Solutions Book Chapter 28, SCI 113 Spring 2008

(1) Exercise 28.8 (a) $\frac{\partial f}{\partial x}=2 x+3 y-1, \frac{\partial f}{\partial y}=4 y+3 x, \frac{\partial^{2} f}{\partial x^{2}}=2, \frac{\partial^{2} f}{\partial y^{2}}=4$ $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=3$, (d) $\frac{\partial f}{\partial x}=\frac{-y}{x^{2}}, \frac{\partial f}{\partial y}=\frac{1}{x}, \frac{\partial^{2} f}{\partial x^{2}}=\frac{2 y}{x^{3}}, \frac{\partial^{2} f}{\partial y^{2}}=0$, $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{-1}{x^{2}}$. (h) $\frac{\partial f}{\partial x}=12(3 x-4 y)^{3}, \frac{\partial f}{\partial y}=-16(3 x-4 y)^{3}, \frac{\partial^{2} f}{\partial x^{2}}=$ $108(3 x-4 y)^{2}, \frac{\partial^{2} f}{\partial y^{2}}=192(3 x-4 y)^{2}, \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=-144(3 x-4 y)^{2}$.
(2) Exercise $28.9 \frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{r^{2}}-\frac{2 x^{2}}{r^{4}}$, and $\frac{\partial^{2} f}{\partial y^{2}}=\frac{1}{r^{2}}-\frac{2 y^{2}}{r^{4}}$. Since $r^{2}=x^{2}+y^{2}$, we get $\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0$.
(3) Exercise 28.10 (b) $\frac{\partial f}{\partial x}(2,2,4)=2=\frac{\partial f}{\partial y}(2,2,4)$. Hence, equation of tangent plane is $(z-4)=2(x-2)+2(y-2)$. Normal vector is $(2,2,-1)$ (or $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}),(\mathbf{d}) \frac{\partial f}{\partial x}(3,4,2)=\frac{-9}{2}, \frac{\partial f}{\partial y}(3,4,2)=-2$, tangent plane: $(z-2)=$ $\frac{-9}{2}(x-3)-2(y-4)$, normal vector is $\left(\frac{-9}{2},-2,-1\right) .(\mathbf{f}) \frac{\partial f}{\partial x}(0,0,1)=0$, $\frac{\partial f}{\partial y}(0,0,1)=0$, tangent plane: $z=1$ (parallel to the $x y$-plane), normal vector $(0,0,-1)$.
(4) Exercise 28.11 We first look at the surface $z=x^{2}+y^{2}: \frac{\partial f}{\partial x}(1,1,2)=2$, $\frac{\partial f}{\partial y}(1,1,2)=2$, so $\mathbf{n}_{\mathbf{1}}=(2,2,-1)$. Now we look at the surface $z=x-y+2$: $\frac{\partial f}{\partial x}(1,1,2)=1, \frac{\partial f}{\partial y}(1,1,2)=-1$, so $\mathbf{n}_{\mathbf{2}}=(1,-1,-1)$. Let θ be the angle between $\mathbf{n}_{\mathbf{1}}$ and $\mathbf{n}_{\mathbf{2}}$, then

$$
\cos \theta=\frac{\mathbf{n}_{\mathbf{1}} \cdot \mathbf{n}_{\mathbf{2}}}{\left|\mathbf{n}_{\mathbf{1}}\right|\left|\mathbf{n}_{\mathbf{1}}\right|}=\frac{1}{3 \sqrt{3}}
$$

Hence $\theta=78.9^{\circ}$ (or 101.1°).
(5) Exercise 28.12 (b) minimum at $(1,-1)$, (c) saddle points at $(1,1)$ and $(-1,-1)$, minimum at $(1,-1)$, and maximum at $(-1,1),(\mathbf{k})$ a saddle point at $(0,0)$.

