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Abstract

In these lectures we study symplectic realizations of Poisson mani-

folds. Using covariant geometry we are allowed to construct an explicit

symplectic realization for any Poisson manifold. We relate symplectic

realizations to the theory of symplectic groupoids. Using symplectic

groupoids the existence of symplectic realizations translates into an inte-

grability problem in Lie theory. Furthermore, we give some applications

of symplectic groupoids to reduction procedures.

1 Symplectic Realizations

Given a Poisson manifold (M;�), we may consider the following two questions:

1. Can we �nd a symplectic manifold (S;!) and a surjective submersion

� : (S;!)! (M;�) which is a Poisson map?

2. If M is a di�erentiable manifold and � : (S;!)! M a di�erentiable map

from a symplectic manifold (S;!) to M, can we �nd a Poisson structure

on M such that � becomes a Poisson map?

As we have seen, the second question has an a�rmative answer, provided by

the following result:

Theorem 1.1. Let (S;!) be a symplectic manifold and � : S ! M a surjective

submersion with connected �bers. Consider the foliation F of S de�ned by

the �bers of � and take F? the symplectic orthogonal of F . The following

conditions are equivalent:

i) There exists a Poisson structure on M such that � is a Poisson map.

ii) F? is an integrable distribution in the sense of Frobenius.
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2 1 SYMPLECTIC REALIZATIONS

The aim of this section is to give an a�rmative answer to the �rst question.

First of all, note that given a di�erentiable manifold M there is a canonical

symplectic manifold associated to it, in fact the cotangent bundle T�M carries

a natural symplectic structure given by the exterior derivative of the tauto-

logical 1-form on T�M. Hence, in order to answer the �rst question, it is

natural to construct a symplectic realization of a Poisson manifold in terms

of its cotangent bundle. We outline the main steps to construct symplectic

realizations.

First, we construct a symplectic structure ! on an open neighborhood U of the

zero section in T�M, such that the symplectic orthogonal of the foliation of U

by �bers of pr : U ! M is involutive. Now the previous theorem guarantees

the existence of a Poisson structure �0 on M such that pr becomes Poisson.

Finally we prove that the Poisson structures �0; � coincide. In order to do this,

we need some covariant geometry.

De�nition 1.2. A Poisson curve in (M;�) is a curve a : I � R! T�M which

satis�es

�](a(t)) = 
0a(t)

for all t 2 I, with 
a = pr �a : I ! M the projected curve in M.

When I = [0; 1] we are allowed to talk about Poisson paths. Set x0 = 
a(0)

and x1 = 
a(1). De�ne the set Px0;x1(M;�) = fPoisson paths from x0 to x1g.

It is possible to de�ne the concatenation of Poisson paths

Px1;x2(M;�)� Px0;x1(M;�)! Px0;x2(M;�) : (a0; a) 7! a0 � a

Exercise 1.1: Prove that for each x 2 M the symplectic leaf

through x coincides with the set of all points y 2 M that can

be reached by a Poisson path starting at x .

Remark 1.3. The curve a : I ! T�M in general is not completely determined

by 
a. However, if (M;�) is a symplectic manifold, then a is determined by


a via a = i
0a!.

1.1 Poisson Paths and Contravariant Connections

Let (M;�) be a Poisson manifold and p : E ! M a vector bundle over M.

De�nition 1.4. A contravariant connection on E is a bilinear map

r : 
1(M)� � (E)! � (E) : (�; s) 7! r�s

satisfying the conditions:
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i) rf �s = fr�s

ii) r�f s = fr�s + (L�](�)f )s

An example of a contravariant connection is given by the following construc-

tion: If r is a connection on E, then (�; s)! r�](�)(s) de�nes a contravari-

ant connection on E.

Given a 2 Px0;x1(M;�) and u : [0; 1]! E a path above 
a, we have an induced

path rau : [0; 1]! E above 
a. We use local coordinates to obtain a formula

for the path de�ned above. If fe1; :::; erg is a local frame for E over U � M,

r is determined by

r�ei =

r∑
j=1

�(X j
i )ej ;

where (X j
i ) is a r � r matrix of vector �elds on U. Assume that the path u in

this coordinate system is given by

u(t) =

r∑
i=1

ui(t)ei ;

then by the properties of a contravariant connection, we obtain

rau(t) =

r∑
j=1

duj

dt
ej +

r∑
j;i=1

ha(t); X j
i iu

i(t)ej :

As in the Riemannian case, in contravariant geometry there exists the notion

of parallel transport: For a 2 Px0;x1(M;�) choose a point on the �ber e0 2 Exo

and look at u : [0; 1]! E above 
a such that

rau = 0

u(0) = e0:

This problem has a unique solution u = ua;e0 . This allows us to de�ne the

parallel transport T t
a : Ex0 ! E
a(t) in a natural way.

Remark 1.5. As t = 1, the parallel transport induces an \action"

Px0;x1(M;�)� Ex0 ! Ex1 : (a; e0) 7! ua;e0(1); (1.1)

with Ex the �ber of E over a point x 2 M.

Exercise 1.2: Describe the parallel transport of the concate-

nation of Poisson paths? Write the connection r in terms of

parallel transport. Remember that in the Riemannian case it

is possible to recover a connection via parallel transport.
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1.2 Poisson Paths and Symplectic Realizations

Consider a symplectic manifold (S;!) and a Poisson manifold (M;�).

De�nition 1.6. Let a : I ! T�M be a Poisson curve. A lift of a along a Poisson

map � : (S;!)! (M;�) is a curve u : I ! S such that �(u(t)) = 
a(t) and

iu0! = ��(a(t)).

Remark 1.7. Look at the special case of a Poisson curve a(t) = df
a(t) induced

by a smooth function f 2 C1(M). If u : I ! S is a lift of a along a Poisson

map � : S ! M, then d�(u(t)) : Tu(t)S ! T
a(t)M, so we can consider the

cotangent path ��(a(t)) on S. The second property of the lift u becomes

iu0! = d��f . Therefore the derivative of the lift of u at t 2 I is just the

Hamiltonian vector �eld of the induced map ��f , i.e.

u0(t) = X��f (u(t))

It is important to highlight that lifts along Poisson maps are not always globally

de�ned. However, local lifts are always well de�ned: For every t0 2 I and

y0 2 S such that �(y0) = 
a(t0), there exists a u : J ! S de�ned on

some open interval J � I containing t0 with u(t0) = y0 and u is a lift of

ajJ along �. Moreover, given a Poisson path a 2 Px0;x1(M;�) and y0 2 S

such that �(y0) = x0, there exists a maximal lift of a along � starting at x0,

u : Imax ! S with 0 2 Imax . Therefore local existence and local uniqueness of

lifts always hold. The natural question now is: Find a condition on the Poisson

map such that lifts along it will be globally de�ned.

De�nition 1.8. A Poisson map � : (S;!) ! (M;�) is called complete if

for every f 2 C1(M) the induced hamiltonian vector �eld X��f 2 X(S) is

complete.

Exercise 1.3: Show that a Poisson map � is complete if

and only if for every Poisson path a 2 Px0;x1(M;�) and y0 2

��1(x0) the local lift of a through y0 is de�ned on the entire

interval [0; 1].

Note that for a complete Poisson map � : (S;!) ! (M;�) we can de�ne a

natural \action" conform (??) by

Px0;x1(M;�)� ��1(x0)! ��1(x1) : (a; y0) 7! ua;y0(1)

Exercise 1.4: Prove that (a; �) : ��1(x0) ! ��1(x1) is a

di�eomorphism.
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1.3 Geodesic Flow

Given a Poisson manifold (M;�) with a Riemannian metric (�; �) on its cotan-

gent bundle T�M we can look at contravariant connections r with the prop-

erties:

i) r is compatible with the metric, in the sense that

(r��; 
) + (�;r�
) = L�](�)(�; 
)

ii) r is torsion free

r�� �r�� = [�; �]�

for all �; �; 
 2 
1(M).

As in the Riemannian case, there exists a unique contravariant connection on

(M;�) satisfying the properties above. This connection will be called con-

travariant Levi-Civita connection.

Now we look for a local expression for the contravariant Levi-Civita connection.

If (x1; :::; xn) is a coordinate chart, r is determined by smooth functions � k
ij

where 1 � i ; j � k , de�ned as follows

rdxidxj =

n∑
k=1

� k
ij dxk

De�nition 1.9. A Poisson geodesic with respect to r is a Poisson curve a

with the property that raa = 0.

Locally, assume that the Poisson curve a can be written as

a(t) =

n∑
i=1

ai(t)(dxi)
a(t):

Then the geodesic condition becomes

dak(t)

dt
= �

n∑
i ;j=1

� k
ij (
a(t)) a

i(t) aj(t): (1.2)

Writing out

� =

n∑
i ;j=1

�i j
@

@xi
^

@

@xj
;

the condition that a is a Poisson curve becomes

d
 ia(t)

dt
=

n∑
j=1

�i j(
a(t)) a
j(t): (1.3)

Hence, equations (??) and (??) are the local equations of a Poisson geodesic.
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Remark 1.10. The Poisson geodesic equations have a unique maximal solution

provided we prescribe (a(0); 
a(0)). So, for x 2 M and � 2 T �xM we �nd a

maximal geodesic a� : I ! T�M such that a�(0) = �.

Now we proceed to de�ne the geodesic 
ow in contravariant geometry. In

order to do that, consider D = f(�; t) 2 T�M�R j a�(t) is de�nedg. This set

is called the domain of the geodesic 
ow �t(�) = a�(t). The geodesic vector

�eld V 2 X(T�M) is obtained by glueing

Vx;y =

n∑
i ;j=1

�i j(x)y
j @

@xi
�

n∑
i ;j;k=1

� k
ij (x)y

i @

@yk
;

where (x; y) 2 R2n. By construction we have D = D(V) and �t is the 
ow

of the geodesic vector �eld V.

Proposition 1.11. Let r 2 R� and consider the �berwise multiplication mr :

T�M ! T�M. Then

1. (�; t) 2 D if and only if (mr (�);
1
r t) 2 D.

2. �r t(�) = m 1

r
(�t(mr (�))) for every (�; r t) 2 D.

Proof. If (a; 
) is a solution of equations (??) and (??) with 
(0) = x and

a(0) = v , then


̂(t) = 
(r t)

â(t) = ra(r t)

de�nes a solution of (1:1) and (1:2) with 
̂(0) = x and â(0) = rv .

Note that the second property in the proposition above says that �t and �r t

are conjugated by the �berwise multiplication mr . That is, if we know �1, we

could construct �t .

Corollary 1.12. The set D1 = f� 2 T�M j (�; 1) 2 Dg � T�M is an open

neighborhood of the zero section and the following holds:

1. For every � 2 D1 there exists a unique geodesic a 2 Px0;x1(M;�) with

a(0) = �.

2. (�; t) 2 D if and only if mt(�) 2 D1.

3. �t(�) = m 1

t
(�1(mt(�))) for every (�; t) 2 D.
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Alluding to the de�nition in the Riemannian case, we introduce the notion of

contravariant exponential map de�ned by

exp : pr ��1 : T�M ! M

Recall that in the Riemannian case the exponential map is a di�eomorphism

on a neighborhood of 0 2 TxM. In the contravariant setting the picture is

quite di�erent:

Proposition 1.13. For every x 2 M consider the exponential at x de�ned by

expx := exp jT�

xM
: T �xM ! M. Then the following holds:

(d expx)0x = �]:

In particular, in the symplectic case, expx maps a neighborhood of zero in T�xM

di�eomorphically into a neighborhood of x in M.

Proof. The proof is just a computation. Note that � = d
dt

∣∣
t=0

t� is mapped

to d
dt

∣∣
t=0

exp(t�) via (d expx)0x . On the other hand

d

dt

∣∣∣∣
t=0

exp(t�) =
d

dt

∣∣∣∣
t=0

pr ��t(�)

= �](�0(�))

= �](�):

Finally, we give an a�rmative answer to the �rst main question proposed in

the beginning of this section:

Theorem 1.14. Every Poisson manifold (M;�) admits a symplectic realiza-

tion. More precisely, let r be a contravariant connection on T�M and consider

its geodesic 
ow �t : T�M ! T�M. Then


 =

∫ 1

0
(�t)�!can dt;

when restricted to a small enough neighborhood U � T�M of the zero section,

becomes a symplectic structure and pr jU : (U;
)! (M;�) is a Poisson map.

Proof. We highlight the main ideas of the proof. Look at 
0x and write it as

a matrix (
� I

�I 0

)
This shows that 
0x is nondegenerate, thus there is a neighborhood U where


jU is nondegenerate. The derivative of the projection (d pr)0x sends the
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bivector induced by 
0x into �x . Now look for a Poisson structure �0 on

M such that pr jU : U ! M is a Poisson map. By Theorem ??, such �0

exists if and only if F? � T�U is involutive, where F = ker(d pr). Actually

F? = ker(d�1) and this implies the integrability of F?. The rest of the proof

is to check that �0 = �.

Example 1.15. Let G be a Lie group with Lie algebra g. Consider the left

translation map L : T�G ! g� de�ned by L(�) = L�g(�) = Lg�1(�) for every

� 2 T �gG. It is easy to check that L becomes a Poisson map when T�G is

equipped with the canonical symplectic structure and g� has the linear Poisson

structure. Thus the cotangent bundle of a Lie group is a symplectic realization

of the dual of its Lie algebra.

There exists another approach to symplectic realizations of Poisson manifolds,

using the notion of symplectic groupoid. All the basic concepts related to Lie

groupoids and symplectic groupoids will be introduced in the next section.

2 Symplectic groupoids

Motivation We have encountered the following two problems:

1. If we have a Poisson manifold (M;�), is there a symplectic manifold

(S;!) and a surjective submersion � : S ! M such that this map is

Poisson?

2. For a Poisson manifold (M;�), we can construct the Lie algebroid T�M.

Its Lie algebra structure is de�ned in terms of the Poisson bivector � via

[�; �]� = L�](�)� � L�](�)�� d(�(�; �)):

Given this Lie algebroid, what is the corresponding Lie groupoid?

It turns out that both of these questions are related to the topic of symplectic

groupoids.

2.1 Lie groupoids and symplectic groupoids

De�nition 2.1 (Lie groupoid). A Lie groupoid is a pair of smooth manifolds

(G;M) and surjective submersions s; t : G ! M with:

1. A multiplication m on G(2) = G �M G = f(g; h) 2 G � G j s(g) = t(h)g,
that is given by

m : G �M G ! G : (g; h) 7! g � h;
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Figure 1: The multiplication m(g; h) = gh projected to M.

Figure 2: The multiplication m(g; h) = gh in G.

2. An embedding " : M ,! G; and

3. An inverse i : G ! G.

The source map s and target map t satisfy the following relations:

s(g � h) = s(h) t(g � h) = t(g)

i(g) � g = "(s(g)) g � i(g) = "(t(g))

g � "(s(g)) = g "(t(g)) � g = g

(g � h) � k = g � (h � k) (whenever de�ned).

From now on we will drop the dot denoting multiplication and assume that M

is embedded in G (which is no restriction since "(M) ' M), so that we can

omit " in the equations.

De�nition 2.2 (Symplectic groupoid). A Lie groupoid G � M equipped with

a symplectic structure ! 2 
2(G) is called a symplectic groupoid if

� =
{
(g; h;m(g; h))

∣∣ (g; h) 2 G(2)} � G � G � G (2.1)

is a Lagrangian submanifold with respect to the symplectic form ! � ! 	 !

on G � G � G.

The statement that � is a Lagrangian submanifold means that it's dimension

is 3
2 dimG, and it is isotropic, that is: the symplectic form !�!	! restricted

to T� � T� is zero.
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The opposite sign of the symplectic form in G arises in the same way as

for symplectic transformations: Let � : (S;!S) ! (X;!X) be a symplectic

transformation between two symplectic manifolds. Then !S = ��!X and we

see that � := f(s;�(s)) j s 2 Sg is a Lagrangian submanifold of S � X with

respect to the symplectic form !S 	 !X 2 
2(S �X) by

!S 	 !X((V; d�(V )); (V
0; d�(V 0))) = !S(V; V

0)� !X(d�(V ); d�(V
0))

= !S(V; V
0)���!X(V; V

0)

= !S(V; V
0)� !S(V; V

0) = 0;

where (V; d�(V )) and (V 0; d�(V 0)) are abitrary elements of T�.

Proposition 2.3. The subspace � as de�ned in equation (??) is isotropic if

and only if

m�! = pr�1 ! + pr�2 !; (2.2)

where pr1;2 denotes the projection pr1;2 : G(2) ! G to the �rst resp. second

component of G(2).

Proof. Let (V;W ); (V 0;W 0) 2 TG(2), so that we have the corresponding ele-

ments (V;W; dm(V;W )) and (V 0;W 0; dm(V 0;W 0)) in T� , where we have omit-

ted the basepoint. Then we have the equality

! � ! 	 !((V;W; dm(V;W )); (V 0;W 0; dm(V 0;W 0)))

= !(V; V 0) + !(W;W 0)� !(dm(V;W ); dm(V 0;W 0))

= (pr�1 ! + pr�2 ! �m�!) ((V;W ); (V 0;W 0))

From this we immidiately see that the symplectic form !�!	! on � vanishes

precisely when pr�1 ! + pr�2 ! �m�! = 0, which proves the proposition.

Remark 2.4. If � is isotropic, we can derive that it's dimension is 3
2 dimG.

Hence � is Lagrangian and G � M symplectic if we are in the situation of

proposition ??.

Remark 2.5. A 2-form ! 2 
2(G) satisfying equation (??) is called multiplica-

tive.

Exercise 2.1: Suppose G is a Lie group. Show that the only

multiplicative 2-form is the zero form.
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Some examples of symplectic groupoids

1. Let (M;!) be a symplectic manifold. Then M �M � M with the sym-

plectic form !	! is a symplectic groupoid. The fundamental groupoid

of M is locally isomorphic to this one.

2. For any manifold M, T�M � M with the canonical symplectic form and

source and target map s; t = pr1 : T�M ! M the projection onto the

base space is a symplectic groupoid. Multiplication in the groupoid then

simpli�es to �berwise addition in the cotangent space.

3. For a Lie group G with Lie algebra g, the action groupoid T�G � g� with

the canonical symplectic form on the cotangent bundle is symplectic. We

have G = T�G ' G � g�, with source map s : G ! g� projection onto

the second component, and target map t : G ! g� : (g;X) 7! gX the

coadjoint action.

A groupoid like T�G is called a double groupoid, because both T�G � g� and

T�G � G are groupoids. For any groupoid G, T�G is a symplectic groupoid.

2.2 Properties of Symplectic groupoids

Let G � M be a symplectic groupoid with symplectic form ! 2 
2(G). This

groupoid has the following properties:

Proposition 2.6. M
"
,! G is a Lagrangian embedding, i.e. "(M) is a Lagrangian

submanifold of G.

Proof. Let x 2 "(M) and X; Y 2 Tx"(M). Then (x; x; x) 2 � because

m(x; x) = x and so (X;X;X); (Y; Y; Y ) 2 T(x;x;x)� . The fact that � is

Lagrangian gives

0 = ! � ! 	 !((X;X;X); (Y; Y; Y ))

= !(X; Y ) + !(X; Y )� !(X; Y )

= !(X; Y ):

(2.3)

Because s; t : G ! M are surjective submersions, the dimension of G(2) is

equal to 2 dimG � dimM. By construction, dim � = dimG(2) and since � is

Lagrangian in G � G � G, we obtain the equality 3
2 dimG = 2dimG � dimM

and we see that the dimension of M is half the dimension of G.

From equation (??) it follows that M � G is isotropic and since it's dimension

is half that of G, it follows that M is Lagrangian.



12 2 SYMPLECTIC GROUPOIDS

Proposition 2.7. The inversion i : G ! G is an antisymplectomorphism, i.e.

i�! = �!.

Proof. Remember that m(g; i(g)) = t(g), so we may choose a path 
 :=

(g; i(g); t(g)) 2 � . Let (X; i�(X); dt(X)); (Y; i�(Y ); dt(Y )) 2 T
� . Using

that � is isotropic, this gives

0 = ! � ! 	 !((X; i�(X); dt(X)); (Y; i�(Y ); dt(Y ))

= !(X; Y ) + !(i�(X); i�(Y ))� !(dt(X); dt(Y ))

= !(X; Y ) + !(i�(X); i�(Y ))

= (! + i�!)(X; Y );

where !(dt(X); dt(Y )) vanishes, because t is invariant under right multiplica-

tions.

Proposition 2.8. For any g 2 G, ker dgs = (ker dgt)?! .

Proof. Another way of phrasing the proposition is that the tangent space of

the s-�ber is (symplectically) orthogonal to the tangent space of the t -�ber
at g. We will show this proposition by taking two paths in the �bers and show

that the tangent vectors to these paths are orthogonal.

Let c : (��; �) ! G; c(0) = c0, such that s(c(�)) is constant over time. By

the groupoid property i(c(�)) � c(�) = s(c(�)) it follows that

(i(c(�)); c(�); s(c0))

is a path in � . It's tangent vector at � = 0 is given by (�; X; 0), where X is

the vector tangent to c(�) at � = 0 and the �rst slot does not interest us.

Similarly take a path d : (��; �)! G; d(0) = d0 such that t(d(�)) is constant.

Then (i(d0); d(�); i(d0) � d(�)) is a path in � by construction and it's tangent

vector at zero is given by (0; Y;�), with Y the tangent vector of d(�) at

� = 0.

Suppose that the tangent vectors X; Y have the same basepoint, which is the

case whenever c0 = d0. Then we infer from the isotropy of � that

0 = ! � ! 	 !((�; X; 0); (0; Y;�))

= !(�; 0) + !(X; Y )� !(0;�)

= !(X; Y )

Since the paths were chosen arbitrarily in the �bers, it follows that the tangent

spaces thereof are orthogonal.

A property of symplectic orthogonal spaces is that dimF?! + dimF = dimE

for any linear subspace F of E. From proposition ?? it follows that dimM =
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1
2 dimG, whereas the kernels of s and t have dimension dimG � dimM =
1
2 dimG. We �nd that dim ker dgs = dim (ker dgt)?! , and since ker dgs �

(ker dgt)?! and the kernels are closed linear spaces, this completes the proof.

Corollary 2.9. fs�f ; t�gg = 0 for all f ; g 2 C1(M).

Proof. For any surjective submersion p : S ! M we have the identity

(ker dp)?! =
{
Xp�f

∣∣ f 2 C1(M)
}
:

By the previous proposition, it follows that ker ds = fXt�f j f 2 C1(M)g and

similarly for ker dt . By proposition ?? the elements of these spaces are sym-

plectically orthogonal. The identity

fs�f ; t�gg = !(Xs�f ; Xt�g) = 0

then completes the proof.

Proposition 2.10. There is a unique Poisson structure on M such that t :

G ! M is a Poisson map, up to isomorphisms. Moreover, s : G ! M is

anti-Poisson.

Proof. The symplectic orthogonal at any point t�1(m) over m 2 M is the

s-�ber, which is integrable. Since t is a surjective submersion, the symplectic

structure on G completely determines the Poisson structure onM. The second

statement follows from the fact that s = t � i , where t is a Poisson map and

i an antisymplectomorphism.

This proof uses a theorem from a previous lecture. F

2.3 Integrability in Poisson geometry

In this section we will study the following problem:

Given a Poisson manifold (M;�), can one �nd a symplectic groupoid G � M

such that the target map t is a Poisson map?

Lie has studied this question in the linear case, which resulted in Lie's third

theorem. Instead of integrating a Lie algebra to a Lie group, he has solved

this problem by constructing a cotangent bundle out of the dual of the Lie

algebra.

Add reference to: Lie. F
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We have seen three examples (see section ??, page ??) where we could inte-

grate a Poisson manifold M:

1. The Poisson manifold itself is a symplectic manifold: G = M �M;

2. The Poisson bracket is zero: G = T�M; and

3. The Poisson structure is a Lie-Poisson structure: M = g� and G = T�G.

Proposition 2.11. Let (M;�) be a Poisson manifold, G � M a symplectic

groupoid and A = Lie(G) a Lie algebroid over M. Then

� : A! T�M : v 7! iv!jTM

is an isomorphism of Lie algebroids.

Proof. We have A = ker ds jM , so the sections of A are right invariant vector

�elds. Remember that s : G ! M is a surjective submersion, so that

ker ds \ TM = f0g:

If �(v) = 0, then v 2 TM?! = TM, and v 2 ker ds jM , so v = 0. It follows

that � is an isomorphism of vector bundles.

By the results of the following exercise, we may see u; v as right invariant

vector �elds and write iu! = t��, iv! = t��. This gives

�([u; v ]) = i[u;v ]!

= Lu iv! � ivLu!

= Lu iv! � iv (iud! + diu!)

= Lu iv! � ivdiu!

= Lu iv! � Lv iu! + div iu!

= Lu(t��)� Lv (t��) + d(!(u; v))

(2.4)

Since t is a Poisson map, t�
 = iX! implies that dt(X) = �](
), so we have

�([u; v ]) = t�
(
L�](�)� � L�](�)�� d(�(�; �))

)
= t�[�; �]�: (2.5)

This shows that � is an isomorphism of Lie algebroids.

Exercise 2.2: Show that X 2 X(G) is right invariant (and

therefore can be identi�ed with a section of A) if and only if

iX! = t�� for some � 2 
1(M):

Hint: Use that vector�elds are Hamiltonian with resepect to

s� along the �bers of t .
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Applications of symplectic groupoids Symplectic groupoids showed up in

the quantization of Poisson manifolds. We are mostly concerned with sym-

plectic reduction. In the linear case, we have a Lie algebroid T�G � g�, and a

moment map J : (S;!) ! g�. Symplectic reduction gives orbits J�1(�)=G�,

� 2 g�.

Add reference to: Marsden-Weinstein F

In the nonlinear case, we have a symplectic groupoid G � (M;�), a Poisson

map J : (S;!)! (M;�) and a symplectic action of G on (S;!). For x 2 M,

we may constider J�1(x)=Gx , which is symplectic by the isotropy of G.

Jst Jst

3 Construction of symplectic groupoids

In the previous section we have seen a di�erent approach to symplectic real-

izations of Poisson manifolds via symplectic groupoids and how this problem

translates into an integrability problem in Lie theory. In this section we are

interested in the construction of symplectic groupoids and how to relate this

kind of objects to reduction procedures.

Recall that a symplectic groupoid is a Lie groupoid G over a smooth manifold

M, together with a symplectic form ! 2 
2(G) which is multiplicative in the

sense that the multiplication map m : G(2) ! G has a Lagrangian graph in

G � G � �G. We summarize the main properties of symplectic groupoids:

1. The identity section � : M ! G is a Lagrangian embedding and the

inversion map i : G ! G is an antisymplectomorphism.

2. ker(dt) = ker(ds)? that is, s-�bers and t -�bers are symplectic orthogonal

to one another.

3. There exists a unique Poisson structure on M such that t : G ! M is

a Poisson map. This implies that s : G ! M is an anti-Poisson map.

Note that this says that t : G ! M is a symplectic realization.

We have seen that every Poisson manifold (M;�) has a naturally associated

Lie algebroid, given by (T�M;�]; [�; �]�) where the bracket [�; �]� is the natural

bracket on 1-forms. We reconsider the questions formulated in the previous

section:
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1. Given a Poisson manifold (M;�), is there a symplectic groupoid (G; !)

over M inducing � as in item ???

2. Is there a Lie groupoid integrating (T�M;�]; [�; �]�)?

The answer to the �rst question in general is no. There exist obstructions

to solve this problem, for more details see [?]. If this question does have an

a�rmative answer, then the asnwer to the second question is yes. In fact, if

(G; !) is a symplectic groupoid over M, we consider M as a Poisson manifold

with the Poisson structure induced by G. If we denote by A the Lie algebroid

of G, then by proposition ?? this algebroid is isomorphic to the algebroid T�M

and we are able to answer the second question.

3.1 Construction of symplectic groupoids

Now we outline how to construct symplectic groupoids. First of all, the sim-

plest Lie algebroid we can consider is TM, where M is a smooth manifold.

This algebroid is integrated by the pair groupoid M �M. If M is connected,

we can consider the fundamental groupoid �(M). In general, given a Lie alge-

broid A over M, the fundamental groupoid is given by the quotient space �(A)

of A-paths modulo A-homotopy. This quotient is not necessarily smooth, but

if it is, this object is what we are looking for.

In the special case of a Poisson manifold (M;�), we would like to integrate

the Lie algebroid (T�M;�]; [�; �]�). In this case, A-paths are exactly Poisson

paths and we can look at �(A), the quotient space of Poisson paths modulo

Poisson homotopy. Let us consider the space P (M) of all paths in M, and

look at T�P (M) as a symplectic Banach manifold. This Banach manifold can

be viewed as the set ~P (T�(M)) of all paths in T�M and it contains the set of

Poisson paths P (T�M). De�ne P0

1(M) = f�t 2 
1(M) j t 2 [0; 1]; �0 =

�1 = 0g and consider the map J : ~P (T�(M))! (P0

1(M))� de�ned by

hJ(a); �ti =

∫ 1

0

〈
d

dt
p(a(t))� �](a(t)); �t(p(a(t)))

〉
dt: (3.1)

Note that the zero level set of J coincides with the set of all Poisson paths

in M. In this direction we state a theorem that provides a construction of

symplectic groupoids out of T�M:

Theorem 3.1 (Cattaneo-Felder). We have an induced Hamiltonian action of

P0

1(M) on ~P (T�M) ' T�(P (M)) and the orbits correspond to cotangent

homotopy. Moreover the Marsden-Weinstein quotient space

G = ~P (T�M)==P0

1(M)

is a symplectic groupoid whenever it is smooth.
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3.2 Symplectic reduction

Now we study the problem of symplectic reduction using symplectic groupoids.

De�nition 3.2. A Lie groupoid G � P acts on a manifold M together with

a map J : M ! P if there exists a map a : G �J M ! M where G �J M =

f(g; y) j s(g) = J(y)g, satisfying the following properties:

i) J(gy) = t(g)

ii) (gh)y = g(hy)

iii) �(J(y))y = y .

The map J : M ! P in the de�nition above is called a moment map of the

action of G on M. A smooth manifold with an action of a Lie groupoid G is

called a G-space.

Example 3.3. If G is Lie groupoid over P , then G acts on itself by left multi-

plication, with moment map t : G ! P .

Example 3.4. If G is a Lie groupoid over P , then G acts on P with moment

map given by Id : P ! P .

Given a G-space M, we have a moment map J : M ! P and we have seen

in the example above that P is a G-space in a natural way. This follows

immediately from the de�nitions that the moment map J is equivariant.

Example 3.5. Consider a Lie group G acting on a manifold P and take G the

transformation groupoid associated to this action. Then G-spaces are exactly

G-spaces together with an equivariant map J : M ! P .

With this notion of action, we look at a very special case of Lie groupoids

actions, that is given by symplectic groupoids. Consider a symplectic manifold

M which is a G-space with moment map J : M ! P .

De�nition 3.6. The action of G on M is called symplectic if the graph

� = f(g; y ; gy) j s(g) = J(y)g

is a Lagrangian submanifold of G �M � �M.

In this case we say that M is a symplectic G-space. As in the usual case of G-

actions on a symplectic manifold, given a symplectic G-space, the moment map

J : M ! P is a Poisson map, where P has the Poisson structure induced by G.

In the context of symplectic actions of Lie groupoids, we have the following

result analogus to the usual reduction procedure for symplectic actions of Lie

groups:
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Theorem 3.7 (Mikami-Weinstein). Let M be a symplectic G-space with mo-

ment map J : M ! P . If x 2 P is a regular value for J, then there exists a

unique symplectic structure !x on J�1(x)=Gx such that

p�!x = i�!;

where p : J�1(x)! J�1(x)=Gx is the canonical projection and i : J
�1(x)! M

is the inclusion map.


