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1. General Vector Spaces

1.1. Definition and Examples. We have seen that a vector v in Rn is represented

by a column matrix v =


v1

v2

...
vn

. Also on Rn we have two operations (i) addition:

u + v =


u1

u2

...
un

 +


v1

v2

...
vn

 =


u1 + v1

u2 + v2

...
un + vn

 ,

and (ii) scaler multiplication:

ru =


ru1

ru2

...
run

 .

Furthermore these operations satisfy the following properties
(1) u + v is in Rn whenever u ∈ Rn and v ∈ Rn. (closed under addition)
(2) u + v = v + u (addition is commutative)
(3) u + (v + w) = (u + v) + w (addition is associative)
(4) There is a vector called the zero vector, and denoted by 0 with the property

that for every vector u, one has u + 0 = u. (additive identity)
(5) For every vector u, there is a vector −u such that u + −u = 0. (additive

inverse)
(6) cu is in Rn whenever c is a real number, and u ∈ Rn. (closed under scalar

multiplication)
(7) c(u + v = cu + cv. (distributive property)
(8) (c + d)u = cu + du. (distributive property)
(9) c(du) = (cd)u. (associative property)

(10) 1(u) = u. (scalar identity)
Properties 1-10 allow us to generalize the notion of vector space in the following

way.

Definition 1.1. Let V be a set on which two operations vector addition and
scalar multiplication are defined. If properties 1-10 above are satisfied, then V
is called a vector space.

Examples 1.1. (1) (The Vector Space of all 2 × 3 matrices) The set M2,3 of
all 2× 3 matrices with the usual addition:(

a11 a12 a13

a21 a22 a23

)
+

(
b11 b12 b13

b21 b22 b23

)
=

(
a11 + b11 a12 + b12 a13 + b13

a21 + b21 a22 + b22 a23 + b23

)
,

1
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and scalar multiplication

r

(
a11 a12 a13

a21 a22 a23

)
=

(
ra11 ra12 ra13

ra21 ra22 ra23

)
is a vector space. It is easy to see that properties 1-10 are satisfied with the

zero matrix playing the role of the additive identity, and
(
−a11 −a12 −a13

−a21 −a22 −a23

)
playing the role of the additive inverse of

(
a11 a12 a13

a21 a22 a23

)
(2) (The Vector Space of all n×m matrices) The set Mn,m of all n×m matrices

with the usual addition and scalar multiplication satisfy 1-10.
(3) (The Vector Space of all Polynomials of Degree less than or equal to two)

Let P2 be the set of all polynomials of the form

p(x) = a2x
2 + a1x + a0,

where a0, a1, and a2 are real numbers. Addition and scalar multiplication
are defined as follows. The sum of two polynomials p(x) = a2x

2 +a1x+a0,
and q(x) = b2x

2 + b1x + b0 is given by

p(x) + q(x) = (a2 + b2)x2 + (a1 + b1)x + (a0 + b0).

If p(x) = a2x
2 + a1x + a0 is a polynomial, and r is a real number, then the

polynomial rp is given by

(rp)(x) = ra2x
2 + ra1x + ra0.

It is easy to see that properties 1-10 are satisfied, with the zero polynomial
0(x) = 0 playing the role of the additive identity, and −p(x) playing the
role of the additive inverse of p(x).

(4) (The Vector space of Continuous Functions) Let C be the set of all real-
valued continuous functions with the usual addition (f+g)(x) = f(x)+g(x)
and scalar multiplication (rf)(x) = r(f(x)). Since the sum of two contin-
uous functions is continuous, and a multiple of a continuous function is
continuous, we see that that properties (1) and (10) are satisfied. Further-
more, the zero function 0(x) = 0 plays the role of the additive identity, and
−f(x) plays the role of the additive inverse of f(x). Properties (2), (3),
(7), 8, 9, and (10) follow from the usual properties of real numbers.

(5) Let W = {(x, y) ∈ R2 : x + 2y = 0}. On W we consider the usual
addition, and scalar multiplication. Note that if (x, y), (u, v) ∈ W , then
(x, y)+(u, v) = (x+u, y+v) ∈ W , since x+u+2(y+v) = (x+2y)+(u+2v) =
0, and r(x, y) = (rx, ry) ∈ W since rx + 2ry = r(x + 2y) = 0. Thus
properties (1) and (6) are satisfied. The origin (0, 0) is in W and is the
additive identity. Also if (x, y) ∈ W , then (−x,−y) ∈ W is the additive
inverse of (x, y). Thus properties (4) and (5) are satisfied. The rest of the
properties are easy to verify. Hence, W is a vector space.

1.2. Spanning Sets, Linear Independence and Basis.

Definition 1.2. Let V be a vector space. A vector v is a linear combination of the
vectors u1,u2, · · · ,un if there exist scalars c1, c2, · · · , cn such that

v = c1u1 + c2u2 + · · · cnun.
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Examples 1.2. (1) Consider the vector space R3. The vector v =

 1
3
1

 is a

linear combination of u1 =

 0
1
2

 and u2 =

 1
0
−5

 since v = 3u2 + v3.

(2) Consider the vector space M2,2 of all 2 × 2 matrices. Then the matrix

(vector) v =
(

0 8
2 1

)
is a linear combination of

v1 =
(

0 2
1 0

)
, v2 =

(
−1 3
1 2

)
, v3 =

(
−2 0
1 3

)
,

since v = v1 + 2v2 − v3.
(3) Consider the vector space P2 of polynomials of degree less than or equal to

2. The polynomial (vector) v = p(x) = 2 + 5x− x2 is a linear combination
of u1 = p1(x) = 1 + x− 2x2 and u2 = p2(x) = x + x2 since v = 2u1 + 3u2.

Definition 1.3. Let V be a vector space and S = {v1,v2, · · · ,vn} a collection of
vectors in V . We call S a spanning set of V if every vector v in V can be written
as a linear combination of vectors in S.

Examples 1.3. (1) Consider the standard basis e1 =

 1
0
0

, e2 =

 0
1
0

,

and e3 =

 0
0
1

 in R3. The set S = {e1, e2, e3} is a spanning set since if

u =

 u1

u2

u3

, then u = u1e1 + u2e2 + u3e3.

(2) The set S = {1, x, x2} is a spanning set for the vector space P2 of all
polynomials of degree less than or equal to 2.

(3) Let v1 =

 1
2
3

, v2 =

 0
1
2

, and v3 =

 −2
0
1

. The set S =

{v1,v2,v3} is a spanning set for R3. To see that, let u =

 u1

u2

u3


be any vector. We want to find real numbers c1, c2, c3 such that u =
c1v1 + c2v2 + c3v3. This leads to the following system of linear equations
in the unknowns c1, c2, c3 (here u1, u2, u3 are considered as constants):

c1 − 2c3 = u1

2c1 + c2 = u2

3c1 + 2c2 + c3 = u3.

The coefficient matrix A =

 1 0 −2
2 1 0
3 2 1

 has a non-zero determinant.

Hence, A is invertible and the above system has a unique solution. There-
fore, u can be written as a linear combination of v1,v2,v3.
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Definition 1.4. Let V be a vector space. A set S = {v1,v2, · · · ,vn} of vectors in
V is said to be linearly independent if the vector equation

c1v1 + c2v2 + · · · cnvn = 0

has only the trivial solution c1 = c2 = · · · = cn = 0.

Examples 1.4. (1) The vectors v1 =

 1
2
3

, v2 =

 0
1
2

, and v3 = −2
0
1

 are linearly independent in R3. To see this, consider the equation

c1v1 + c2v2 + · · · cnvn = 0. This leads to the following system of linear
equations (in the variables c1, c2, c3

c1 − 2c3 = 0
2c1 + c2 = 0
3c1 + 2c2 + c3 = 0.

Using augmented matrices (Gauss elimination method), it is easy to see
that the system has a unique solution c1 = c2 = c3 = 0.

(2) Let v1 =
(

2 1
0 1

)
, v2 =

(
3 0
2 1

)
, and v3 =

(
1 0
2 0

)
. The set

S = {v1,v2,v3} is linearly independent in M2,2, the vector space of all
2× 2 matrices (under the usual addition and scalar multiplication). To see
this, suppose that c1v1 + c2v2 + c3v3 = 0. This leads to

2c1 + 3c2 + c3 = 0
c1 = 0
2c2 + 2c3 = 0
c1 + c2 = 0.

Using Gauss elimination method, it is easy to see that the system has a
unique solution c1 = c2 = c3 = 0.

(3) We show that the set S = {x2+3x+1, 2x2+x−1, 4x} is linearly independent
in P2, the vector space of all polynomials of degree less than or equal to 2.
Suppose that

c1(x2 + 3x + 1) + c2(2x2 + x− 1) + c3(4x) = 0 = 0(x2) + 0(x) + 0(1).

Rewriting, we get

(c1 + 2c2)x2 + (3c1 + c2 + 4c3)x + (c1 − c2) = 0.

This leads to the system
c1 + 2c2 = 0
3c1 + c2 + 4c3 = 0
c1 + c2 = 0.

This system has a unique solution c1 = c2 = c3 = 0. Hence, S is linearly
independent.
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1.3. Basis and Dimension.

Definition 1.5. A set S = {v1,v2, · · · ,vn} in a vector space V is said to be a
basis if
1. S is a spanning set for V .
2. S is linearly independent

Examples 1.5. (1) Consider the vectors e1 =

 1
0
0

, e2 =

 0
1
0

, and

e3 =

 0
0
1

. The set S = {e1, e2, e3} forms a basis in R3 since the S is

linearly independent (if c1e1 +c2e2 +c3e3 = 0, then c1 = c2 = c3 = 0), and

spans R3 (if u =

 u1

u2

u3

, then u = u1e1 + u2e2 + u3e3). As we already

know, the set S is called the standard basis in R3.

(2) Consider the set S = {u1,u2}, where u1 =
(

1
1

)
, and u2 =

(
1
−1

)
.

The set S forms a basis. We first show linear independence. Suppose
c1u1 + c2u2 = 0, this leads to the system{

c1 + c2 = 0
c1 − c2 = 0.

Hence, c1 = c2 = 0 and S is linearly independent. We now show that S is

a spanning set. Let v =
(

v1

v2

)
be any vector in R2, we want to find real

numbers c1, c2 such that v = c1u1 + c2u2. This is equivalent to solving the
following system {

c1 + c2 = v1

c1 − c2 = v2.

Thus, c1 =
v1 + v2

2
and c2 =

v1 − v2

2
. Hence, we have found c1, c2 such

that v = c1u1 + c2u2. Thus S is a spanning set, and therefore S is a basis
for R2.

(3) The set S = {1, x, x2, x3} is a basis for P3, the set of all polynomials of
degree less than or equal to 3. Clearly, any polynomial p ∈ P3 has the form
p(x) = a0 +a1x+a2x

2 +a3x
3, hence a linear combination of elements of S.

This shows that S is a spanning set. Furthermore, S is linearly independent,
since if c0 + c1x + c2x

2 + c3x
3 = 0(x) = 0, then c0 = c1 = c2 = c3 = 0.

Thus, S is a basis.
(4) Consider M2,2 the set of all 2× 2 matrices. Let

v1 =
(

1 0
0 0

)
, v2 =

(
0 1
0 0

)
, v3 =

(
0 0
1 0

)
, v4 =

(
0 0
0 1

)
.
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Then the set S = {v1,v2,v3,v4} forms a basis for M2,2. Clearly, any

matrix u =
(

a b
c d

)
can be written as

u = av1 + bv2 + cv3 + dv4.

hence, S is a spanning set. Furthermore, if c1v1 + c2v2 + c3v3 + c4v4 = 0
(0 is the zero matrix), then c1 = c2 = c3 = c4 = 0, so that S is linearly
independent, and therefore a basis.

2. Linear Transformations

2.1. Definition and Examples. Let V and W be vector spaces. A map T :
V → W is a rule that assigns to each vector v of V a vector w of W denoted by
w = T (v). The vector w is called the image of v, and v is called the preimage of
w.

Definition 2.1. Let V and W be vector spaces, and T : V → W a mapping. We
call T a linear transformation if

T (au + bv) = aT (u) + bT (v)

for all u,v in V and for all scalars a and b.

Examples 2.1. (1) Define T : R2 → R2 by T (
(

v1

v2

)
) =

(
v1 − v2

v1 + v2

)
. No-

tice that T (
(

v1

v2

)
) = A

(
v1

v2

)
, where A =

(
1 −1
1 1

)
. Thus,

T (a
(

u1

u2

)
+ b

(
v1

v2

)
) = A(a

(
u1

u2

)
+ b

(
v1

v2

)
)

= aA

(
u1

u2

)
+ bA

(
v1

v2

)
= aT (

(
u1

u2

)
) + bT (

(
v1

v2

)
).

So T is a linear transformation.
(2) In general if A is an n×n matrix, then the function T : Rn → Rn given by

T (v) = Av defines a linear transformation.
(3) Let Mn,m be the vector space of all n × m matrices. Define T : Mn,m →

Mn,m by T (A) = AT . By the properties of matrices we have

T (aA + bB) = (aA + bB)T = (aA)T + (bB)T = aAT + bBT = aT (A) + bT (B).

Thus T is a linear transformation.
(4) Let C be the set of all real-valued continuous functions, and D the set

of all differentiable functions with a continuous derivative. Both C and
D are vector spaces under the usual addition and scalar multiplication of
functions. Define T : D → C by T (f) = f ′, where f ′ is the derivative of f
(note that f ′ is an element of C). Then,

T (af + bg) = (af + bg)′ = af ′ + bg′ = aT (f) + bT (g).

Thus, T (i.e. the operation of taking derivatives) is a linear transformation.
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(5) Let P [c, d] be the vector space of all polynomials defined on the interval
[c, d] . Define T : P → R by T (p) =

∫ d

c
p(t)dt. Then,

T (ap + bq) =
∫ d

c

(ap(t) + bq(t)dt = a

∫ d

c

p(t)dt + b

∫ d

c

q(t)dt = aT (p) + bT (q).

Thus T (i.e. the operation of integration) is a linear transformation.

2.2. Matrices for Linear Transformations. Consider Rn with the standard
basis S = {e1, e2, · · · , en}, so each ei has n-coordinates each of which is 0 except for
the ith coordinate which equals 1. Now let T : Rn → Rm be a linear transformation.
On Rm we also consider the standard basis S′ = {e′

2, · · · , e′
m}. Each e′

i has m
coordinates each of which is zero except for the ith coordinate which equals 1.
Suppose

T (e1) =


a11

a21

...
am1

 , T (e2) =


a12

a22

...
am2

 , . . . , T (en) =


a1n

a2n

...
amn

 .

Define an m× n matrix A as follows

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 .

We claim that T (v) = Av for any vector v ∈ Rn. to see this, suppose

v =


v1

v2

...
vn

 = v1e1 + v2e2 + · · ·+ vnen.

Since T is a linear transformation, then

T (v) = T (v1e1 + v2e2 + · · ·+ vnen)

= v1T (e1) + v2T (e1) + · · ·+ vnT (en).
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On the other hand,

Av =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn




v1

v2

...
vn



=


a11v1 + a12v2 + · · ·+ a1nvn

a21v1 + a22v2 + · · ·+ a2nvn

...
am1v1 + am2v2 + · · ·+ amnvn



= v1


a11

a21

...
am1

 + v2


a12

a22

...
am2

 + · · ·+ vn


a1n

a2n

...
amn


= v1T (e1) + v2T (e1) + · · ·+ vnT (en).

Example 2.1. Suppose T : R3 → R3 is given by

T (

 v1

v2

v3

 =

 2v1 + v2 − v3

−v1 + 3v2 − 2v3

3v2 + 4v3

 .

To find the matrix A of T , we find the images of the standard basis:

T (e1) =

 2
−1
0

 , T (e2) =

 1
3
3

 , T (e3) =

 −1
−2
4

 .

Thus, A =

 2 1 −1
−1 3 −2
0 3 4

, and T (v) = Av.

So far we have considered only the case when the vector space is Rn with
the standard basis. Suppose now V is a vector space with (ordered) basis B =
{v1,v2, · · ·vn}, and W a vector space with (ordered) basis B′ = {w1,w2, · · ·wm}.
Let now T : V → W be a linear transformation such that

T (v1) = a11w1 + a21w2 + · · · am1wm

T (v2) = a12w1 + a22w2 + · · · am2wm

...
T (vn) = a1nw1 + a2nw2 + · · · amnwm.

Define the m× n matrix A by

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

 .
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Note that the first column corresponds to the coefficients of T (v1) when expressed as
a linear combination of the elements of the basis B′, the second column corresponds
to the coefficients of T (v2) when expressed as a linear combination of the elements
of the basis B′, · · · , the nth column corresponds to the coefficients of T (vn) when
expressed as a linear combination of the elements of the basis B′. The same proof
as above (relative to the standard bases) shows that T (v) = Av for all v in V (on
the right hand side v must be expressed as a linear combination of elements of B,
and then written as a column vector). The matrix A is called the matrix of T
relative to the bases B and B′.

Example 2.2. Let P1 be the vector space of all polynomials of degree less than or
equal to 1, and P2 the vector space of all polynomials of degree less than or equal
to 2. Let T : P2 → P1 be the differential operator, i.e. T (p) = p′. We want to find
the matrix of T with respect to the bases B = {1, x, x2} on P2, and B′ = {1, x}
on P1. We look at the images of the elements of B, and we write them as linear
combinations of elements of B′.

T (1) = 0 = 0(1) + 0(x)
T (x) = 1 = 1(1) + 0(x)

T (x2) = 2x = 0(1) + 2(x).

Hence, A =
(

0 1 0
0 0 2

)
So, if p(x) = a0 + a1x + a2x

2, then

T (p) =
(

0 1 0
0 0 2

)  a0

a1

a2

 =
(

a1

2a2

)
,

i.e. T (p)(x) = a1 + 2a2x as expected.

3. Exercises

(1) Show that the set M of all 2× 2 matrices of the form
(

a b
c 0

)
is a vector

space under the usual operation of addition and scalar multiplication.

(2) Show that the vector w =

 −1
−2
−2

 in R3 can be written as a linear com-

bination of v1 =

 0
1
4

, v2 =

 −1
1
2

, and v3 =

 3
1
2

.

(3) let v1 =

 4
7
3

, v2 =

 −1
2
6

, and v3 =

 2
−3
5

. Show that S =

{v1,v2,v3} is a spanning set for R3.

(4) Show that the set S = {x2 − 1, 2x + 5} is linearly independent in P2, the
vector space of all polynomials of degree at most 2.
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(5) Show that the set S = {
(

2 0
0 3

)
,

(
1 4
0 1

)
,

(
0 1
3 2

)
,

(
0 1
2 0

)
} forms

a basis for M2,2, the vector space of all 2× 2 matrices.

(6) Suppose T : M2,2 → M2,2 is a linear transformation such that

T

((
1 0
0 0

))
=

(
1 −1
0 2

)
,

T

((
0 1
0 0

))
) =

(
0 2
1 1

)
,

T

((
0 0
1 0

))
=

(
1 2
0 1

)
,

T

((
0 0
0 1

))
=

(
3 −1
1 0

)
.

Find T

((
1 3
−1 4

))
.

(7) Find the standard matrix (i.e. relative to the standard bases) of the linear
transformation T : R3 → R2 given by

T (

 v1

v2

v3

 =
(

13v1 − 9v2 + 4v3

6v1 + 5v2 − 3v3

)
.

(8) Let B = {1, x, x2, x3} be a basis for P3 (the vector space of polynomials of
defree at most 3), and B′ = {1, x, x2, x3, x4} a basis for P4 (the vector space
of polynomials of defree at most 4). Consider the linear transformation
(defined on the basis vectors by)

T (xk) =
∫ x

0

tk dt.

Find the matrix of T relative to the bases B and B′.


