Solutions Book Chapter 28, SCI 113 Spring 2008

(1) Exercise 28.3 (a) f(x,y) = 3x + 7y - 2, $\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = 3$ (answer is independent of x and y, hence, $\frac{\partial f}{\partial x}(2,1) = f_x(2,1) = 3$. Similarly, $\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = 7$, so that $\frac{\partial f}{\partial y}(2,1) = f_y(2,1) = 7$. (c) $f(x,y) = 2x^2 - 3y^2 - 2xy - x - y + 1$, $\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = 4x - 2y - 1$, so $\frac{\partial f}{\partial x}(2,1) = f_x(2,1) = 5$. $\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = -6y - 2x - 1$, so $\frac{\partial f}{\partial y}(2,1) = f_y(2,1) = -11$. (f) f(x,y) = (x-1)(y-2), $\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = (y-2)$, and $\frac{\partial f}{\partial x}(2,1) = f_x(2,1) = -1$. $\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = (x-1)$, and $\frac{\partial f}{\partial y}(2,1) = f_y(2,1) = f_y(2,1) = f_y(2,1) = -1$. (e) $f(x,y) = \frac{1}{xy}$, $\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \frac{-1}{x^2y}$, and $\frac{\partial f}{\partial x}(2,1) = f_x(2,1) = -\frac{1}{2}$. (2) Exercise 28.4 (a) Let u = ax + by, then z = g(u). By the chain rule

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u}\frac{\partial u}{\partial x} = g'(u)a = ag'(ax + by),$$

and

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} = g'(u)b = bg'(ax + by),$$

If $z = g(u) = \cos u$, then $\frac{\partial z}{\partial x} = -a\sin(ax + by)$, and $\frac{\partial z}{\partial y} = -b\sin(ax + by).$
If $z = g(u) = e^u$, then $\frac{\partial z}{\partial x} = ae^{ax+by}$, and $\frac{\partial z}{\partial y} = be^{ax+by}.$
(b) If $z = g(\sin xy)$, then $u = \sin xy$. By the chain rule
 $\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial u}{\partial y}$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} = g'(u)y\cos xy = y\cos xyg'(\sin xy),$$

and

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} = g'(u)x\cos xy = x\cos xyg'(\sin xy).$$

If $g(u) = e^u$, then $z = e^{\sin xy}$. Applying the above formulas, or by differentiating directly, we get $\frac{\partial z}{\partial x} = y \cos xy e^{\sin xy}$ and $\frac{\partial z}{\partial y} = x \cos xy e^{\sin xy}$. (c) V = g(r), where $r = \sqrt{x^2 + y^2}$. Recall theat in polar coordinates $x = r \cos \theta$, and $y = r \sin \theta$, where θ is the angle between the x-axis and the line joining the origin to the point (x, y). By the chain rule

$$\frac{\partial V}{\partial x} = \frac{\partial V}{\partial r} \frac{\partial r}{\partial x} = g'(r) \frac{x}{\sqrt{x^2 + y^2}} = g'(\sqrt{x^2 + y^2}) \frac{x}{\sqrt{x^2 + y^2}},$$

and

$$\frac{\partial V}{\partial y} = \frac{\partial V}{\partial r} \frac{\partial r}{\partial y} = g'(r) \frac{y}{\sqrt{x^2 + y^2}} = g'(\sqrt{x^2 + y^2}) \frac{y}{\sqrt{x^2 + y^2}}$$

We now express $\frac{\partial V}{\partial x}$ and $\frac{\partial V}{\partial y}$ in terms of r and θ :

$$\begin{split} &\frac{\partial V}{\partial x} = g'(\sqrt{x^2 + y^2}) \frac{x}{\sqrt{x^2 + y^2}} = g'(r) \cos \theta, \\ &\frac{\partial V}{\partial y} = g'(\sqrt{x^2 + y^2}) \frac{y}{\sqrt{x^2 + y^2}} = g'(r) \sin \theta. \end{split}$$