Solutions Book Chapter 5, SCI 113 Spring 2008

(1) Exercise $5.1(b)(1+x)^{1 / 2} \approx 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}$. If we use a three term polynomial, then to get a two decimal precision we need $\frac{x^{3}}{16}<.005$ leading to $-0.43<x<0.43$. (c) $(1+x)^{-1 / 3} \approx 1-\frac{x}{3}+\frac{2 x^{2}}{9}-\frac{14 x^{3}}{81}$. With three term polynomial, we get a two decimal precision if $\frac{14 x^{3}}{81}<0.005$, leading to $-0.306979<x<0.306979$. (f) $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}$. With three term polynomial, we get a two decimal precision if $\frac{x^{4}}{4}<0.005$, leading to $-0.37606<x<0.37606$. (g) $\left(1+x^{2}\right)^{1 / 2} \approx 1+\frac{x^{2}}{2}-\frac{x^{4}}{8}+\frac{x^{6}}{16}$. If we use a three term polynomial, then to get a two decimal precision we need $\frac{x^{6}}{16}<.005$ leading to $-0.6564<x<0.6564$.
(2) Exercise 5.2 (c) If we calculate the successive derivatives, then we see that

$$
f^{(n)}(x)= \begin{cases}\cos x & \text { if } n=4 m \\ -\sin x & \text { if } n=4 m+1 \\ -\cos x & \text { if } n=4 m+2 \\ \sin x & \text { if } n=4 m+3\end{cases}
$$

Evaluating the derivatives at 0 , we see that $f^{(n)}(0)=0$ if n is odd. For n even we have that

$$
f^{(n)}(x)= \begin{cases}1 & \text { if } n=4 m=2(2 m) \\ -1 & \text { if } n=4 m+2=2(2 m+1)\end{cases}
$$

as required.
(d) If we calculate the successive derivatives, then we see that

$$
f^{(n)}(x)=\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)(1+x)^{\alpha-n} .
$$

Evaluating at 0 , we get $f^{(n)}(0)=\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)$ as required.
(3) Exercise 5.4 (e) $1-x$.
(4) Exercise 5.10 (a)

$$
\ln x=\ln (1+(x-1))=(x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4} \cdots
$$

This formula is valid if $-1<x-1 \leq 1$, i.e. $0<x \leq 2$.
(b) First note that

$$
\cos x=\cos \left(\frac{\pi}{2}+\left(x-\frac{\pi}{2}\right)\right)=\cos \frac{\pi}{2} \cos \left(x-\frac{\pi}{2}\right)-\sin \frac{\pi}{2} \sin \left(x-\frac{\pi}{2}\right)=-\sin \left(x-\frac{\pi}{2}\right)
$$

Thus,

$$
\cos x=-\sin \left(x-\frac{\pi}{2}\right)=-\left(x-\frac{\pi}{2}\right)+\frac{\left(x-\frac{\pi}{2}\right)^{3}}{3!}-\frac{\left(x-\frac{\pi}{2}\right)^{5}}{5!}+\cdots
$$

