof of
Proposition 8 can be defined on the resolutionM̃. Take aZ3-equivariant mapψ : M →M
which is the identity outside small balls around the fixed points, and contracts smaller
balls onto the fixed points. Substitute the formsϑ , τi, κ , ξ , . . . byψ∗ϑ , ψ∗τi , ψ∗κ , ψ∗ξ ,
. . . Then the corresponding elements in the quadruple Masseyproduct are non-zero, but
these forms are zero in a neighbourhood of the fixed points. Therefore they define forms
on M̃, by extending them by zero along the exceptional divisorsEp = π−1(p) (p ∈ M̂
singular point). Now the proof of Proposition 8 works forM̃ with these forms.

Finally, the manifoldM̃ is simply connected as it is proved in [6, Proposition 2.3]
(basically, this follows from the simply-connectivity of̂M). �
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