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The possibility of a theory of modular forms for function fields was perhaps implicit in Drin-
feld’s original work, but the notion was only really introduced by Goss and Gekeler in the
beginning of the eighties. A lot of it developped along “classical” lines (by the word “classi-
cal” we will always refer to modular forms for subgroups of SL(2,Z)), but there are also a
few very intriguing novel facts to the function field side, and on these we want to concentrate.
People who want to compare with the theory of classical modular forms are warmly refered
to the well known classical literature.
One can see this paper as a kind of (very personal) filter applied to the original works of
Gekeler, Goss and Teitelbaum. It should serve as an introduction to (and motivation for)
reading their original papers in the reference list, which inevitably contain much more infor-
mation then can be presented here.
In this paper, most interest will go to the “analytic” theory of modular forms and curves, and
thus I have neglected parts of the intriguing theory of “algebraic” modular forms, developped
in particular by Goss in 1980. For compensation, one should at least glimpse at his papers.
Most novelties over function fields occur in connection with (a) the consideration of an arbi-
trary “ground ring” A, which already makes the moduli space without level structure look
complicated; (b) the characteristic-p situation, which causes loss of information in taking
derivatives of objects; (c) the analytic reduction of the upper half space to a combinatorial
object, namely the Bruhat-Tits tree, and the interpretation of objects “down there”; (d) the
fact that “modular forms” are only half of the story, the other side being complex valued
Jacquet-Langlands like automorphic forms – and the interaction between these two notions.
The organisation of the paper will be as follows: in the first paragraph I will show how
modular forms arise naturally in the search for a genus formula for the moduli space without
level for GL(2, A), and a few modular forms are introduced. The second paragraph contains a
sketch of the explicit calculation of these genera. In the third part, function fields of modular
curves are described by means of modular forms, and the fourth paragraph calculates the
Hilbert function and presentation of a few rings of modular forms. In paragraph five, we
present a few highlights in the theory of modular forms modulo primes and its connection
with supersingular invariants. Paragraph six sketches the interpretation of modular forms on
the tree via Teitelbaum’s residue-map, and its application to modular forms of low weight.
In paragraph seven, the absolute value of some modular forms is studied as a complex-valued
object on the tree.
Needless to say, I do not claim originality in this survey, except for minor generalisations here
and there, in particular in (1.5.3), (4.3) and (4.6.2).

List of notations:
Fq = finite field of characteristic char(Fq) = p
K = function field of a complete connected curve C over Fq

ZK(S) = ζK(s) = the zeta-function of K, (S = q−s) and P (S): the numerator of ZK(S); in
particular, P (1) = the class number of K.
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∞ = a fixed place of K, of degree δ, with associated normalised absolute value | · |
K∞ = completion of K w.r.t. | · |, and π = a uniformizing element for | · |
O∞ = the ring of integers in K∞
C = completion of an algebraic closure of K∞
Ω = C −K∞ = Drinfeld’s “half” plane
A = the ring of elements of A that are regular outside ∞, of class number δ · P (1)
GL(2, A) = the invertible 2× 2 matrices over A
Z = the center of GL(2, A)
n, p, ... (Fraktur letters) = places of A, of degree deg(n), where p = prime place

Γ(n) = {γ ∈ GL(2, A) : γ ≡
(

1 0
0 1

)
mod n}

Γ0(n) = {γ ∈ GL(2, A) : γ ≡
(
∗ ∗
0 ∗

)
mod n}

Γ ⊆ GL(2, A) = an arithmetic group (i.e. it contains Γ(n) for some n)
γ · z = az+b

cz+d = the action of an element γ ∈ GL(2, A) on z ∈ Ω via fractional linear transfor-
mation
MΓ = Γ\Ω the quotient space for this action
M̄Γ = Γ\Ω ∪P1(K) = the compactification of MΓ

M̄Γ −MΓ = Γ\P1(K) the cusps of Γ
∞ = (1 : 0) ∈ P1(K) the cusp at infinity
StabG(x) = the stabiliser subgroup of x in G
φ = an A-Drinfeld module of rank two over C, given by a map φ : A → C{τ}, where C{τ} is
the “twisted” polynomial ring with multiplication rule τx = xqτ .
nφ = the n-torsion of φ
ρ = the Carlitz module = the rank one Drinfeld module over Fq[T ] goven by ρT = T + τ , and
π̄ = it’s period, i.e. ρ corresponds to the lattice π̄Fq[T ].
g(X) = the geometric genus of a projective curve X
Div(X) = the group of divisors on a projective curve X, deg D = the degree of a divisor D
D = the canonical bundle on a fixed curve
O(D) = the line bundle associated with a divisor D on a curve
dim = the dimension of a C−vector space
[·] = the integer part, and 〈·〉 = the fractional part of a real number

1. From modular curves to modular forms

(1.1) Since Riemann, understanding algebraic curves has become almost synonymous with
the study of meromorphic functions and regular differentials (say, tangents) on them; for
instance the number of independent differentials on a curve equals its fundamental invariant,
the genus.
The same general philosophy should apply to the Drinfeld modular curves M̄Γ associated
with arithmetic groups Γ ⊆ GL(2, A). The modular curves are (compactified) quotients of
the Drinfeld “half” space Ω, so it seems only natural to look for functions and differentials
“up” on Ω, let them descend on Γ\Ω and extend them to the compactification.

(1.2) To make this descending procedure possible, we will first indicate how the analytic
structures of Ω and M̄Γ are related. There are two kinds of special points on M̄Γ where the
analytic structure ramifies — the local parameter at all other points is just z ∈ Ω itself.
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(1.2.1) First of all, the cusps M̄Γ − MΓ. Let s ∈ Γ\P1(K) be a cusp, and ν ∈ GL(2,K)
such that s = ν · ∞. The stabilizer Stabν−1Γν(∞) contains a maximal subgroup of matrices(

1 b
0 1

)
, where b runs through some fractional ideal b ⊆ A. Then we set ts(z) = π̄−1e−1

b (z).

(Note : The normalising factor π̄ is introduced for rationality questions of expansions, and
this is not done everywhere in the literature). The genuine analytic parameter on M̄Γ can be
a strict power of ts: we set ws = the order of the group of homotheties z 7→ az contained in
Stabν−1Γν(∞), then tws

s is the local analytic parameter on M̄Γ. For instance, if Γ = GL(2, A),
then ws = q − 1 for all cusps s. For Γ = GL(2, A), the number of such cusps is δP (1), the
class number of A.

(1.2.2) There is one more “special” kind of points, those e ∈ Ω for which the stabilizer StabΓ(e)
of e ∈ Ω in Γ (for the action of fractional transform) is strictly bigger then the trivial scalar
matrices Z(Γ). Such points are called elliptic; the set of Γ-equivalence classes of elliptic points
is denoted by E .

The local parameter at an elliptic point e ∈ E on M̄Γ is te = (z − e)q+1. If γe =
(

a b
c d

)
is

a non-scalar matrix such that γe.e = e for some elliptic point, then ce2 +(d−a)e− b = 0, and
this equation has the same discriminant as the characteristic equation of γe, which has two
distinct roots of unity as eigenvalues (γe is of finite order, since it fixes the image of e under
the “building map” Ω → T . This order is prime to p, since p-order elements in GL(2, A) are
conjugate to elements of the Borel group B, which don’t fix any element). Hence e lies in the
constant extension K(e) = Fq2 ⊗K.
Also note that if δ is even, K(e) ⊂ Fqδ [[X]] ∼= K∞, but e ∈ Ω cannot be in K∞, so there are
no elliptic points in this case. On the other hand, for odd δ, the number of elliptic points can
be calculated using some arithmetic in K(e) ([5], V.4.5), and one finds that |E| = P (−1) for
δ odd.

(1.3) We are now ready to describe the descending procedure for functions and differentials:
A meromorphic function f : Ω → C descends nicely if f(γ · z) = f(z) for all z ∈ Ω and

γ =
(

a b
c d

)
∈ Γ.

As for differentials, f(γ · z)d(γ · z) = f(γ · z)(cz + d)−2 det γdz, so f(z)dz is invariant if

(∗) f(γ · z) = det γ−1(cz + d)2f(z) for all z ∈ Ω, γ ∈ Γ.

In order to extend these functions and differentials nicely to the cusps M̄Γ−MΓ, we will need
an additional mero- or holomorphy condition at those points.
As will become clear in a moment, it is sensible to extend (∗) to include “multidifferentials”
f(z)dz⊗k, since it will turn out that some of these are easier to construct and/or control.
Hence we arrive at the following definition:

(1.4) Definition A meromorphic (in the sense of rigid analysis) function f : Ω → C which
is invariant under Γ, i.e. f(γ · z) = f(z), ∀z ∈ Ω, γ ∈ Γ; and such that f is developable in a
Laurent series in the parameter ts at the cusps of Γ, is called a modular function for Γ. A
(rigid) holomorphic function f : Ω → C which satisfies

(1.4.1) f(γ · z) = det γ−l(cz + d)kf(z), ∀z ∈ Ω, γ ∈ Γ

and which is developable in a Taylor series in the parameter ts at the cusps of Γ, is called a
modular form of weight k and type l for Γ.
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(1.4.2) Note that, although a modular form f is not invariant under Γ, it’s order ord xf at a
point x ∈ Ω is (which is the lowest non-trivial power of z − x occuring in the Taylor series
development of f around x — also, we define the order of f at a cusp s to be the lowest non-
trivial power of the parameter ts occuring in the Taylor series of f in ts. Note: this definition is
in accordance with [6], but not with [5], where the parameter tws

s is used. But if one considers
modular forms f of type l 6= 0, only t−l

s f admits a series development in tws
s .) We define the

“divisor” of a modular form f for Γ to be the “rational” divisor divf ∈ Div(M̄Γ)⊗Q on the
modular curve M̄Γ given by

divf =
∑

x∈Γ\Ω−E

ord xf +
∑
e∈E

ord ef

q + 1
+

∑
s∈M̄Γ−MΓ

ord sf

ws
.

(1.4.3) The C-vector space of modular forms of weight k and type l for Γ is denoted by
Mk,l(Γ). If l = 0, we write Mk(Γ) instead. We will also denote the graded rings of modular
forms as follows :

M(Γ) :=
⊕

k∈Z>0
l∈Z/(q−1)

Mk,l(Γ), M0(Γ) :=
⊕

k∈Z>0

Mk(Γ).

A superscript Mn
∗,∗ will denote the space of n-fold cusp forms, i.e. forms that vanish of order

≥ n at all cusps.

(1.4.4) Remark If γ = diag(ε, ε) ∈ Γ for some ε ∈ F∗
q of multiplicative order m, and if

k − 2l 6= 0 mod m, then Mk,l ≡ 0. In particular, Mk(GL(2, A)) = 0 if k 6= 0 mod q − 1. This
can be seen by substituting γ in (1.4.1).

(1.5) Examples We will give some examples of non-trivial modular forms.

(1.5.1) Eisenstein series (Goss, [10]) The function

Ek(z) :=
∑

(0,0) 6=(a,b)∈A2

(
1

az + b
)k,

is called the Eisenstein series of weight k for GL(2, A). The transformation equation (1.4.1)
is easy to check, for holomorphy at the cusps, see loc. cit.

(1.5.2) Coefficient forms If φΛz is the rank two Drinfeld module associated with the lattice
Λz = zA⊕A for some z ∈ Ω, then for a ∈ A,

φΛz
a = a +

2 deg(a)∑
i=1

li(z, a)τ i,

the “coefficient forms” li(z, a) are modular forms of weight qi − 1 for Γ. To check the trans-
formation formula, use the fact that φc.Λ = cφΛc−1 for any rank two lattice Λ and scaling
constant c ∈ C∗. For holomorphy, once can use the following “mysterious” connection between
this and the first example:

aEqk−1(z) =
∑

i+j=k

Eqi−1(z)lq
i

j (z, a),
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where we set E0 ≡ −1. (see [5], II.2.11). In particular, the leading term

∆a := l2 deg(a)(z, a)

is a modular forms of weight q2 deg(a) − 1 for GL(2, A). Furthermore, by the definition of a
rank two Drinfeld module, ∆a(z) 6= 0 if z ∈ Ω. This means ∆a has its divisor supported at
the cusps.
As far as notation is concerned, if A = Fq[T ], we let g(z) = π̄1−ql1(z, T ) and ∆(z) =
π̄1−q2

l2(z, T ). Let me also remark that while reading the paper [6] by Gekeler, one should
beware of the change of notation for g,∆ on page 683. Here, we have normalised as in the
second part of that paper.

(1.5.3) Derivatives The derivative f ′ of a modular form f with respect to z isn’t always a
modular form. If f ∈ Mk,l(Γ) and γ ∈ Γ, one has

f ′(γ.z) = det γ−(l+1)(cz + d)k+2f ′(z) + kc det γ−(l+1)(cz + d)k+1f(z).

But on the other hand, if we choose a non-constant a ∈ A, and let Ea(z) := π̄−1∆′
a/∆a, then

Ea(γ.z) = det γ−1(cz + d)2Ea(z)− cπ̄−1 det γ−1(cz + d).

If we define an operator (the “Serre-derivative”) on Mk,l(Γ) by

(1.5.4) ∂af(z) := π̄−1f ′(z)− kEa(z)f(z),

then it follows from the above calculations that ∂af transforms like a form of weight k+2 and
type l + 1. Also, it is holomorphic where f is. (Since ∆a(z) 6= 0 if z ∈ Ω, the only possible
problem would occur at the cusps. But one sees easily from the product development of ∆a

given in [5], VI (4.12), that its “logarithmic derivative” Ea(z) is holomorphic. — Note that
for the uniformisers ts one has t′s/ts = −ts since the derivative of an “exponential” function
eΛ(z) is trivial.)
The derivation operator ∂a gives a way of constructing forms of non-trivial type from examples
of type 0. In particular, for A = Fq[T ], we set ∂ := ∂T , and h := ∂g ∈ Mq+1,1(GL(2,Fq[T ]).
One then has (cf. Gekeler, [6]) : hq−1 = −∆, and

h(z) :=
∑

c,d∈A
(c,d)=1

t∞(γc,d.z)
(cz + d)q+1

,

is a kind of Poincaré-series, where γc,d is any chosen matrix of determinant one and bottom
row (c, d).

(1.5.5) Division values Let n ⊂ A be an ideal, and u = (u1, u2) ∈ n−1A2 − A2. Define
eu(z) := eΛz(u1z+u2). Then e−1

u is a modular form of weight one for the principal congruence
subgroup Γ(n) = {γ ∈ GL(2, A) : γ ≡ 1 mod n}. As a matter of fact,

e−1
u (z) =

∑
0 6=a∈K2

a≡umod A

1
a1z + a2

is a kind of Eisenstein series of weight one for Γ(n), where the non-archimedean convergence
of the right hand side is easy. Furthermore, the values of eu(z) for different u give the n-
torsion of the Drinfeld module φΛz corresponding to the lattice Λz = zA ⊕ A. (Note that
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classically, x-coordinates of division points are modular forms of weight two, connected with
Heckes “non-modular” Eisenstein series of weight two).
This example connects up with the previous ones via the fact that for a principal ideal
n = (n),∆n and

∏
u e−1

u (z) differ only up to a constant, where u runs through a system
of representatives of n−1A2/A2. Similarly, Eq−1 is a scalar multiple of

∑
e1−q
u . Also, for

A = Fq[T ], h is homothetic to ∑
u,v∈F2

q/F∗
q

(u1v2 − u2v1)e
−q
T−1u

e−1
T−1v

,

which follows from [6], (9.3).
The expansion of eu at the cusps of Γ((n)) can be calculated (cfr. Gekeler [5], VI); and from
this a product expansion of the “discriminant function” ∆n follows. For A = Fq[T ], it takes
on the following form:

π̄1−q2
∆ = −tq−1

∞
∏

a∈A monic

(ρa(t−1
∞ )tq

deg(a)
)(q−1)(q2−1).

This is indeed analogous to Jacobi’s formula for the classical discriminant function, if one
regards ρa(X) as similar to the cyclotomic Xn − 1. For general A, a similar formula exists,
albeit somewhat involved ([5],VI). But one can calculate exactly the divisor of ∆n, and hence
its degree. Let d = deg(n). If we suppose that f ∈ Mk(Γ) is a modular form of weight k,
then f1−q2d

∆k
n is a modular function, hence of degree zero. And since degree is additive, we

find that

(1.5.6) f ∈ Mk(GL(2, A)) : deg(divf) =
k(qδ − 1)

(q2 − 1)(q − 1)
P (q),

using the formula for deg (div ∆a).
Suppose A = Fq[T ]. The divisors of the modular functions eue−1

v are supported at the cusps
of Γ(n), and one can show that they generate a group of finite index in the group of cuspidal
divisors of degree zero. Hence the group generated by the cusps in the Jacobian of Γ(n) is
finite (loc. cit.); this is the theorem of Manin-Drinfeld for function fields ([12], IV.2).

(1.6) There are Hecke-operators acting on modular forms, just like classically. A fact which
is “badly understood” is that for A = Fq[T ], the eigenvalues of the Hecke operator Tp for a
prime p on g and ∆ are the same. Also, something like Tp2 = T 2

p is different from the classical
situation.

2. The genus of modular curves

(2.1) The modular curve for GL(2,Fq[T ]) is easy to describe : if φΛz
T = T + g(z)τ + ∆(z)τ2

is the rank two Drinfeld module of lattice Λz, then φΛz is isomorphic to φΛz′ if and only if
there exists a constant c ∈ C∗ such that g(z) = c1−qg(z′) and ∆(z) = c1−q2

∆(z′), and hence

j : MGL(2,Fq [T ]) → C : z 7→ j(z) :=
gq+1(z)
∆(z)

is an isomorphism. In particular, the modular curve M̄GL(2,Fq [T ]) is of genus zero. But already
for a more general A, such an easy description of moduli of rank two Drinfeld modules is not
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available. As a matter of fact, already the construction of Drinfeld modules is non-trivial, cfr.
Dummit and Hayes [3].

(2.2) To extract information about the modular curve for a general Γ = GL(2, A), we will use
the dictionary between modular curves and modular forms.

(2.2.1) As we saw, the local parameters at the cusps are tq−1
s , and for differential forms this

gives the formula
f(z)dz⊗k = f(z(tq−1

s ))(tq−1
s )

−kq
q−1 d(tq−1

s )⊗k.

(2.2.2) At elliptic points e ∈ E we have a uniformizer te = (z − e)q+1. Hence for differential
forms we find locally at elliptic points :

f(z)dz⊗k = f(z(te))t
−kq
q+1
e dt⊗k

e .

(2.3) If f is a modular form of weight 2k and type k for GL(2, A), we find that f(z)dz is a
k-fold differential form on M̄Γ which (by the relation between the uniformizers on Ω and M̄Γ

which was just established)

• is holomorphic at z ∈ Γ\Ω− E

• has a pole of order ≤ kq
q+1 at z ∈ E

• has a pole of order ≤ kq
q−1 at cusps z.

If we view ∆a(z)dz as a section of the divisor of meromorphic q2d−1
2 -fold differential forms

satisfying the above three criteria, we find that

deg(div∆a) =
q2d − 1

2
((2g − 2) + |E| q

q + 1
+ |M̄Γ −MΓ|

q

q − 1
),

where g is the genus of M̄Γ. Hence using formula (1.5.6) for the left hand side, and the
expression for the number of cusps and elliptic points (1.2) on the right hand side, we find
that

(2.3) Theorem (Gekeler, [5]) The genus of the Drinfeld modular curve for GL(2, A) equals

g(M̄GL(2,A)) = 1 +
1

q2 − 1
(
qδ − 1
q − 1

P (q)− q(q + 1)
2

δP (1) + η),

where η = 0 if δ is even, and η = − q(q−1)
2 P (−1) if δ is odd, where as before, P is the numerator

polynomial of the zeta-function of K.

(2.4) Remark The form ∆a was preferable, because its divisor is so well understood. On
the other hand, the distribution of the zeroes of e.g. the Eisenstein series is still not very well
known, but for weight qk − 1 and A = Fq[T ], see [1]. For instance, one has

(2.4.1) Proposition ([5], VII.3.3) The order of Eq−1 at all elliptic points is one.

(2.5) Remark The above theorem (2.3) also calculates the first Betti number of the groups
GL(2, A), generalising Serre [13] ([5], V.A.11).
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(2.6) For arithmetic subgroups Γ ⊆ GL(2, A), one can now calculate the genus of the corre-
sponding modular curve as is done classically, via the Hurwitz-formula.

(2.6.1) ([5],VII.5) For a principal congruence subgroup Γ(n) of level n, the group of the covering
M̄Γ → M̄GL(2,A) is G(n) := GL(2, A)/Γ(n) · Z (where Z is the center of GL(2, A)) of order

|G(n)| = q3 deg(n)
∏
p|n

p prime

(1− 1
q2 deg(p)

),

and the ramification is tame of order q +1 at the elliptic points. There is wild ramification at
the cusps, with only a non-trivial first ramification group of order qdeg(n). Applying Hurwitz,
we find

g(M̄Γ(n)) = 1 + |G(n)|( qδ − 1
(q − 1)(q2 − 1)

P (q)− δP (1)
qdeg(n)(q − 1)

).

Note that apparently, there is a change of notation in [5], VII.5.8: from there on, h is the
class number of A (whereas it used to be the class number of K).

(2.6.2) An even more tedious calculation using the covering M̄Γ(p) → M̄Γ0(p) show that the

genus of M̄Γ0(p) for the Hecke group Γ0(p) := {γ ∈ GL(2, A) : γ ≡
(
∗ ∗
0 ∗

)
mod p} of prime

level p equals

g(M̄Γ0(p)) = 1 +
1

q2 − 1
(
q(deg(p) + 1)(qδ − 1)

q − 1
P (q)− δq(q + 1)P (1) + 2η),

where η is as in theorem (2.3).

g(K) δ g(M̄GL(2,A)) deg(p), g(M̄Γ(p)) g(M̄Γ0(p))
p prime

0 1 0 1 0 0
2 q4 − q3 − q 0
3 — q

2 0 1 q2 − q − 1 0
2 — q

3 0 1 q3 + q2 − 2q − 2 q
4 q — — —

1 1 0 1 (q4 − q2 − q)+ q2

+(q2 − q − 1)(P (1)− q − 1)
2 q2 — — —
3 q(q2 + P (1)− 1) — — —

A table of low genera

3. Function fields of some modular curves

(3.1) Modular forms also give a natural construction of modular functions: the quotient of
two modular forms of the same weight is a meromorphic Γ-invariant function. We have
already encountered “the” modular function j in (2.1) as an example of this. More generally,
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a Drinfeld module is determined by its coefficient forms (1.5.2), so it seems only natural to
consider suitable quotients of them as functions on the modular curve M̄GL(2,A). As a matter
of fact,

(3.1.1) Proposition ([5], VII.1.3) The function field of M̄GL(2,A) is the field F consisting
of quotients of homogeneous polynomials of the same degree in the coefficient forms (1.5.2)
li(a, z), (or Eqi−1, which is the same) for 1 ≤ i ≤ 2 deg(a) and an arbitrary non-constant
a ∈ A.

Note that the term “same degree” in the above proposition is taken with respect to the natural
grading by weight. (weight(li) = qi − 1).
The proof consists essentially in checking that if all functions in F take on the same value at
two different points of Ω, then these points are GL(2, A)-equivalent.

(3.1.2) Remark Application of the Riemann-Roch theorem to divisors of the form k.∞ on K

shows immediately that there exists a non-constant a ∈ A of degree = [max{g(K)
δ , 2g(K)−1

δ }],
where [·] indicates the integer part.

(3.2) Proposition (loc. cit.) The function field of of M̄Γ(n) is generated over the func-

tion field of M̄GL(2,A) by Eq−1(z)eq−1
u (z), where u runs through a set of representatives of

n−1A2/A2.

Again, the proof consists in verifying that two points of Ω at which all the above functions
agree are Γ(n)-equivalent. Also note that, for A = Fq[T ], the above two proposition are the
analogues of what is very well known classically ([14], 6.1), which is why we leave out the
details.

4. From modular curves to modular forms

(4.1) We have seen that modular forms seem to be very effective in studying the C-geometry
of modular curves. Let’s consider them for a moment as objects of study on their own; a
natural question would be to ask about the structure of the rings M(Γ) of modular forms for
different Γ. (As a matter of fact, this remains linked with more subtle geometric aspects of
the modular curves, namely some of their smooth embeddings in projective spaces).
A few answers along classical lines are known: first of all, the graded parts Mk,l(Γ) are
finite-dimensional C- vector spaces, and an application of the Riemann-Roch theorem on
the modular curve will allow the calculation of their dimension in most cases (a few very
interesting ones left aside for the moment). I will start by sketching the results for Γ =
GL(2, A), where A is general and the type l = 0; and then for A = Fq[T ] and arbitrary type
(although a detailed analysis of the behaviour of ∂Eq−1 would certainly lead to a satisfactory
formula in the case of arbitrary weight and type).

Because of the funny way in which parameters on Ω and M̄Γ are linked, we found the divisor
of a modular form on M̄Γ having rational coefficients. But if we want to apply the Riemann-
Roch theorem we will need “integral” divisors. Fortunately, if we define the integral part of
a rational divisor D =

∑
x∈M̄Γ

axx ∈ Div(M̄Γ) ⊗Q to be [D] =
∑

x∈M̄Γ
[ax]x, where [ax] is

the integral part of ax, then it is easy to see that H0(M̄Γ, D) = H0(M̄Γ, [D]) (Shimura, [14],
2.21).
If f is a non-zero modular form for GL(2, A), its weight k is divisible by q− 1, as we noted in
(1.4.4). Here is the basic trick: we send a modular form f of weight k and type zero to the mod-
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ular function f.E
− k

q−1

q−1 , which establishes an isomorphism of Mk(Γ) with H0(M̄Γ, [kdivEq−1]).
To apply Riemann-Roch, we want to know the degree of this divisor; from (1.5.6) we know
the degree of the rational divisor deg(divEq−1), but there is no definite general way in which
deg D and deg[D] are linked for arbitrary D. Fortunately we also know that the order of Eq−1

at cusps s is always divisible by q−1 (Eq−1 has a Taylor series in tq−1
s at all cusps, because it

is of type zero), so that the “cuspidal” part of [divEq−1] is integral. But even more is known,
all zeroes at elliptic points are simple by (2.4.1). Hence

deg[kdivEq−1] = k deg(divEq−1)− 〈
k

q + 1
〉|E|,

where 〈x〉 = x − [x] is the fractional part of x. We see that unless k = 1, q = 2, this degree
is bigger than 2g(M̄Γ)− 2, so that the divisor is non-special, and the Riemann-Roch theorem
gives:

(4.2) Theorem (Gekeler, [5], VII.4.6) If (q, k) 6= (2, 1), the dimension of the vectorspace
of modular forms of weight k for GL(2, A) is zero if q − 1 doesn’t divide k, and otherwise

dim Mk(GL(2, A)) = 1− g(M̄GL(2,A)) +
k(qδ − 1)

(q − 1)(q2 − 1)
P (q)− µ,

where µ = 0 when δ is even, and µ = 〈 k
q2−1

〉P (−1) if δ is odd.

If we now let A = Fq[T ], and f is a modular form of weight k and type l for GL(2,Fq[T ]),
then k − 2l ≡ k − l(q + 1) ≡ 0 mod q − 1, as we saw in (1.4.4). Therefore

Mk,l(GL(2,Fq[T ]) → H0(M̄GL(2,Fq [T ]), [
k − l(q + 1)

q − 1
divg + ldivh]) : f 7→ fh−lg

l(q+1)−k
q−1

is an isomorphism. We note that (1.5.6) again allows the calculation of the degree of div h,
and we see that ord ∞h = 1 from the series development. Furthermore, as h = ∂g, and the
zero of g at the elliptic point is simple (g′(e) 6= 0), it follows that h(e) 6= 0. Similar to (4.2),
one arrives at:

(4.3) Proposition The dimension of the vectorspace of modular forms of weight k and
type l for GL(2,Fq[T ]) is zero unless k ≡ 2l mod q − 1, when

dim Mk,l(GL(2,Fq[T ]) = 1 +
k

q2 − 1
− 〈k − l(q + 1)

q2 − 1
〉 − 〈 l

q − 1
〉.

(4.4) The situation for a principal congruence subgroup is even more advantageous (compare
[10], [5], VII.6): there are no elliptic points for Γ(n), n ⊂ A, since all elements of finite order
in it are of order divisible by p (see the discussion of elliptic points). Also, since all elements
in Γ(n) have determinant one, the type doesn’t play a role.
The parameter at cusps s is just ts, and we see that if f ∈ M2(Γ(n)), then f(z)dz =
f(z(ts))t−2

s dts is a differential form on the modular curve which is everywhere holomorphic;
except at the cusps, where it can have a pole of order 2.
If f is a modular form of weight k for Γ(n), then fek

u ∈ H0(M̄Γ(n),M⊗k), whereM := div(e−1
u )

is the linebundle of modular forms of weight one. By the above identification of modular forms
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of weight 2 and differential forms, we see that if we let D denote the canonical bundle on
M̄Γ(n), and Σ the “divisor of cusps”

∑
x cusp

x, we have

M⊗2 ∼= D ⊗O(2Σ).

One can immediately calculate the degree of M from this to find

degM =
qδ − 1

(q − 1)(q2 − 1)
P (q)|G(n)|,

and it is easy to see that this degree is > 2g(M̄Γ(n)) − 2 if k > 1, hence an application of
Riemann-Roch and duality can be made.
If k = 1, there is no obvious (degree) reason why the “speciality index” h1(M̄Γ(n),M) should
vanish. Note however that we can interpret it in terms of modular forms: via duality,
H1(M̄Γ(n),M) = H0(M̄Γ(n),M⊗−1 ⊗ D) = H0(M̄Γ(n),M⊗ O(−2Σ)) = M2

1,0(Γ(n)), which
is the space of so-called double cusp forms of weight one.

(4.4.1) Proposition ([5], VII.6) The dimension of the space of modular forms of weight
k > 1 for a principal congruence subgroup Γ(n) is

dim Mk(Γ(n)) = 1− g(M̄Γ(n)) +
qδ − 1

(q − 1)(q2 − 1)
P (q)|G(n)|,

and the dimension of M1(Γ(n)) is the number of cusps of Γ(n) plus the number of double cusp
forms of weight one.

(4.5) A very similar argument works for the case of a Hecke group Γ0(p), say of prime level p.

(4.5.1) Proposition ([5], VII.6) If (q, k) 6= (2, 1), the dimension of the space of modular
forms of weight k for a Hecke subgroup Γ0(p) of prime level p is zero unless q − 1 divides k,
when it is

dim Mk(Γ0(p)) = 1− g(M̄Γ0(p)) + k
(qδ − 1)(qdeg(p) − 1)

(q − 1)(q2 − 1)
P (q)− 2µ,

where µ is as in (4.2).

g(K) δ dim Mk(q−1)(GL(2, A)) deg(p), dim Mk(Γ(p)) dim Mk(q−1)(Γ0(p))
p prime k > 1

0 1 1 + [ k
q+1 ] 1 kq + 1 k + 1

2 k(q4 + q2 + 1)+ 1 + k q2+1
q+1 − 2〈 k

q+1〉
−q4 + q3 + q

3 — 1− q + k(q2 − q + 1)
2 1 + k 1 k(q2 + 1)− q2 + q 1 + k(q + 1)

2 — 1− q + k(q2 + 1)
3 1 + k q2+q+1

q+1 − 〈 k
q+1〉 1 k(q3 + q2 − q − 1)+ 1− q + k(q2 + q + 1)

−q3 − q2 + 2q + 2
4 1− q + k(q2 + 1) — — —

1 1 1 + kP (q)
q+1 − 〈

k
q+1〉P (−1) 1 k(q4 − q3 + (P (1)− 1)q2+ 1− q2 + kP (q)

+q)− q4 + q3 + q2+
−q − P (1)(q2 − q − 1)

2 1− q2 + kP (q) — — —
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A table of dimensions of spaces of modular forms

(4.6) The full structure of the algebra of modular forms is only known in the most “trivial”
cases. One has for instance, along classical lines:

(4.6.1) Proposition (Goss [9] and Gekeler [6] (5.12), (5.13)) The algebra of modular forms
for GL(2,Fq[T ]) is isomorphic to polynomial ring C[X, Y ], doubly graded by weight ∈ Z>0

and type ∈ Z/(q − 1), where weight(X) = q − 1, weight(Y ) = q + 1, type(X) = 0 and
type(Y ) = 1; the isomorphism is given by sending X to g and Y to h.
The algebra of modular forms of type zero for GL(2,Fq[T ]) is isomorphic to the graded
polynomial ring C[X, Y ], where weight(X) = q− 1 and weight(Y ) = q2− 1; the isomorphism
is given by sending X to g and Y to ∆.

The proof of these two statements is analogous and classical, so we will stick to a sketch
of the first one. It suffices to show that g and h are algebraically independent. Because
then, one can calculate the dimension of the (k, l)-graded part dim C[g, h]k,l of the subring
C[g, h] of M(GL(2,Fq[T ])), and it is easy to see that it coincides with dim Mk,l(GL(2,Fq[T ])),
calculated in (4.3).
Suppose there exists an algebraic relation between g, h. We might as well suppose it is
homogeneous with respect to the natural grading by weight, and of minimal weight d. If g

d
q−1

occurs, then we evaluate the expression at ∞, and since h(∞) = 0, this would imply that
g(∞) = 0, a contradiction. On the other hand, if h

d
q+1 occurs, we evaluate at an elliptic point

instead, and using g(e) = 0, we would find h(e) = 0, but hq−1(e) = −∆(e) 6= 0. Hence the
algebraic relation is divisible by gh, and performing this division, we would find a relation of
smaller degree, contradicting the minimality of d. This proves the theorem. 2

(4.6.2) Proposition The ring of modular forms of type zero for the Hecke group Γ0((T ))
of level T over Fq[T ] is isomorphic to the graded ring C[X, Y ], where X, Y are variables of
weights q − 1; the isomorphism is given by sending X to g(z) and Y to g(Tz).

The fact that g(Tz) is a modular form for Γ0((T )) follows as in [11],III prop. 17 et seq. The
same technique of the previous proof applies, where we now first evaluate a possible algebraic
relation between g(z) and g(Tz) at an elliptic point e, and then at T−1e. All we have to note
is that g has its unique zero at e, and that T−1e cannot be an elliptic point: since e satisfies a
quadratic equation of discriminant D(e) ∈ Fq (see (1.2.2)), one has D(T−1e) = T 2D(e) /∈ Fq,
hence T−1e is not elliptic. 2

5. Congruences for modular forms and supersingular invariants

(5.1) Untill now, we have not shown very much interest in the coefficients of modular forms,
by which we mean the coefficients of the Taylor series at different cusps. Nevertheless, it
is known classically that after suitable normalisation, these have a significant arithmetical
relevance. Although some of the interesting coefficients in the function field case will occur
for automorphic, complex valued forms (think of number of representations of polynomials by
quadratic forms), it is still possible to normalise say Eisenstein series, and extract information
about supersingular invariants, along the same lines as the classical study of Swinnerton-Dyer
in the Antwerp volumes [15]. Throughout this paragraph, we will assume A = Fq[T ].

(5.2) If p is a prime (irreducible polynomial) of Fq[T ], then we let Mp be the ring of modular
forms f for GL(2,Fq[T ]) for which the Taylor series of f at the cusp ∞ lies in the localisation
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Fq(T )p[[t∞]], i.e. such that all coefficients lie in K, and have denominator prime to p. It then
makes sense to consider the ring

M̄p = {f ∈ Fq[T ]/(p)[[t∞]] : f ≡ f ′ mod p for some f ′ ∈ Mp}

of modular forms modulo p (congruence is meant termwise in t∞).

(5.3) Here is the prototype: we will let

gk := (−1)k+1π̄1−qk
(T qk − T )(T qk−1 − T )...(T q − T )Eqk−1,

where Eqk−1 is the Eisenstein series for A = Fq[T ] of weight qk − 1. It turns out that the
series development of gk at the cusp ∞ has A-integral coefficients, i.e. belongs to A[[t∞]].
This is true in particular for g and hence for h.

(5.3.1) Theorem (Gekeler, [6]) Let p ∈ Fq[T ] be a prime of degree k. Then gk ≡ 1 mod p,
and if we let Bk ∈ A[X, Y ] denote the polynomial such that gk = Bk(g, h) (which exists by
(4.6.1)), then

M̄p
∼= Fq[T ]/(p)[X, Y ]/(bk(X, Y )− 1),

where bk is obtained from Bk by reducing coefficients modulo p. Also, M̄p is a normal ring.

Although the result is entirely similar to the one by Swinnerton-Dyer, the proof is slightly
different; whereas the classical proof uses a double application of the Serre-derivative to the
Eisenstein series, it is known that for function fields (loc. cit.) ∂2g = ∂h = 0, so ∂2 ≡ 0 on
the whole of M(GL(2, A)).

(5.4) We will consider the formal “Tate”-Drinfeld module φTa
T = TX + g(t∞)Xq + ∆(t∞)Xq2

over Fq[T ]((t∞)), where we subsitute g(t∞),∆(t∞) for their expansions in t∞. One can
reduce this formal module modulo p to find a Drinfeld module over Fq[T ]/(p)((t∞)) (Note
that the series expansions start of as g = 1 + ..., ∆ = tq−1

∞ + ...). Then φTa
p mod p will

have lowest degree term Hp(t∞)Xqdeg p
for some power series Hp ∈ Fq[T ]/(p)((t∞)), and

it turns out that Hp ∈ M̄ , namely Hp ≡ gk mod p (loc. cit.). Hp is called the Hasse-
invariant. The name arises as follows: if one gives t∞ a fixed value such that the series for
g,∆ converge, then the reduction φTa

T mod p is a Drinfeld module φ′ of finite characteristic
p, which will be supersingular ⇐⇒ Hp(t∞) = 0 ⇐⇒ the p-torsion pφ

′ = 0 is trivial ⇐⇒
the endomorphism ring of φ′ is non-commutative. This observation opens up the possibility
of studying supersingular Drinfeld modules via reductions of Eisenstein series.

6. From modular forms to C-valued harmonic cochains

(6.1) The upper half space Ω has a cannonical reduction, which is the (intersection dual of)
the Bruhat-Tits tree T . One might ask what remains of modular forms on Ω when they are
reduced to T . It turns out that the result is analogous to the classical theory of periods of
modular forms ([12], VI).

(6.2) Suppose f is a weight two modular form for some group Γ. Then as we saw, f(z)dz
is a holomorphic differential form on Ω. It was shown by Drinfeld how to “descend” with
such a differential form to the tree: Let e be an edge of T corresponding to the interior of
an analytic annulus D0

x,n = {z ∈ Ω : |π̄∞|n+1 < |z − x| < |π̄∞|n}, and assume that the inner
circle |z − x| = |π̄∞|n+1 reduces to the origin of e. The restriction of f(z)dz to D0

i admits a
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series development f(z)dz =
∑

akt
kdt, where t = π̄−n(z−x) is the boundary parameter. We

define the residue of f(z)dz at e to be res(f(z)dz, e) := a−1. The residue theorem applied to
the arc D0

x,n implies that
∑

res(f(z)dz, e) = 0, where the sum is over all edges starting at an
arbitrary vertex, i.e. the function res is harmonic; and it is Γ-invariant for the natural action
of Γ on T . To be able to generalize this construction, we recall

(6.3) Definition For an abelian group B (written additively), we let H
¯
(T , B) denote the

set of harmonic cochains on T , i.e. functions from the set of edges of T to B, such that if the
orientation of an edge is reversed, so is the value of the cochain; and the sum of the values
of the cochain over all edges leaving a fixed vertex is zero. If Γ is an arithmetic group, we let
H
¯
(T , B)Γ denote Γ-invariant cochains, and we will let H

¯ !(T , B)Γ denote the set of cuspidal
harmonic cochains for Γ, i.e. cochains with compact support modulo Γ.

(6.4) Let V be a two-dimensional vectorspace over C with the standard action of Γ. Set

Wk,l = [(det)l−1 ⊗ Symk−2(V ∗)]∗,

for k, l are positive integers (one should understand “det” as C with Γ-action by multiplication
with the determinant). This definition is very formal, but can be understood practically as
follows : suppose ϕ ∈ H(T ,Wk,l), and choose a basis X, Y of V ∗. For any edge e, ϕ(e) ∈ Wk,l

can be seen as a function on the space of Symk−2(V ∗) spanned by monomials of degree k− 2
in the variables X, Y . So a harmonic cochain like this is really just a map, associating to any
edge of T a “vector” of k−1 values in C, namely the values ϕ(e)(XjY k−2−j) for j = 0, ..., k−2
(but with the right Γ-action).

(6.5) Suppose f ∈ Mk,l(Γ) is a modular form of weight k > 1 and type l. Define a map

Res : Mk,l(Γ) → H
¯ !(T ,Wk,l)Γ

by the following :
Res(f, e)(XjY k−2−j) = res(zjf(z)dz, e).

(The expression zjf(z)dz should be seen as a differential form on Ω, it makes no sense on
the modular curve.) This is again a harmonic cocycle by the rigid residue theorem, and one
computes immediately that Res(f, γ · e) = γ · Res(f, e), which implies Γ-equivariance. Also,
the resulting cochain is cuspidal, since Teitelbaum ([16],3) has shown the “strange” positive
characteristic phenomenon that every Γ-equivariant cochain taking values in a group killed
by p = char(Fq) is cuspidal.

(6.6) The prototype of non-cusp forms, the Eisenstein series have residue = 0 since the
associated differential forms are holomorphic on Ω. On the other hand, Teitelbaum has
constructed an explicit inverse to the map Res for cusp forms, using a “non-archimedean”
integral, and shown this inverse to be injective. He can then use the dimension formulae
for Mk,l(Γ) and an explicit construction of sufficiently many harmonic cochains to make Res
bijective:

(6.7) Theorem (Teitelbaum, [16]) The map

Res : M1
k,l(Γ) → H

¯ !(T ,Wk,l)Γ

is an isomorphism for k > 1.
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(6.8) Remark In loc. cit., Teitelbaum uses the interpretation of cocycles through modular
forms to obtain results about the relative homology of Γ.

(6.9) The most striking application of theorem 6.7 however, is already a few years old, but
remains unpublished untill now. Here it is:

(6.9.1) Theorem (Gekeler — unpublished) Let Γ ⊆ GL(2, A) be an arithmetic subgroup.
Then there are no cusp forms of weight one for Γ whatsoever, i.e. M1

1,l(Γ) = 0,∀l.

Proof. Suppose f ∈ M1
1,l(Γ), then it’s q-th power f q ∈ M1

q,l(Γ). Choose an edge e ∈ T ,
corresponding to a annulus D0

x,n with parameter t on Ω as in (6.2). If f(z)dz =
∑

k∈Z akt
kdt on

D0
x,n, then zif q(z)dz =

∑
k∈Z aq

kt
kq+idt. In particular, res(zif q(z)dz, e) = 0 for 0 ≤ i ≤ q− 2.

Hence Res(f q) ≡ 0, and by Teitelbaum’s theorem, f q ≡ 0, so f ≡ 0. 2

(6.9.2) Corollary One can complement the results in paragraph 4 as follows:
dim M1(Γ(n)) is exactly equal to the number of cusps of Γ(n). Furthermore, (4.2) and (4.5.1)
remain valid if (q, k) = (2, 1).

(6.9.3) Remark The theorem might seem disturbing at first; classical modular forms in
SL2(Z) of weight one are intimately connected with Artin’s conjecture for representations of
Gal(Q̄/Q) in GL(2,C), and counting, constructing and interpreting M1(Γ) over the integers
is very deep. Notice however that the classical “equivalence” between modular forms and
automorphic forms/Galois representations doesn’t remain valid in a direct way for function
fields: whereas modular forms and modular curves are the natural characteristic-p defined
moduli objects, defined starting from Drinfeld’s “fine” space Ω, the automorphic side is about
complex valued harmonic forms on the tree T .

7. From modular forms to complex valued harmonic cochains

(7.1) The “automorphic” side of function fields arithmetic involves complex harmonic analysis
on the tree T . And much of the succes of the “modular” theory over function fields lies in
the intimate relation between these distinct concepts of modular and automorphic form, see
Gekeler & Reversat [8]. We will only touch upon a few recent applications of it to questions
about modular forms and modular curves.

(7.2) For this, we need the r-map, introduced by van der Put in his study of invertible maps
on rigid analytic spaces. It should be considered as a “good” substitute for the ordinary
logarithmic derivative in the case of positive characteristic (recall e.g. that ∂2 is bad, since it
kills all of M(GL(2,Fq[T ])) !). The map r associates to every invertible holomorphic function
on Ω a Z-valued harmonic cochain. If e is an edge of T , then qr(f)(e) is (by definition)
the quotient of the maximal absolute value of f attained on the circle corresponding to the
endpoint of e, by the maximal absolute value of f attained on the circle corresponding to the
origin of e. It is connected with the “characteristic-p” cochains of the previous paragraph via

res(f ′(z)/f(z)dz, e) = r(f)(e) mod p,

which explains its relation with the logarithmic derivative. Also, if two points z1, z2 ∈ Ω
reduce to vertices v1, v2 on T , then the value

(*) logq |f(z2)/f(z1)| = the sum of the values of r(f) along the path from v1 to v2 in T .

For proofs of all of this, see [4],I.8.9, [8], (1.7).
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(7.3) A modular form f takes on values in C. But if we take its absolute value, then |f | : Ω →
R takes on real values. And via (*), we can study this absolute value as an r(f)-weighted
distance function on the tree, at least if f is invertible. e.g. the discriminant function:

(7.4) Theorem (Gekeler [7], (2.8)) Let z ∈ Ω reduce to a vertex [π−kO∞⊕O∞] of T . Then

logq |∆(z)| =
{

q2 + q − q1−k if k ≤ 1
q2 + q + k(q2 − 1)− qk+1 if k ≥ 1

I have only indicated the formula for points reducing to special vertices, but actually, this
allows the calculation of the value everywhere. It would also be interesting to know |eu| for
division values eu.

(7.5) There are immediate applications of the above result to the question of extracting “roots”
out of functions like ∆ and ∆(z)/∆(nz) in the ring of invertible functions on Ω, and in the
function field of M̄Γ0((n)), and from this, one can proceed to study the group of divisor classes
supported at the cusps of M̄Γ0((n)), e.g.

(7.6) Theorem (Gekeler [7], 3.23) The cuspidal divisor class group of M̄Γ0(p) for a prime

ideal p is cyclic of order (qdeg p− 1)/(q2− 1) if deg p is even and (qdeg p− 1)/(q− 1) if deg p is
odd.
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