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Abstract

The definition of a Poisson manifold is given in terms of the Poisson bracket and some
basic examples are shown. Symplectic manifolds as certain examples of Poisson manifolds are
treated in more detail. After that the Poisson bivector is introduced and its correspondence
to the Poisson structure is shown. The first lecture ends with considerations about the
Jacobi identity and the Jacobiator. In the second lecture Poisson manifolds are defined in
terms of the Poisson tensor and we show how their cotangent bundles can be viewed as Lie
algebroids via the Courant bracket. After proving the local splitting theorem of a Poisson
manifold, we introduce the notion of symplectic foliation and give several examples, most
notably the coadjoint orbits for the Lie Poisson structure on the dual of a lie algebra. In
the third lecture, we prove the existence and uniqueness of manifold structures of symplectic
leaves, with some examples of symplectic leaves and poisson maps from Hamiltonian actions.
Finally the Marsden- Weinstein theorem is also discussed.

1 Basic Properties of Poisson Manifolds

In this chapter M will denote a C∞-manifold.

Definition 1.1 (Poissonstructure) A Poisson structure on M is a R-bilinear bracket

{, } : C∞(M)× C∞(M) −→ C∞(M),

such that
{f, g} = −{g, f} (skew symmetry)

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0 (Jacobi Identity)

{f, gh} = {f, g}h + g{f, h} (Leibniz rule)

hold.
(M,{,}) is then called Poisson manifold.

Example 1.2 (First examples) 0. Trivial Poisson structure {, } ≡ 0. Any manifold is a
Poisson manifold in this way.

1. Classical Poisson bracket:

M = R2n = {(q1, ..., qn, p1, ..., pn)}

{f, g} :=
n∑

i=1

∂f
∂qi

∂g
∂pi
− ∂f

∂pi

∂g
∂qi
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2. Let (S, ω) be a symplectic manifold (i.e. ω ∈ Ω2(S), dω = 0, ω nondegenerate).

• f ∈ C∞(M), Xf ∈ X(M) hamiltonian vector field, uniquely defined by:
iXf

ω = −df

• Poisson bracket:
{f, g} := ω(Xf , Xg) = −df(Xg) = dg(Xf ) = LXf

g = Xf (g)
This bracket clearly is skew symmetric and satisfies the Leibniz identity.

Exercise: Consider the classical Poisson bracket in mechanics,

{f, g} :=
nP

i=1

∂f
∂qi

∂g
∂pi

− ∂f
∂pi

∂g
∂qi

, M = R2n = {(q1, . . . , qn, p1, . . . , pn)}.

Check that the bracket comes from the canonical form ω =
nP

i=1

dqi ∧ dpi on R2n.

Solution:
The poisson bracket defined by the symplectic form is given by
{f, g}ω = ω(Xf , Xg), where Xf and Xg are the Hamiltonian vec-
tor field associated with f, g ∈ C∞(M). These are defined by
ω(Xf , Y ) = Y f for all vector field Y ∈ X(M).
We first check that

Xf =

nX
i=1

∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
. (1.1)

holds.
Consider ω(Xf , ∂

∂pi
) = ∂f

∂pi
. Now realize that ∂

∂qi
and ∂

∂pi
form a

basis of the tangent space at each point satisfying the relation

ω(
∂

∂qi
,

∂

∂pj
) = δij

and all other pairings give zero. This shows that ∂f
∂pi

= ω(Xf , ∂
∂pi

) =

dqi(Xf ). So ∂f
∂pi

is the ∂
∂qi

component of Xf . Similarly, − ∂f
∂qi

is the
∂

∂pi
component of Xf . This gives 1.1. Using these results, we get

ω(Xf , Xg) =

nX
i=1

dqi(Xf )dpi(Xg)− dpi(Xf )dqi(Xg)

=

nX
i=1

∂f

∂pi
(− ∂g

∂qi
)− (− ∂f

∂qi
)

∂g

∂pi

=

nX
i=1

∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

= {f, g}

This solves the exercise.

Proposition 1.3 Let (S, ω) be a symplectic manifold. {, } in Example1.2.2 satisfies the Jacobi
identity.

Proof: dω = 0 ⇒ dω(Xf , Xg, Xh) = 0. Then using dω(X, Y, Z) = Xω(Y, Z) − Y ω(X, Z) +
Zω(X, Y )− ω([X, Y ], Z) + ω([X, Z], Y )− ω([Y, Z], X) in the second and skew symmetry in the
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last equation gives:

0 = dω(Xf , Xg, Xh)
= Xf{g, h} −Xg{f, h}+ Xh{f, g}+ [Xf , Xg]h− [Xf , Xh]g + [Xg, Xh]f
= {f, {g, h}} − {g, {f, h}}+ {h, {f, g}}+ {f, {g, h}} − {g, {f, h}}
− {f, {h, g}}+ {h, {f, g}}+ {g, {h, f}} − {h, {g, f}}

= −3 · ({{f, g}, h}+ {{h, f}, g}+ {{g, h}, f})

�

Remark 1.4 If ω ∈ Ω2(S) is nondegenerate, then {f, g} := ω(Xf , Xg) still makes sense. The
proof of Propositon1.3 shows:

dω = 0⇐⇒ {, } is a Poisson bracket

Example 1.5 Let (S, ω) be a symplectic manifold. Let G be a Lie Group acting on S, such
that σ∗ω = ω holds ∀σ ∈ G. Assume the action is free and proper. Then S/G has a unique
structure of a smooth manifold such that the natural projection

p : S → S/G = M

is a submersion.
Note:

C∞(M) ∼= C∞(S)G

f 7→ f ◦ p

where C∞(S)G ⊆ C∞(S) is the space of G-invariant functions on S (i.e. σ∗f = f , for f ∈ S).

Claim 1.6 C∞(S)G is closed under {, }S.

Proof: Let σ ∈ G and f, g ∈ C∞(S)G. We have to show, that σ∗{f, g} = {f, g}. Now

σ∗(iXf
ω) = σ∗(−df)

= −d(σ∗f)
= −df

= iXf
ω.

and we have

σ∗(iXf
ω) = i(dσ)−1(Xf )σ

∗ω

= i(dσ)−1(Xf )ω

So it follows iXf
ω = i(dσ)−1(Xf )ω. Now view ω as a map ω : TS → T ∗S. This map is injective,

because ω is symplectic. So it follows, that

(dσ)−1(Xf ◦ σ) = Xf

⇒ dσ(Xf ) = Xf ◦ σ (1.2)
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At a point p ∈ S we have

(σ∗({f, g}))p = (σ∗(ω(Xf , Xg)))p = ωσ(p)(Xf ◦ σ,Xg ◦ σ)

using (1.2) we get
= ωσ(p)((dσ)p(Xf ), (dσ)p(Xg)) = (σ∗ω)p(Xf , Xg)

and because of σ∗ω = ω:
= ωp(Xf , Xg) = {f, g}p

and therefore
σ∗{f, g} = {f, g}.

�
Claim (1.6) shows, that C∞(M) is Poisson.

Remark 1.7 Let G be a Lie Group, acting on itself by multiplication. This lifts to an action
of G on S = T ∗G ∼= G× g∗, which then makes S/G ∼= g∗ into a Poisson manifold.

Example 1.8 Suppose S is a smooth manifold and ωt ∈ Ω2(S) a smooth family of symplectic
structures, t ∈ R. Then for f, g ∈ C∞(S)× R, x ∈ S,

{f, g}(x, t) := {ft, gt}ωt(x)

where ft, gt ∈ C∞(S) for fixed t, defines a Poisson bracket on S × R.

1.1 Hamiltonian Vector Fields

Let (M, {, }) be a Poisson manifold. Because {f, ·} satisfies the Leibniz rule, we can think
of {f, ·} as a derivation of C∞(M). There is a 1-1 correspondense between vector fields and
derivations:

X(M)←→ derivations of C∞(M)
X 7−→ LX(fg) = LX(f)g + fLX(g)

Hence ∀f ∈ C∞(M) there exists a well defined vector field Xf such that

{f, g} = LXf
(g) = Xf (g).

Definition 1.9 (Hamiltonian vector field) Let (M, {, }) be a Poisson manifold, f, g ∈ C∞(M).
The vector field Xf that satisfies

{f, g} = LXf
(g)

is called the Hamiltonian vector field of f .

If (S, ω) is a symplectic manifold and f, g ∈ C∞(S). Then S has a Poisson structure given
by {f, g} = ω(Xf , Xg) where the Hamiltonian vector fields are defind by i(Xf )ω = −df . This
definition coincides with definition (1.9), since

{f, g} = ω(Xf , Xg) = −df(Xg) = dg(Xf ) = LXf
(g) = Xf (g).

Properties:
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• If f ∈ C∞(M), then LXf
(f) = {f, f} = 0 by skew symmetry.

• If f, g ∈ C∞(M), then X{f,g} = [Xf , Xg].

That means in other words, that the mapping

C∞(M)←→ X(M)
f 7−→ Xf

is a Lie algebra homomorphism.

Proof: Let be f, g, h ∈ C∞(M). Then

[Xf , Xg]h = Xf (Xgh)−Xg(Xfh)
= {f, {g, h}} − {g, {f, h}}
= {f, {g, h}}+ {g, {h, f}}
= −{h, {f, g}}
= {{f, g}, h}
= X{f,g}h.

Where skew symmetry was used in the second and fourth equation and the Jacobi idetity in the
third equation. �

1.2 Poisson Tensor

Recall: Multivector Fields
Let M be a n-dimensional smooth manifold and x ∈ M . We call a section π of the natural

projection p : ΛkTM →M a k-vector field on M . For ξi ∈ T ∗
xM we have πx(ξ1, ..., ξk) ∈ R. We

denote by Xk(M) := Γ(ΛkTM) the space of all k-vector fields on M .
This is the dual to differential forms η ∈ Ωk(M) = Γ(ΛkT ∗M), where ηx(x1, ..., xk) ∈ R, for

xi ∈ TxM .
Let (x1, ..., xn) be local coordinates on M . Then ΛkTxM has a linear basis { ∂

∂xi1
∧...∧ ∂

∂xik
, i1 <

... < ik}. Where ∂
∂x1

, ..., ∂
∂xn

, again are the duals to dx1, ..., dxn. π ∈ Xk(M) is then in these
local coordinates given by:

π =
∑

i1<...<ik

πi1,...,ik

∂

∂xi1

∧ ... ∧ ∂

∂xik

}

.
Given a k-vector field π ∈ Xk(M), it defines a skew symmetric, k-linear bracket:

C∞(M)× ...× C∞(M)→ C∞(M)

{f1, ..., fk} := π(df1, ..., dfk)

Proposition 1.10 Any k-linear bracket

{·, ..., ·} : C∞(M)× ...× C∞(M)→ C∞(M),
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which is skew symmetric and satisfies the following Leibniz rule:

{fg, f2, ..., fk} = f{g, f2, ..., fk}+ {f, f2, ..., fk}g

arises from a k-vector field π ∈ Xk(M).

Proof:
Fix x ∈ M . We will show, that {f1, ..., fk}(x) depends only on dxf1. In other words: If

dxf1 = 0, then {f1, ..., fk}(x) = 0.

Assume that dxf1 = 0. Then follows from Taylor’s theorem, that f1 = c +
n∑

i=1
xigi, s.t.

xi(x) = 0, gi(x) = 0, where c is constant. Then

{f1, ..., fk} = {c, f2, ..., fk}+
n∑

i=1

{xigi, f2, ..., fk}

But since the bracket is a derivation and derivations are 0 on constants it is {c, f2, ..., fk} = 0.
Then

{f1, ..., fk} =
n∑

i=1

xi{gi, f2, ..., fk}+ {xi, f2, ..., fk}gi

And this is 0 at x since xi(x) = 0, gi(x) = 0.
Now for ∀αi ∈ T ∗

xM we can find fi such that αi = dxfi. So define the desired k-vector field π
as follows:

πx(α1, ..., αk) := πx(dxf1, ..., dxfk) = {f1, ..., fk}(x)

�

Corollary 1.11 Let (M, {, }) be a Poisson manifold. Then there is a unique bivector π ∈
X2(M), such that

{f, g} = π(df, dg).

This bivector π is called Poisson bivector or Poisson tensor.

Corollary (1.10) means in other words:
Poisson structure on M ⇐⇒ ∃!π ∈ X2(M), s.t. π(df, dg) satisfies the Jacobi identity

This bivector is given in local coordinates as

π =
∑
i<j

πij
∂

∂xi
∧ ∂

∂xj

The bracket applied to f, g ∈ C∞(M) is then given by

{f, g} = π(df, dg) =
∑
i<j

πij(
∂f

∂xi

∂g

∂xj
− ∂f

∂xj

∂g

∂xi
)

Example 1.12 Let be (q1, ..., qn, p1, ..., pn) ∈ R2n. Then

π =
n∑

i=1

∂

∂qi
∧ ∂

∂pi
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is the Poisson bracket associated to

ω =
n∑

i=1

dqi ∧ dpi

Exercise: Let (S, ω) be a symplectic manifold and ω locally given
as

ω =
X
ij

ωijdxi ∧ dxj .

Check that for the coefficients of the corresponding bivector π the
following holds πij = −(ωij)

−1.
Solution:
Consider the map ω] : TM → T ∗M, X 7→ iXω and the map π] :
T ∗M → TM, α 7→ π](α), where β(π](α)) = π(α, β) and π is the
corresponding bivector to ω. Take α, β ∈ T ∗M , such that α =
iXω, β = iY ω. Then we have π(α, β) = ω((ω])−1(α), (ω])−1(β)) =
ω(X, Y ). For the left side of the equation we get

π(α, β) = −π(β, α)

= − < α, π](β) >

= − < iXω, π](β) >

= −ω(X, π](β))

= −ω(X, π](iY ω))

= −ω(X, π](ω](Y ))

So we have −ω(X, π](ω](Y )) = ω(X, Y ). By the nondegeneracy of
ω, it follows that π] = −(ω])−1 and therefore πij = −(ωij)

−1 holds
for the coefficients.

Let M be a smooth manifold, π ∈ X2(M). Then (M,π) is called an ”almost” Poisson manifold,
if π does not satisfy the Jacobi identity.

Definition 1.13 (the Jacobiator) The map

J : C∞(M)× C∞(M)× C∞(M)→ C∞(M)

(f, g, h) 7→ {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f}

is called Jacobiator.

Proposition 1.14 J is skew symmetric and is a derivation in each argument.

Proof: Let a, f, g, h ∈ C∞(M). We will show the skew symmetry of J regarding the first
two arguments. The proof for the other arguments is a similar calculation.

J(g, f, h) = {{g, f}, h}+ {{h, g}, f}+ {{f, h}, g}
= −{{f, g}, h} − {{g, h}, f} − {{h, f}, g}
= −({{f, g}, h}+ {{h, f}, g}+ {{g, h}, f})
= −J(f, g, h)
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So J is skew symmetric in the first two arguments. We will show now that J is a derivation in
the first argument. The proof for the other arguments is a similar calculation.

J(af, g, h) = {{af, g}, h}+ {{h, af}, g}+ {{g, h}, af}
= {a{f, g}, h}+ {{a, g}f, h}+ {a{h, f}, g}+ {{h, a}f, g}+ a{{g, h}, f}+ {{g, h}, a}f
= a{{f, g}, h}+ {a, h}{f, g}+ {a, g}{f, h}+ {{a, g}, h}f + a{{h, f}, g}+ {a, g}{h, f}
+ {h, a}{f, g}+ {{h, a}, g}f + a{{g, h}, f}+ {{g, h}, a}f

= a({{f, g}, h}+ {{h, f}, g}+ {{g, h}, f})
+ ({{a, g}, h}+ {{h, a}, g}+ {{g, h}, a})f
+ ({a, h}+ {h, a}){f, g}+ {a, g}({f, h}+ {h, f})

= a(J(f, g, h)) + (J(a, g, h))f + +({a, h} − {a, h}){f, g}+ {a, g}({f, h} − {f, h})
= a(J(f, g, h)) + (J(a, g, h))f

So J is a derivation in the first argument. �

The last proposition shows, that J ∈ X3(M). In local coordinates J is given by

J(f, g, h) =
∑
i,j,k

Jijk
∂f

∂xi

∂g

∂xj

∂h

∂xk

where Jijk = J(xi, xj , xk).
So to check the Jacobi identity on C∞(M), it suffices to check, that it holds on coordinate

functions, i.e. Jijk = 0.
In the following examples we show some applications of our discussion about the Jacobiator.

Example 1.15 1. dim(M) = 2. Then any bivector field π ∈ X2(M) is Poisson. J = 0,
because J ∈ X3(M), but dim(M) = 2.

2. Let g∗ be a finite dimensional Lie algebra with basis v1, ..., vn, such that [vi, vj ] =
n∑

k=1

cijkvk.

Here the cijk are the structure constants of the Lie algebra. Let f, g ∈ C∞(g∗), µ ∈ g∗.
Then define a bracket

{f, g} :=< [df(µ), dg(µ)], µ >

This definition uses the identification (g∗)∗ ∼= g.

This bracket is clearly skew symmetric and the Leibniz rule holds. Now let us look at
coordinates µ1, ..., µn ∈ (g∗)∗, s.t. the µi correspond to the vi and µi(µ) = µi, to check the
Jacobi identity. Then

{f, g} =
∑
ijk

cijkµk
∂f

∂µi

∂g

∂µj

And on the coordinate functions we have:

{µi, µj} =
∑

k

cijkµk

So {, } is a Lie bracket and J(µi, µj , µk) = 0. So the Jacobi identity holds on the whole
g∗.
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2 Poisson manifold

A Poisson manifold is a pair (M,π) , π ∈ X2(M) = Γ(Λ2TM) such that {f, g} := π(df, dg) is a
Lie bracket. (Only thing needed to check is Jacobi identity)

A nontrivial example is given by M = g∗ where g is a finite dimensional Lie algebra. Given
µ ∈ g∗, f, g ∈ C∞(g∗), define the bracket by {f, g}(µ) := 〈µ, [df(µ), dg(µ)]〉.

If g has the following structural constants, [vi, vj ] =
∑

ck
ijvk, for v1, . . . , vn a basis of g, then in

terms of the dual basis µ1, . . . , µn ∈ g∗, {f, g} =
∑

ck
ijµk

∂f
∂µi
∧ ∂g

∂µj
. This shows that {µi, µj} =∑

ck
ijµk which implies Jijk = 0 where recall Jijk = {µi, {µj , µk}}+{µj , {µk, µi}}+{µk, {µi, µj}}

is the Jacobiator. Thus {., .} is indeed a Poisson bracket, and g → C∞(g∗) is a Lie algebra
homomorphism.

Let V be a vector space, x1, . . . , xn ∈ V ∗ coordinates in V . A Poisson structure is said to
be linear if {xi, xj} =

∑
k ck

ijxk i.e., linear functions are closed under bracket. In that case, the
restriction of {., .} from C∞(V ) to V ∗ makes V ∗ into a Lie algebra.So we conclude that linear
Poisson structures on V are in 1-1 correspondence with Lie algebra structures on V ∗.

The simplest examples of Poisson manifolds are given by Poisson vector space V , π ∈ Λ2V ,
which can be viewed as a constant (with respect to the obvious connection) Poisson structure
on the manifold V . Then it is easy to see that π automatically satisfies the Jacobi identity
by checking it on coordinate functions xi and notice that dπ(dxi, dxj) = 0 by constancy. By
definition, this is equivalent to π# : V ∗ → V being linear (see definition below), and (π#)∗ =
−(π)#.

Now for a general Poisson manifold (M,π), we have a bundle map (i.e., fiberwise linear):
π# : T ∗M → TM defined by β(π#(α)) = π(α, β). π# : Ω1(M) → X(M). Note that if
f ∈ C∞(M), df ∈ Ω1(M); π#(df) = Xf , the hamiltonian vector field generated by f , which
generalizes the same notion in symplectic geometry.

Definition 2.1 D = π#(T ∗M) ⊂ TM is called the symplectic distribution (not necessarily of
constant rank).

Question: can we ”integrate” D to a ”symplectic foliation”?

Definition 2.2 (M,π) is a regular Poisson manifold if rank of π# is constant. (i.e., D is a
regular distribution)

Note: M = g∗, then D is regular if and only if g is abelian. The reason is that it has rank
zero at 0 ∈ g∗, so to be regular it must have rank 0 everywhere.

Bringing Lie algebroids into the picture: there exists a natural Lie bracket on Ω1(M), (M,π)
Poisson manifold: For α, β ∈ Ω1(M), [α, β] = Lπ#(α)β − Lπ#(β)α − d(π(α, β)) = iπ#(α)dβ −
iπ#(β)dα + d(π(α, β)) (*) , where the last equality uses Cartan’s formula: LX = iXd + diX .

Proposition 2.3 The bracket (*) is a Lie bracket (in particular satisfies the Jacobi identity),
and satisfies the following:

(1) d-naturality: [df, dg] = d{f, g};
(2) Leibniz property: [α, fβ] = f [α, β] + (Lπ#(α)f)β, f ∈ C∞(M);
(3) π# : Ω1(M)→ X(M) preserves the bracket.
These conditions imply that (T ∗M, [, ]π, π#) is a Lie algebroid.
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Proof: The first property, namely [df, dg] = d{f, g} can be seen by using the last identity for
the bracket, [α, β] = iπ#(α)dβ− iπ#(β)dα+d(π(α, β)), in which we see only the last term survive
upon substitution of two exact one forms.

For the Leibniz property, we simply compute: [α, fβ] = iπ(α)d(fβ)−fiπ(β)dα+d(fπ(α, β)) =
f [α, β] + iπ(α)(df ∧ β) + π(α, β)df = f [α, β] + (Lπ(α)f)β.

Next we show that π# preserves the bracket: It suffices to check for locally exact forms,
because in general every 1-form can be written as a finite sum of functions times exact 1-forms;
and using the Leibniz rule we could conclude the same thing for these non-exact 1-forms. Here
are the details:

π#([df, dg]) = π#(d{f, g}) = X{f,g} = [Xf , Xg] and in general, π#([hdf, dg]) = π#(h[df, dg] +
(Lπ#(dg)h)df) = h[Xf , Xg] + LXghXf = [hXf , Xg].

Finally for the Jacobi identity, it also suffices to check for only the exact 1-forms, which is
clear by the Jacobi identity for Poisson bracket. To see that it holds in general, we only need to
check that J(fdx, dy, dz) = 0, all the other possibilities can be obtained by linear combinations,
permutation symmetry of J , or induction on the number of nonexact entries. So let’s simply do
that:

[fdx, [dy, dz]] = f [dx, [dy, dz]] + Lπ#([dy,dz])(f)dx;

[dy, [dz, fdx]] = [dy, f [dz, dx] + Lπ#(dz)(f)dx]

= f [dy, [dz, dx]] + Lπ#(dy)(f)[dz, dx] + Lπ#(dz)(f)[dy, dx] + Lπ#(dy)Lπ#(dz)(f)dx;

[dz, [fdx, dy]] = [dz, f [dx, dy]− (Lπ#(dy)(f)dx]

= f [dz, [dx, dy]] + Lπ#(dz)(f)[dx, dy]− Lπ#(dz)Lπ#(dy)(f)dx− Lπ#(dy)(f)[dz, dx].

Now it’s clear that everything cancels either by antisymmetry of the bracket (*), or jacobi
identity on exact 1-forms, plus the fact that

Lπ#(dy)Lπ#(dz) − Lπ#(dz)Lπ#(dy))(f) = Lπ#([dy,dz])(f).

�

Corollary 2.4 If D := imπ# is regular, then [Γ(D),Γ(D)] ⊂ Γ(D)

Proof: Let X, Y ∈ Γ(D), π#(α) = X, π#(β) = Y , then

[π#(α), π#(β)] = π#([α, β]) ∈ Γ(D).

So by the theorem of Frobenius, D is integrable. �

The above computation also follows from the general fact that the image of the anchor map
of a Lie algebroid integrates to a singular foliation in the sense of Stefan.

2.1 Splitting theorem

Let (M,π) be a Poisson manifold, with D the image of π# as defined above. At each x ∈ M ,
Dx is a symplectic vector space (see exercise below). Notice also that ker(π#

x ) ⊂ T ∗
xM has a Lie

algebra structure given by the ristriction of the bracket (*). We have also

[α, fβ] = f [α, β] + Lπ#(α)fα = f [α, β]
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since π#(α) = 0, being in the kernel. So the bracket operation can be localized to individual
tangent vector spaces.

We can also define Ann(Dx) := ker π#
x to be the Annihilator of the distribution, which termi-

nology is justified by the fact that π#(α) = 0 if and only if β(π#(α)) = 0 for all β.
In open subsets of M where π# is regular, i.e., of locally constant rank, D is integrable with

leaves L ↪→M , TL = D|L. ωx(Xf , Xg) = {f, g}(x).
In general, let x, y ∈ (M,π). Declare x y if ∃X1, . . . , Xr ∈ Γ(D), t1, . . . , tr ∈ R such that

X = φt1
X1
◦ . . . ◦ φtr

Xr
(y). Let Lx ⊂ M be the equivalence classes under this relation, which

form the set-theoretic leaves. We will sketch a proof of the fact that L ↪→ M are immersed
submanifolds with unique differential structure, TL = D|L and L is symplectic. Thus the image
of π# integrates to a singular foliation with symplectic leaves. This will follow from

Theorem 2.5 (Splitting Theorem, Weinstein, 83’) Let (M,π) be a Poisson manifold, x ∈ M .
Rankπx = 2k. Then there exists a neighborhood centered at x with coordinates

(q1, . . . , qk, p1, . . . , pk, y1, . . . , yl)

such that

π =
∑ ∂

∂qi
∧ ∂

∂pi
+ 1/2

∑
φij(y)

∂

∂yi
∧ ∂

∂yj
,

with φij(0) = 0. In other words, locally we can write M as a product M = N × S with
coordinate {yi} on N and {(qi, pi)} on S. dim M = n = 2k + l.

Proof: In the case of k = 0, rank(πx) = 2k and nothing is to be proved.
So assume k 6= 0, which implies that ∃f, g ∈ C∞(M) such that {f, g}(x) 6= 0.
Label p1 = g. Xp1(f) = {g, f}(x) 6= 0 hence Xp1(x) 6= 0. So we can find coordinates

(x1, . . . , xn) such that Xp1 = ∂
∂x1

for example by using the local immersion theorem applied to
the integral curve of Xp1 . This then leads to {p1, x1} = Xp1x1 = ∂

∂x1
x1 = 1. Label q1 = x1.

Note that Xp1 , Xq1 are linearly independent at x (which is an open condition), therefore linearly
independent in a neighborhood of x.

Use Frobenius to get a 2-dimensional foliation, i.e., find functions (y1, . . . , yn−2, yn−1, yn),
∂

∂yn−1
= Xp1 , Xq1 = ∂

∂yn
. Then

• dy1, . . . , dyn−2 are linearly independent.

• Xq1y1 = 0, Xp1yj = 0, j = 1, . . . , n− 2.

• dp1, dq1, dy1, . . . , dyn−2 are linearly independent.

These imply that (q1, p1, y1, . . . , yn−2) are local coordinates around x, and {q1, p1} = 1,
{q1, yj} = 0, {p1, yj} = 0.

Using Jacobi’s identity, {q1, {yi, yj}} = 0, {p1, {yi, yj}} = 0. (**)
Thus in the coordinates (q1, p1, y1, . . . , yn−2), Π has the form Π = ∂

∂q1
∧ ∂

∂p1
+1

2

∑
ij φij(y) ∂

∂yi
∧ ∂

∂yj
,

where φij only depends on y by equations (**).
If k = 1 we are done. Otherwise repeat the construction. �
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Consequences of the splitting theorem: Let x ∈ M and U = {(qi, pj , yl)} be a splitting chart
around x. Then we can endow smooth structure on the leaves L = {y = 0} by defining its
tangent space to be TL = D|L = Span{ ∂

∂qi
, ∂

∂pj
}.

Furthermore, from the form of Π we see that the leaves are naturally equipped with symplectic
structures induced from the Poisson structure on M . Thus we get in general singular symplectic
folation on M .

Example 2.6 on R2 = {(x, y)}, take Π = f(x, y) ∂
∂x ∧

∂
∂y , for any smooth f . As concrete

examples, take
(a) f = x2 + y2, and
(b) f = x.
The leaves have to be 0 or 2 dimensional since they are symplectic. And in fact the 0 dimen-

sional leaves correspond exactly to the zero locus of the function f . Thus in case (a) we get a
0-dimensional leaf at the origin, and the rest of R2 forms a single 2-dimensional leaf, whereas in
case (b) we have 0-dimensional leaves along the y-axis and two 2-dimensional leaves taking the
left and right open half-planes.

Example 2.7 let M = g∗ with the Lie Poisson structure. Then the symplectic distribution
D := Π#(T ∗M) is generated at each point by the Hamiltonian vector fields of linear functions
on g∗. Viewing u, v ∈ g ↪→ C∞(g∗), we have

Xuv(µ) = 〈µ, [u, v]〉 = 〈ad∗u(µ), v〉 according to the definition of Lie Poisson structure. But ad∗u
is the infinitesimal generator of the coadjoint action of G on g∗. Since v is a linear function on g∗,
we have Xuv(µ) = d

dt |t=0v(µ+ tXu) = v(Xu) = 〈Xu, v〉. So basically we have Xu(µ) = ad∗u(µ) =
d
dt |t=0Ad∗exp(tu)(µ), showing that Xu is tangent to the coadjoint orbit. Thus the symplectic leaves
are the coadjoint orbits.
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Exercise: let W = im(π#) = π#(V ∗) ⊂ V . Show there exists
a nondegenerate skew symmetric bilinear form ω ∈ Λ2W ∗ defined
by: for u, v ∈ W , ω(u, v) := π(α, β) where π#(α) = u, π#(β) = v
for arbitrary choice of α, β ∈ V ∗. Show this is well-defined. As a
consequence, Imπ# is even dimensional.
Conversely, given a vector space V , the data (W, ω) where W ⊂ V ,
ω ∈ Λ2W ∗ nondegenerate defines a Poisson structure. Moreover, π
is uniquely determined by (W, ω).
Conclusion: For a vector space V , there is a 1-1 correspondence
between constant Poisson structure and collection of pairs (W, ω)
where W ⊂ V is a subspace and ω is a symplectic form on W .
Solution:
suppose π#(α′) = u also. Then π#(α−α′) = 0 and π(α−α′, β) = 0
for all β; similarly for β. This proves ω is well-defined.
Next we show it’s nondegenerate. So suppose ω(u, v) = 0 for all
v ∈ W , then π(α, β) = 0 for all β ∈ W ∗. But this means π#(α) = 0
which equals u by definition.
Conversely, given the data (W, ω) we define a Poisson structure on
V as follows. Let α, β ∈ V ∗, then they restricts to elements in W ∗,
which we call ᾱ, β̄ ∈ W ∗. There we can take ᾱb, β̄b ∈ W , i.e., the
vectors corresponding to the covectors α, β under the symplectic iso-
morphism ω : W → W ∗. Now define π(α, β) := ω(ᾱb, β̄b), and
finally for functions f, g ∈ C∞(V ), define {f, g}(x) = π(dfx, dgx).
Clearly the structure is constant, because π is independent of x. It is
well-defined since we did not make any choice in the definition. An-
tisymmetry and linearity come for free. The Leibniz rule is a conse-
quence of the Leibniz rule for differential of functions, i.e., {f, gh} =
π(dfx, h(x)dgx + g(x)dhx) = h(x)π(dfx, dgx) + g(x)π(dfx, dhx) =
h{f, g} + g{f, h}. The Jacobi identity follows from the vanishing
of Jacobiator on every triple of standard basis covectors in V ∗. But
since π is a constant bivector on V , d(π(e∗i , e∗j )) = 0, hence each term
of the Jacobiator vanishes.
Now we show that the form defined on W from π coincides with ω if
π is constructed from ω by the above procedure. Define ω′(u, v) :=
π(α, β) with π#(α) = u and π#(β) = v as before. Then π(α, beta) =
ω(ᾱb, β̄b). Furthermore, every u ∈ W can be written in the form u =
ᾱb for some α ∈ W ∗. So it suffices to check ω′(ᾱb, β̄b) = ω(ᾱb, β̄b),
which further reduces to checking π#(α) = ᾱb.

By definition, ω(ᾱb, v) = α(v) for v ∈ W . If v# = iv(ω) and ṽ#

is any extension of v# ∈ W ∗ to V ∗, then we have ω(π#(α), v) =

v#(π#(α)) = π(α, ṽ#) = ω(ᾱb,
¯̃

v#
b

) = ω(ᾱb, v) = ᾱ(v), where for
the second to the last equality, we used the fact that extension fol-
lowed by restriction is the identity W ∗ and # followed by b is the
identity on W . Therefore ω(ᾱb, v) = ω(π#(α), v) for all v ∈ W .
Since ω is nondegenerate, ᾱb = π#α.
Finally, ω′(ᾱb, β̄b) = ω′(π#(α), π#(β)) = π(α, β) = ω(ᾱb, β̄b), as
desired.
Given (V, π) a constant Poisson structure, define ω on W = π#(V )
as before. We show π′ ∈ Λ2(V ∗) defined by π′(α, β) = ω(ᾱb, β̄b)
coincides with π. Again it suffices to show π#(α) = ᾱb, but this
follows from the computation above. So there is a 1-1 correspondence
between constant Poisson structures on V and symplectic subspace
(W, ω) ⊂ V .
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3 Symplectic leaves

Let (M,π) be a poisson manifold and D = π](T ∗M) ⊆ TM be the associated vector subbundle,
then we define a equivalence relation R on Mas follows:

xRy ⇐⇒ ∃X1, X2, ...., Xr ∈ Γ(D) s.t. y = φt1
X1
◦ ... ◦ φtr

Xr
(x) (3.1)

We define leaves (set theoretically) as the equivalence classes of this relation.

Definition 3.1 A plaque of a leaf L in a neighborhood U is a connected component of L in U .

Lemma 3.2 If L is a leaf of a poisson manifold (M,π) as above, then:
i)L has a unique C∞ structure of immersed connected submanifold L i−→M s.t. TL = D|L
ii) L has a natural symplectic structure determined by:

∀f, g ∈ C∞ {i∗f, i∗g} = i∗{f, g} (3.2)

Proof: Given x ∈ L pick Ux = Sx ×Nx (as in the splitting theorem).
We have

∀y ∈ Sx, π](T ∗
y M) = span{(∂/∂q1)y..., (∂/∂qk)y, (∂/∂p1)y, ..., (∂/∂pk)y} = TySx

so Sx ∈ L.
Take the set {open sets ofSx|x ∈ L} as basis of the topology of L (we will show that this topology
is 2nd countable) and {(Sx, (q1, ..., qn, p1, .., pn))|x ∈ L} as an atlas on it. This atlas defines a
C∞-structure of a manifold on L and

∀x ∈ L, TxL = Dx

Because this holds locally, so TL = D|L.
{Ux|x ∈ m} such that Ux as in the splitting theorem, is a covering for M .By paracompactness

of M we may select a locally finite, hence countable refinement like A = {Uxi}i∈I where I is
countable.

Now choose x ∈ L and Ux as in the splitting theorem. We want to show that the intersection
L ∩ Ux consists of at most countably many plaques of L. By definition L ∩ Ux consists of the
disjoint union of plaques of L. Let Px be the unique plaque containing x. We define an increasing
sequence P0 ⊂ P1 ⊂ · · · of collections of plaques inductively as follows. First P0 = {Px}. Next,
let k ≥ 1, and assume Pk−1 has been defined. For each Uxi of A we denote by P(Uxi) the
collection of plaques of L in Uxi that have a point with ∪Pk−1 in common. In addition, define
Pk to be the union of the sets P(Uxi) for i ∈ I. By induction, each set Pk is at most countable.
Therefore, the union P = ∪k≥1Pk is at most countable. Clearly L is the union of the sets from
P, then the intersection L ∩ Ux consists of countably many plaques of L. By using this you can
find a countable basis for the topology of L.

For showing the uniqueness of the manifold structure on L, let (Ux, ϕ) be as before, where ϕ =
(q1, ..., qn, p1, ..., pn, y1, .., yk) and π1, π2 are the projections on frist 2n and later k components,
respectivly. If Ĺ is another structure such that í : Ĺ → M is an immersion, then í−1(Ux) is
an open neighborhood of x in the new structure. Let O be the connected component of í−1(Ux)
containing x. Since L ∩ Ux consists of at most countably many plaques and π ◦ ϕ is constant
on plaques, it follows that the function π2 ◦ϕ ◦ í|O has at most countably many values. Since O
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is connected, it follows by the lemma below that the function π2 ◦ ϕ ◦ í|O has a constant value
y ∈ R. Hence, í maps O into a fixed plaque containing x, so into Sx.

The function π1 ◦ ϕ ◦ í|O is an injective immersion from O into R2n. For dimensional rea-
sons, it follows that π1 ◦ ϕ ◦ í|O is a diffeomorphism from O onto an open subset of R2n. We
conclude that ϕ ◦ í|O is a diffeomorphism from O onto an open subset of R2n×{y}. Hence, í is
a diffeomorphism from O onto an open neighborhood of x in Sx. So the map í−1 ◦ i from Ĺ to
L must be a diffeomorphism. �

Lemma 3.3 Let S be a non-empty connected subset of M . If S is at most countable, then S
consists of a single point.

Proof: For M = R the result is obvious. Let f ∈ C∞(M). Then f(S) is connected and a
at most countable subest of R. Hence f(S) consists of a single value. Since the functions from
C∞(M) separate the points of M , i.e. for every two points m1,m2 you can find f such that
f(m1) 6= f(m2), the results follows. �

Example 3.4 As in example 2.6 part (a), for (x, y) = (0, 0) the symplectic leaf is L = {(0, 0)}
with the trivial symplectic form and for (x, y) 6= (0, 0) the symplectic leaf is R/{0} with the
canonical symplectic form.

Recall: Let G be a Lie group, we have the following actions of G on g and g∗ where g is the
Lie algebra of G, and ξ ∈ g, µ ∈ g∗

• Adjoint action (g, ξ)→ Adgξ and infinitesimally for ξ ∈ g

ξ → ξg where ξg(u) = [ξ, u] ∈ g = T ∗
ug

• Coadjoint action (g, µ)→ (Adg)∗(µ) and infinitesimally for ξ ∈ g

ξ → ξg∗ where ξg∗(µ) ∈ g∗ = Tµg∗ s.t. ξg∗(µ)(u) =< µ, [u, ξ] >

Example 3.5 Let M = g∗ with the Lie-Poisson bracket on it, i.e. for f, g ∈ C∞(g∗)

{f, g}(µ) =< µ, [dµf, dµg] >

in particular for u, v ∈ g ⊆ C∞(g∗)

{f, g}(µ) =< µ, [u, v] >

now for µ ∈ g∗

Dµ = {π]
µ(ξ)|ξ ∈ g} = {< µ, [., ξ] >, ξ ∈ g} = {ξg∗(µ)|ξ ∈ g}

this vector space is the tangant space at the point µ of the coadjoint orbit through µ so the
symplectic leaf is a connected component of the coadjoint orbit through µ.

If O is a coadjoint orbit and X, Y ∈ TµO for µ ∈ O then

∃ξ, ξ′ ∈ g s.t X = ξg∗(µ) and Y = ξ′g∗(µ)

and
ω(X, Y ) = ω(ξg∗(µ), ξ′g∗(µ)) =< µ, [ξ, ξ′] >
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This form is called the ”KKS”(Kirillov-Kostant-Souriau) form on coadjoint orbits.
As a concrete example take G = SO(3) then we have (so(3), [., .]) ∼= (R3,×) by using the
following map  0 −v3 v2

v3 0 −v1

−v2 v1 0

→ (v1, v2, v3)

Identify so∗(3) with R3 via the natural pairing given by the Euclidean product. Let

A ∈ SO(3), ξ̂, η̂ ∈ so(3), ξ, η ∈ R3, µ̂ ∈ so∗(3), µ ∈ R3

Then we have AdA(ξ̂) = Âξ so

< Ad∗Aµ̂, ξ̂ >=< µ̂,AdAξ̂ >=< µ̂, Âξ >= µ.Aξ = AT µ.ξ =⇒ Ad∗Aµ̂ = AT µ

So the coadjoint orbit at point µ is Oµ = {AT µ|A ∈ SO(3)} which is the sphere in R3 with
radius ||µ||. We have also [ξ̂, η̂] = ξ × η, so

< ξ̂so∗(3)(µ̂), η̂ >=< µ̂, [ξ̂, η̂] >= µ.(ξ × η) = (µ× ξ).η

so
TµOµ = {ξ̂so∗(3)(µ̂)|ξ ∈ R3} = {ξ × µ|ξ ∈ R3}

Then for X, Y ∈ TµOµ we have

ωµ(X, Y ) = ωµ(ξ × µ, η × µ) = µ.(ξ × η)

Definition 3.6 Let (M, {., .}) be a poisson manifold, f ∈ C∞(M) such that {f, .} ≡ 0 is called
Casimir function.

Exercise: Check that if f is a casimir function, then the restriction
of f on every symplectic leaf is a constant function.
Solution: Let x ∈ L and Ux = Sx × Nx. Since Γ(D) =
span{Xq1 , ..., Xqk , Xp1 , ..., Xpk} on Sx, then {f, qi} = {f, pi} = 0
means that f is constant on Sx and since L is connected, f is con-
stant on L.

Exercise: If {µ1, µ2, µ3} is the standard basis for so(3) ∼= R3, we
can view µi as a function on g also, which sends every element to
the ith component. Then show that µ2

1 +µ2
2 +µ2

3 is casimir. We have
seen that the symplectic leaves are the level sets of this function.
Solution: Since (df)α ∈ g for every α ∈ g, it is enough to show that
< [Σ3

i=1µi(α).µi, µj ], α >= 0 for j = 1, 2, 3 and α ∈ g. Let j = 1

< [Σ3
i=1µi(α).µi, µ1], α > =< µ1(α)[µ1, µ1] + µ2(α)[µ2, µ1] + µ3(α)[µ3, µ1], α >

=< µ1(α).o− µ2(α)µ3 + µ3(α)µ2, α >

= −µ2(α).µ3(α) + µ3(α).µ2(α) = 0

and the similar calculation for j = 2, 3.
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Definition 3.7 Let (M,πM ) and (N,πN ) be poisson manifolds, then Ψ : M → N is a poisson
map if it preserves the poisson bracket i.e.

{Ψ∗f,Ψ∗g}M = Ψ∗{f, g}N where f, g ∈ C∞(N) (3.3)

Recall: Let (S, ω) be a symplectic manifold along with a symplectic, free and proper action of a
lie group G. As we saw before M = S/G is a poisson manifold and P : S → M/G is a poisson
map. We denote the associated infinitesimal action by ρ : g→ χ(S).

The action is Hamiltonian if there exists a momentum map J : S → g∗ such that:
1)ρ(v) = XJv where Jv(x) =< J(x), v > and XJv is the Hamiltonian vector field associated to
Jv

2)J is G−equivariant that is J(gx) = Ad∗gJ(x)

Lemma 3.8 J is a poisson map.
Proof: Let {x1, ..., xn, y1, ..., yn} be a canonical chart for S at point x ∈ S and {v1, ..., vk}

be a basis for g. View vi as a coordinate function on g∗ such that vi(µ) =< µ, vi >. For every
V,W ∈ g we have

{J∗V, J∗W}(x) = {JV , JW }(x)
= XJV

(JW )(x)
= ρ(V )(JW )(x)

=
d

dt
|t=0 < J(exp(tV ).x),W >

=
d

dt
|t=0 < Ad∗exp txJ(x),W >

=< J(x),
d

dt
|t=0Adexp txW >

=< J(x), [V,W ] >

= J∗({V,W})

Now for f, g : g∗ → R we have (all the calculations are pointwise)
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{J∗f, J∗g} = {f ◦ J, g ◦ J}

=
∑

i

(∂f ◦ J/∂xi · ∂g ◦ J/∂yi − ∂g ◦ J/∂xi · ∂f ◦ J/∂yi)

=
∑

i

(
∑

j

∂f/∂vj · ∂Jvj/∂xi ·
∑

k

∂g/∂vk · ∂Jvk
/∂yi

−
∑

j

∂g/∂vj · ∂Jvj/∂xi ·
∑

k

∂f/∂vk · ∂Jvk
/∂yi)

=
∑
k,j

∂f/∂vj · ∂g/∂vk(
∑

i

∂Jvj/∂xi · ∂Jvk
/∂yi − ∂Jvj/∂yi · ∂Jvk

/∂xi)

=
∑
k,j

∂f/∂vj · ∂g/∂vk · {Jvj , Jvk
}

=
∑
k,j

∂f/∂vj · ∂g/∂vk < J, [vj , vk] >

=< J, [
∑

j

∂f/∂vj · vj ,
∑

∂f/∂vk · vk] >

=< J, [df, dg] >= J∗{f, g}

�
Remark: If we have a Hamiltonian action of G on (s, ω) and µ is a regular value for the
momentum map J , i.e. J−1(µ) is a submanifold of S, then J−1(µ) is Gµ-invariant, where
Gµ = {g ∈ G, Adg(µ) = µ}.

Theorem 3.9 (Marsden-Weinstein) If the Gµ-action on J−1(µ) is free and proper then Mµ =
J−1(µ)/Gµ has a natural symplectic structure ωµ, defined by

P ∗ωµ = i∗ω (3.4)

J−1(µ) i−→ S
P ↓
Mµ

where i : J−1(µ)→ S is the inclusion map and P : J−1(µ)→Mµ is the projection map.
Proof: Let x ∈ J−1(µ) such that J(x) = µ. We want to show that

TxJ−1(µ) = (Tx(G.x))ω

By definition we have JX(x) =< J(x), X. > for x ∈ S and X ∈ g. So by using iXS
ω = −dJX

we have

TxJ−1(µ) = ker(TxJ : TxS → g∗)
= {v ∈ TxS| < (dJX)x, X >= 0,∀X ∈ g}
= {v ∈ TxS|ωx(XS(x), v) = 0,∀X ∈ g}
= {XS(x)|X ∈ g}ω = (Tx(G.x))ω
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Now we have
ker(i∗ω)x = TxJ−1(µ) ∩ (TxJ−1(µ))ω

= TxJ−1(µ) ∩ Tx(G.x)

We want to show that
Tx(Gµ.x) = ker(i∗ω)

Let v ∈ ker(i∗ω), then by the above, there is an X ∈ g such that

v = XS(x)

and
TxJ(XS(x)) = 0

Because J is equivariant, we have

TxJ(XS(x) =
d

dt
|t=0J(exp(tX).x)

=
d

dt
|t=0Ad∗(exp(tX).µ) = Xg∗(µ) = 0

Hence
ker(i∗ω)x = {XS(x) ∈ TxS|Xg∗(µ) = 0}

and by using Lie group theory, we get our claim. So the 2-form ωµ on Mµ induced by i∗ω is
nondegenrate. �

Lemma 3.10 Suppose that the action of G on (S, ω) is free and proper, then S/G is a poisson
manifold, and π : S →M = S/G is a poisson map. If the action is Hamiltonian then
1) J is a submersion.
2) π(J−1(µ)) = J−1(µ)/Gµ

3)J−1(µ)/Gµ is a leaf of S/G with the same symplectic structure. Proof: (1)Let x ∈ S be
given. We claim that TxJ is surjective if and only if the linear map

ρ : g→ TxS

X → XS(x)

is injective. Since the action is free, cleary this map is injective. So if we prove our claim, the
proof will complete. Let X ∈ g. We will show that the implication

XS(x) = 0→ X = 0 (3.5)

holds if and only if the tangent map TxJ is surjective. Indeed, because the form ω is nondegen-
erate, we have

XS(x) = 0

if and only if
ω(XS(x), v) = 0

for all v ∈ TxS. So
(dJX)x = 0
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consider the linear map
iX : g∗ → R

iX(η) :=< η,X >

then
(dJX)x = (d(iX ◦ J))x = iX ◦ TxJ

Hence (dJX)x = 0 iff iX is zero on the image of TxJ . Therefore, the implication (3.5) holds for
all X ∈ g iff TxJ is surjective. (2) Let x, y ∈ J−1(µ) and [x]G = [y]G then ∃g ∈ G such that
x = g · y. Then

µ = J(x) = J(g · y) = AdgJ(y) = Adg(µ)⇒ g ∈ Gµ

so [x]Gµ = [y]Gµ. Therefore, the map [x]Gµ 7→ [x]G is injective and since it is clearly surjective
we have the claim. (3) For every x ∈ S we have the following diagram, where Λ is the induced
poisson bivector.

T ∗
xS

ω−1

−→ TxS
π∗x ↑ ↓ Txπ

T ∗
π(x)S/G

Λ]

−→ Tπ(x)S/G

(3.6)

Let α ∈ T ∗
π(x)S/G, for every v ∈ Tx{G.x} we have π∗(α(v)) = 0 so ω−1(π∗(α)) ∈ (Tx{G.x})ω.

Since TxJ−1(µ) = (Tx{G.x})ω so Txπ(ω−1(π∗(α))) ∈ Tπ(x)J
−1(µ)/Gµ and for every w ∈

Tπ(x)J
−1(µ)/Gµ you can come back and find a v so Λ](T ∗

π(x)S/G) = Tπ(x)J
−1(µ)/Gµ. Since

π and P act similarly on J−1(µ), the symplectic structures are the same also. �
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