Extra Lecture Notes, SCI 113 Spring 2008 General Vector Spaces and Linear Transformations

 Karma Dajani
1. General Vector Spaces

1.1. Definition and Examples. We have seen that a vector \mathbf{v} in \mathbb{R}^{n} is represented by a column matrix $\mathbf{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)$. Also on \mathbb{R}^{n} we have two operations (i) addition:

$$
\mathbf{u}+\mathbf{v}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)+\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
\vdots \\
u_{n}+v_{n}
\end{array}\right)
$$

and (ii) scaler multiplication:

$$
r \mathbf{u}=\left(\begin{array}{c}
r u_{1} \\
r u_{2} \\
\vdots \\
r u_{n}
\end{array}\right) .
$$

Furthermore these operations satisfy the following properties
(1) $\mathbf{u}+\mathbf{v}$ is in R^{n} whenever $\mathbf{u} \in R^{n}$ and $\mathbf{v} \in R^{n}$. (closed under addition)
(2) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$ (addition is commutative)
(3) $\mathbf{u}+(\mathbf{v}+\mathbf{w})=(\mathbf{u}+\mathbf{v})+\mathbf{w}$ (addition is associative)
(4) There is a vector called the zero vector, and denoted by $\mathbf{0}$ with the property that for every vector \mathbf{u}, one has $\mathbf{u}+\mathbf{0}=\mathbf{u}$. (additive identity)
(5) For every vector \mathbf{u}, there is a vector $-\mathbf{u}$ such that $\mathbf{u}+-\mathbf{u}=\mathbf{0}$. (additive inverse)
(6) $c \mathbf{u}$ is in R^{n} whenever c is a real number, and $\mathbf{u} \in \mathbb{R}^{n}$. (closed under scalar multiplication)
(7) $c(\mathbf{u}+\mathbf{v}=c \mathbf{u}+c \mathbf{v}$. (distributive property)
(8) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$. (distributive property)
(9) $c(d \mathbf{u})=(c d) \mathbf{u}$. (associative property)
(10) $1(\mathbf{u})=\mathbf{u}$. (scalar identity)

Properties 1-10 allow us to generalize the notion of vector space in the following way.

Definition 1.1. Let V be a set on which two operations vector addition and scalar multiplication are defined. If properties 1-10 above are satisfied, then V is called a vector space.

Examples 1.1. (1) (The Vector Space of all 2×3 matrices) The set $M_{2,3}$ of all 2×3 matrices with the usual addition:
$\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right)+\left(\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23}\end{array}\right)=\left(\begin{array}{lll}a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\ a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}\end{array}\right)$,
and scalar multiplication

$$
r\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{lll}
r a_{11} & r a_{12} & r a_{13} \\
r a_{21} & r a_{22} & r a_{23}
\end{array}\right)
$$

is a vector space. It is easy to see that properties 1-10 are satisfied with the zero matrix playing the role of the additive identity, and $\left(\begin{array}{ccc}-a_{11} & -a_{12} & -a_{13} \\ -a_{21} & -a_{22} & -a_{23}\end{array}\right)$ playing the role of the additive inverse of $\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23}\end{array}\right)$
(2) (The Vector Space of all $n \times m$ matrices) The set $M_{n, m}$ of all $n \times m$ matrices with the usual addition and scalar multiplication satisfy 1-10.
(3) (The Vector Space of all Polynomials of Degree less than or equal to two) Let P_{2} be the set of all polynomials of the form

$$
p(x)=a_{2} x^{2}+a_{1} x+a_{0}
$$

where a_{0}, a_{1}, and a_{2} are real numbers. Addition and scalar multiplication are defined as follows. The sum of two polynomials $p(x)=a_{2} x^{2}+a_{1} x+a_{0}$, and $q(x)=b_{2} x^{2}+b_{1} x+b_{0}$ is given by

$$
p(x)+q(x)=\left(a_{2}+b_{2}\right) x^{2}+\left(a_{1}+b_{1}\right) x+\left(a_{0}+b_{0}\right) .
$$

If $p(x)=a_{2} x^{2}+a_{1} x+a_{0}$ is a polynomial, and r is a real number, then the polynomial $r p$ is given by

$$
(r p)(x)=r a_{2} x^{2}+r a_{1} x+r a_{0}
$$

It is easy to see that properties 1-10 are satisfied, with the zero polynomial $0(x)=0$ playing the role of the additive identity, and $-p(x)$ playing the role of the additive inverse of $p(x)$.
(4) (The Vector space of Continuous Functions) Let C be the set of all realvalued continuous functions with the usual addition $(f+g)(x)=f(x)+g(x)$ and scalar multiplication $(r f)(x)=r(f(x))$. Since the sum of two continuous functions is continuous, and a multiple of a continuous function is continuous, we see that that properties (1) and (10) are satisfied. Furthermore, the zero function $0(x)=0$ plays the role of the additive identity, and $-f(x)$ plays the role of the additive inverse of $f(x)$. Properties (2), (3), (7), 8,9 , and (10) follow from the usual properties of real numbers.
(5) Let $W=\left\{(x, y) \in R^{2}: x+2 y=0\right\}$. On W we consider the usual addition, and scalar multiplication. Note that if $(x, y),(u, v) \in W$, then $(x, y)+(u, v)=(x+u, y+v) \in W$, since $x+u+2(y+v)=(x+2 y)+(u+2 v)=$ 0 , and $r(x, y)=(r x, r y) \in W$ since $r x+2 r y=r(x+2 y)=0$. Thus properties (1) and (6) are satisfied. The origin $(0,0)$ is in W and is the additive identity. Also if $(x, y) \in W$, then $(-x,-y) \in W$ is the additive inverse of (x, y). Thus properties (4) and (5) are satisfied. The rest of the properties are easy to verify. Hence, W is a vector space.

1.2. Spanning Sets, Linear Independence and Basis.

Definition 1.2. Let V be a vector space. A vector \mathbf{v} is a linear combination of the vectors $\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}, \cdots, \mathbf{u}_{\mathbf{n}}$ if there exist scalars $c_{1}, c_{2}, \cdots, c_{n}$ such that

$$
\mathbf{v}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}+\cdots c_{n} \mathbf{u}_{\mathbf{n}}
$$

Examples 1.2. (1) Consider the vector space \mathbb{R}^{3}. The vector $\mathbf{v}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$ is a linear combination of $\mathbf{u}_{\mathbf{1}}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$ and $\mathbf{u}_{\mathbf{2}}=\left(\begin{array}{c}1 \\ 0 \\ -5\end{array}\right)$ since $\mathbf{v}=3 u_{2}+v_{3}$.
(2) Consider the vector space $M_{2,2}$ of all 2×2 matrices. Then the matrix (vector) $\mathbf{v}=\left(\begin{array}{ll}0 & 8 \\ 2 & 1\end{array}\right)$ is a linear combination of

$$
\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{ll}
0 & 2 \\
1 & 0
\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{cc}
-1 & 3 \\
1 & 2
\end{array}\right), \mathbf{v}_{\mathbf{3}}=\left(\begin{array}{cc}
-2 & 0 \\
1 & 3
\end{array}\right)
$$

since $\mathbf{v}=\mathbf{v}_{\mathbf{1}}+2 \mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}$.
(3) Consider the vector space P_{2} of polynomials of degree less than or equal to 2. The polynomial (vector) $\mathbf{v}=p(x)=2+5 x-x^{2}$ is a linear combination of $\mathbf{u}_{\mathbf{1}}=p_{1}(x)=1+x-2 x^{2}$ and $\mathbf{u}_{\mathbf{2}}=p_{2}(x)=x+x^{2}$ since $\mathbf{v}=2 \mathbf{u}_{\mathbf{1}}+3 \mathbf{u}_{\mathbf{2}}$.
Definition 1.3. Let V be a vector space and $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ a collection of vectors in V. We call S a spanning set of V if every vector \mathbf{v} in V can be written as a linear combination of vectors in S.
Examples 1.3. (1) Consider the standard basis $\mathbf{e}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{e}_{\mathbf{2}}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\mathbf{e}_{\boldsymbol{3}}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ in \mathbb{R}^{3}. The set $S=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\boldsymbol{3}}\right\}$ is a spanning set since if $\mathbf{u}=\left(\begin{array}{c}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$, then $\mathbf{u}=u_{1} \mathbf{e}_{\mathbf{1}}+u_{2} \mathbf{e}_{\mathbf{2}}+u_{3} \mathbf{e}_{\mathbf{3}}$.
(2) The set $S=\left\{1, x, x^{2}\right\}$ is a spanning set for the vector space P_{2} of all polynomials of degree less than or equal to 2 .
(3) Let $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$. The set $S=$ $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a spanning set for \mathbb{R}^{3}. To see that, let $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$ be any vector. We want to find real numbers c_{1}, c_{2}, c_{3} such that $\mathbf{u}=$ $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}$. This leads to the following system of linear equations in the unknowns c_{1}, c_{2}, c_{3} (here u_{1}, u_{2}, u_{3} are considered as constants):

$$
\left\{\begin{array}{l}
c_{1}-2 c_{3}=u_{1} \\
2 c_{1}+c_{2}=u_{2} \\
3 c_{1}+2 c_{2}+c_{3}=u_{3}
\end{array}\right.
$$

The coefficient matrix $A=\left(\begin{array}{ccc}1 & 0 & -2 \\ 2 & 1 & 0 \\ 3 & 2 & 1\end{array}\right)$ has a non-zero determinant. Hence, A is invertible and the above system has a unique solution. Therefore, \mathbf{u} can be written as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$.

Definition 1.4. Let V be a vector space. A set $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ of vectors in V is said to be linearly independent if the vector equation

$$
c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots c_{n} \mathbf{v}_{\mathbf{n}}=\mathbf{0}
$$

has only the trivial solution $c_{1}=c_{2}=\cdots=c_{n}=0$.
Examples 1.4. (1) The vectors $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=$ $\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$ are linearly independent in \mathbb{R}^{3}. To see this, consider the equation $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+\cdots c_{n} \mathbf{v}_{\mathbf{n}}=\mathbf{0}$. This leads to the following system of linear equations (in the variables c_{1}, c_{2}, c_{3}

$$
\left\{\begin{array}{l}
c_{1}-2 c_{3}=0 \\
2 c_{1}+c_{2}=0 \\
3 c_{1}+2 c_{2}+c_{3}=0
\end{array}\right.
$$

Using augmented matrices (Gauss elimination method), it is easy to see that the system has a unique solution $c_{1}=c_{2}=c_{3}=0$.
Let $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{ll}3 & 0 \\ 2 & 1\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right)$. The set $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is linearly independent in $M_{2,2}$, the vector space of all 2×2 matrices (under the usual addition and scalar multiplication). To see this, suppose that $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}=\mathbf{0}$. This leads to

$$
\left\{\begin{array}{l}
2 c_{1}+3 c_{2}+c_{3}=0 \\
c_{1}=0 \\
2 c_{2}+2 c_{3}=0 \\
c_{1}+c_{2}=0
\end{array}\right.
$$

Using Gauss elimination method, it is easy to see that the system has a unique solution $c_{1}=c_{2}=c_{3}=0$.
(3) We show that the set $S=\left\{x^{2}+3 x+1,2 x^{2}+x-1,4 x\right\}$ is linearly independent in P_{2}, the vector space of all polynomials of degree less than or equal to 2 . Suppose that
$c_{1}\left(x^{2}+3 x+1\right)+c_{2}\left(2 x^{2}+x-1\right)+c_{3}(4 x)=0=0\left(x^{2}\right)+0(x)+0(1)$.
Rewriting, we get

$$
\left(c_{1}+2 c_{2}\right) x^{2}+\left(3 c_{1}+c_{2}+4 c_{3}\right) x+\left(c_{1}-c_{2}\right)=0
$$

This leads to the system

$$
\left\{\begin{array}{l}
c_{1}+2 c_{2}=0 \\
3 c_{1}+c_{2}+4 c_{3}=0 \\
c_{1}+c_{2}=0
\end{array}\right.
$$

This system has a unique solution $c_{1}=c_{2}=c_{3}=0$. Hence, S is linearly independent.

1.3. Basis and Dimension.

Definition 1.5. A set $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots, \mathbf{v}_{\mathbf{n}}\right\}$ in a vector space V is said to be a basis if

1. S is a spanning set for V.
2. S is linearly independent

Examples 1.5. (1) Consider the vectors $\mathbf{e}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \mathbf{e}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$, and $\mathbf{e}_{\mathbf{3}}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$. The set $S=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \mathbf{e}_{\boldsymbol{3}}\right\}$ forms a basis in \mathbb{R}^{3} since the S is linearly independent (if $c_{1} \mathbf{e}_{\mathbf{1}}+c_{2} \mathbf{e}_{\mathbf{2}}+c_{3} \mathbf{e}_{\mathbf{3}}=\mathbf{0}$, then $c_{1}=c_{2}=c_{3}=0$), and spans \mathbb{R}^{3} (if $\mathbf{u}=\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)$, then $\mathbf{u}=u_{1} \mathbf{e}_{\mathbf{1}}+u_{2} \mathbf{e}_{2}+u_{3} \mathbf{e}_{\mathbf{3}}$). As we already know, the set S is called the standard basis in \mathbb{R}^{3}.
(2) Consider the set $S=\left\{\mathbf{u}_{\mathbf{1}}, \mathbf{u}_{\mathbf{2}}\right\}$, where $\mathbf{u}_{\mathbf{1}}=\binom{1}{1}$, and $\mathbf{u}_{\mathbf{2}}=\binom{1}{-1}$. The set S forms a basis. We first show linear independence. Suppose $c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}=\mathbf{0}$, this leads to the system

$$
\left\{\begin{array}{l}
c_{1}+c_{2}=0 \\
c_{1}-c_{2}=0
\end{array}\right.
$$

Hence, $c_{1}=c_{2}=0$ and S is linearly independent. We now show that S is a spanning set. Let $\mathbf{v}=\binom{v_{1}}{v_{2}}$ be any vector in \mathbb{R}^{2}, we want to find real numbers c_{1}, c_{2} such that $\mathbf{v}=c_{1} \mathbf{u}_{\mathbf{1}}+c_{2} \mathbf{u}_{\mathbf{2}}$. This is equivalent to solving the following system

$$
\left\{\begin{array}{l}
c_{1}+c_{2}=v_{1} \\
c_{1}-c_{2}=v_{2}
\end{array}\right.
$$

Thus, $c_{1}=\frac{v_{1}+v_{2}}{2}$ and $c_{2}=\frac{v_{1}-v_{2}}{2}$. Hence, we have found c_{1}, c_{2} such that $\mathbf{v}=c_{1} \mathbf{u}_{1}+c_{2} \mathbf{u}_{\mathbf{2}}$. Thus S is a spanning set, and therefore S is a basis for \mathbb{R}^{2}.
(3) The set $S=\left\{1, x, x^{2}, x^{3}\right\}$ is a basis for P_{3}, the set of all polynomials of degree less than or equal to 3 . Clearly, any polynomial $p \in P_{3}$ has the form $p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$, hence a linear combination of elements of S. This shows that S is a spanning set. Furthermore, S is linearly independent, since if $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}=0(x)=0$, then $c_{0}=c_{1}=c_{2}=c_{3}=0$. Thus, S is a basis.
(4) Consider $M_{2,2}$ the set of all 2×2 matrices. Let

$$
\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \mathbf{v}_{\mathbf{3}}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \mathbf{v}_{\mathbf{4}}=\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Then the set $S=\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}, \mathbf{v}_{\mathbf{4}}\right\}$ forms a basis for $M_{2,2}$. Clearly, any $\operatorname{matrix} \mathbf{u}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ can be written as

$$
\mathbf{u}=a \mathbf{v}_{\mathbf{1}}+b \mathbf{v}_{\mathbf{2}}+c \mathbf{v}_{\mathbf{3}}+d \mathbf{v}_{\mathbf{4}} .
$$

hence, S is a spanning set. Furthermore, if $c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}+c_{4} \mathbf{v}_{\mathbf{4}}=\mathbf{0}$ ($\mathbf{0}$ is the zero matrix), then $c_{1}=c_{2}=c_{3}=c_{4}=0$, so that S is linearly independent, and therefore a basis.

2. Linear Transformations

2.1. Definition and Examples. Let V and W be vector spaces. A map T : $V \rightarrow W$ is a rule that assigns to each vector \mathbf{v} of V a vector \mathbf{w} of W denoted by $\mathbf{w}=T(\mathbf{v})$. The vector \mathbf{w} is called the image of \mathbf{v}, and \mathbf{v} is called the preimage of w.

Definition 2.1. Let V and W be vector spaces, and $T: V \rightarrow W$ a mapping. We call T a linear transformation if

$$
T(a \mathbf{u}+b \mathbf{v})=a T(\mathbf{u})+b T(\mathbf{v})
$$

for all \mathbf{u}, \mathbf{v} in V and for all scalars a and b.
Examples 2.1. (1) Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T\left(\binom{v_{1}}{v_{2}}\right)=\binom{v_{1}-v_{2}}{v_{1}+v_{2}}$. Notice that $T\left(\binom{v_{1}}{v_{2}}\right)=A\binom{v_{1}}{v_{2}}$, where $A=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$. Thus,

$$
\begin{aligned}
T\left(a\binom{u_{1}}{u_{2}}+b\binom{v_{1}}{v_{2}}\right) & =A\left(a\binom{u_{1}}{u_{2}}+b\binom{v_{1}}{v_{2}}\right) \\
& =a A\binom{u_{1}}{u_{2}}+b A\binom{v_{1}}{v_{2}} \\
& =a T\left(\binom{u_{1}}{u_{2}}\right)+b T\left(\binom{v_{1}}{v_{2}}\right)
\end{aligned}
$$

So T is a linear transformation.
(2) In general if A is an $n \times n$ matrix, then the function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $T(\mathbf{v})=A \mathbf{v}$ defines a linear transformation.
(3) Let $M_{n, m}$ be the vector space of all $n \times m$ matrices. Define $T: M_{n, m} \rightarrow$ $M_{n, m}$ by $T(A)=A^{T}$. By the properties of matrices we have
$T(a A+b B)=(a A+b B)^{T}=(a A)^{T}+(b B)^{T}=a A^{T}+b B^{T}=a T(A)+b T(B)$.
Thus T is a linear transformation.
(4) Let C be the set of all real-valued continuous functions, and D the set of all differentiable functions with a continuous derivative. Both C and D are vector spaces under the usual addition and scalar multiplication of functions. Define $T: D \rightarrow C$ by $T(f)=f^{\prime}$, where f^{\prime} is the derivative of f (note that f^{\prime} is an element of C). Then,

$$
T(a f+b g)=(a f+b g)^{\prime}=a f^{\prime}+b g^{\prime}=a T(f)+b T(g) .
$$

Thus, T (i.e. the operation of taking derivatives) is a linear transformation.
(5) Let $P[c, d]$ be the vector space of all polynomials defined on the interval $[c, d]$. Define $T: P \rightarrow \mathbb{R}$ by $T(p)=\int_{c}^{d} p(t) d t$. Then,

$$
T(a p+b q)=\int_{c}^{d}\left(a p(t)+b q(t) d t=a \int_{c}^{d} p(t) d t+b \int_{c}^{d} q(t) d t=a T(p)+b T(q)\right.
$$

Thus T (i.e. the operation of integration) is a linear transformation.
2.2. Matrices for Linear Transformations. Consider \mathbb{R}^{n} with the standard basis $S=\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{2}}, \cdots, \mathbf{e}_{\mathbf{n}}\right\}$, so each $\mathbf{e}_{\mathbf{i}}$ has n-coordinates each of which is 0 except for the i th coordinate which equals 1 . Now let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. On \mathbb{R}^{m} we also consider the standard basis $S^{\prime}=\left\{\mathbf{e}_{\mathbf{2}}^{\prime}, \cdots, \mathbf{e}_{\mathbf{m}}^{\prime}\right\}$. Each $\mathbf{e}_{\mathbf{i}}^{\prime}$ has m coordinates each of which is zero except for the i th coordinate which equals 1 . Suppose

$$
T\left(\mathbf{e}_{\mathbf{1}}\right)=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right), T\left(\mathbf{e}_{\mathbf{2}}\right)=\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right), \ldots, T\left(\mathbf{e}_{\mathbf{n}}\right)=\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right)
$$

Define an $m \times n$ matrix A as follows

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

We claim that $T(\mathbf{v})=A \mathbf{v}$ for any vector $\mathbf{v} \in \mathbb{R}^{n}$. to see this, suppose

$$
\mathbf{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=v_{1} \mathbf{e}_{\mathbf{1}}+v_{2} \mathbf{e}_{\mathbf{2}}+\cdots+v_{n} \mathbf{e}_{\mathbf{n}}
$$

Since T is a linear transformation, then

$$
\begin{aligned}
T(\mathbf{v}) & =T\left(v_{1} \mathbf{e}_{\mathbf{1}}+v_{2} \mathbf{e}_{\mathbf{2}}+\cdots+v_{n} \mathbf{e}_{\mathbf{n}}\right) \\
& =v_{1} T\left(\mathbf{e}_{\mathbf{1}}\right)+v_{2} T\left(\mathbf{e}_{\mathbf{1}}\right)+\cdots+v_{n} T\left(\mathbf{e}_{\mathbf{n}}\right)
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
A \mathbf{v} & =\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right) \\
& =\left(\begin{array}{c}
a_{11} v_{1}+a_{12} v_{2}+\cdots+a_{1 n} v_{n} \\
a_{21} v_{1}+a_{22} v_{2}+\cdots+a_{2 n} v_{n} \\
\vdots \\
a_{m 1} v_{1}+a_{m 2} v_{2}+\cdots+a_{m n} v_{n}
\end{array}\right) \\
& =v_{1}\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right)+v_{2}\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right)+\cdots+v_{n}\left(\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right) \\
& =v_{1} T\left(\mathbf{e}_{\mathbf{1}}\right)+v_{2} T\left(\mathbf{e}_{\mathbf{1}}\right)+\cdots+v_{n} T\left(\mathbf{e}_{\mathbf{n}}\right) .
\end{aligned}
$$

Example 2.1. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is given by

$$
T\left(\left(\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{c}
2 v_{1}+v_{2}-v_{3} \\
-v_{1}+3 v_{2}-2 v_{3} \\
3 v_{2}+4 v_{3}
\end{array}\right)\right.
$$

To find the matrix A of T, we find the images of the standard basis:

$$
T\left(\mathbf{e}_{1}\right)=\left(\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right), T\left(\mathbf{e}_{2}\right)=\left(\begin{array}{c}
1 \\
3 \\
3
\end{array}\right), T\left(\mathbf{e}_{3}\right)=\left(\begin{array}{c}
-1 \\
-2 \\
4
\end{array}\right)
$$

Thus, $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ -1 & 3 & -2 \\ 0 & 3 & 4\end{array}\right)$, and $T(\mathbf{v})=A \mathbf{v}$.
So far we have considered only the case when the vector space is \mathbb{R}^{n} with the standard basis. Suppose now V is a vector space with (ordered) basis $B=$ $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \cdots \mathbf{v}_{\mathbf{n}}\right\}$, and W a vector space with (ordered) basis $B^{\prime}=\left\{\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}}, \cdots \mathbf{w}_{\mathbf{m}}\right\}$. Let now $T: V \rightarrow W$ be a linear transformation such that

$$
\begin{gathered}
T\left(\mathbf{v}_{\mathbf{1}}\right)=a_{11} \mathbf{w}_{\mathbf{1}}+a_{21} \mathbf{w}_{\mathbf{2}}+\cdots a_{m 1} \mathbf{w}_{\mathbf{m}} \\
T\left(\mathbf{v}_{\mathbf{2}}\right)=a_{12} \mathbf{w}_{\mathbf{1}}+a_{22} \mathbf{w}_{\mathbf{2}}+\cdots a_{m 2} \mathbf{w}_{\mathbf{m}} \\
\vdots \\
T\left(\mathbf{v}_{\mathbf{n}}\right)=a_{1 n} \mathbf{w}_{\mathbf{1}}+a_{2 n} \mathbf{w}_{\mathbf{2}}+\cdots a_{m n} \mathbf{w}_{\mathbf{m}} .
\end{gathered}
$$

Define the $m \times n$ matrix A by

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)
$$

Note that the first column corresponds to the coefficients of $T\left(\mathbf{v}_{\mathbf{1}}\right)$ when expressed as a linear combination of the elements of the basis B^{\prime}, the second column corresponds to the coefficients of $T\left(\mathbf{v}_{\mathbf{2}}\right)$ when expressed as a linear combination of the elements of the basis B^{\prime}, \cdots, the nth column corresponds to the coefficients of $T\left(\mathbf{v}_{\mathbf{n}}\right)$ when expressed as a linear combination of the elements of the basis B^{\prime}. The same proof as above (relative to the standard bases) shows that $T(\mathbf{v})=A \mathbf{v}$ for all \mathbf{v} in V (on the right hand side \mathbf{v} must be expressed as a linear combination of elements of B, and then written as a column vector). The matrix A is called the matrix of T relative to the bases B and B^{\prime}.

Example 2.2. Let P_{1} be the vector space of all polynomials of degree less than or equal to 1 , and P_{2} the vector space of all polynomials of degree less than or equal to 2 . Let $T: P_{2} \rightarrow P_{1}$ be the differential operator, i.e. $T(p)=p^{\prime}$. We want to find the matrix of T with respect to the bases $B=\left\{1, x, x^{2}\right\}$ on P_{2}, and $B^{\prime}=\{1, x\}$ on P_{1}. We look at the images of the elements of B, and we write them as linear combinations of elements of B^{\prime}.

$$
\begin{gathered}
T(1)=0=0(1)+0(x) \\
T(x)=1=1(1)+0(x) \\
T\left(x^{2}\right)=2 x=0(1)+2(x)
\end{gathered}
$$

Hence, $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$
So, if $p(x)=a_{0}+a_{1} x+a_{2} x^{2}$, then

$$
T(p)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right)=\binom{a_{1}}{2 a_{2}}
$$

i.e. $T(p)(x)=a_{1}+2 a_{2} x$ as expected.

3. ExERCISES

(1) Show that the set M of all 2×2 matrices of the form $\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right)$ is a vector space under the usual operation of addition and scalar multiplication.
(2) Show that the vector $\mathbf{w}=\left(\begin{array}{l}-1 \\ -2 \\ -2\end{array}\right)$ in \mathbb{R}^{3} can be written as a linear combination of $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$.
(3) let $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}4 \\ 7 \\ 3\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}-1 \\ 2 \\ 6\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{c}2 \\ -3 \\ 5\end{array}\right)$. Show that $S=$ $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}\right\}$ is a spanning set for \mathbb{R}^{3}.
(4) Show that the set $S=\left\{x^{2}-1,2 x+5\right\}$ is linearly independent in P_{2}, the vector space of all polynomials of degree at most 2 .
(5) Show that the set $S=\left\{\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right),\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)\right\}$ forms a basis for $M_{2,2}$, the vector space of all 2×2 matrices.
(6) Suppose $T: M_{2,2} \rightarrow M_{2,2}$ is a linear transformation such that

$$
\begin{aligned}
& T\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right), \\
& \left.T\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)\right)=\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right), \\
& T\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right), \\
& T\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right)=\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right) .
\end{aligned}
$$

Find $T\left(\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)\right)$.
(7) Find the standard matrix (i.e. relative to the standard bases) of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ given by

$$
T\left(\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=\binom{13 v_{1}-9 v_{2}+4 v_{3}}{6 v_{1}+5 v_{2}-3 v_{3}}\right.
$$

(8) Let $B=\left\{1, x, x^{2}, x^{3}\right\}$ be a basis for P_{3} (the vector space of polynomials of defree at most 3), and $B^{\prime}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ a basis for P_{4} (the vector space of polynomials of defree at most 4). Consider the linear transformation (defined on the basis vectors by)

$$
T\left(x^{k}\right)=\int_{0}^{x} t^{k} d t
$$

Find the matrix of T relative to the bases B and B^{\prime}.

