Solutions Book Chapter 8, SCI 113 Spring 2008

(1) Exercise 8.1 (b) 0, (c) 1, (d) -1, (f) 6.
(2) Exercise 8.2 (a) Row 2 is a multiple of row 1, (b) column 2 is the sum of column 1 and column 3 . In other words, if you change column 3 by adding to it column 1, then you get a matrix with two identical columns, hence the determinant must be zero. (c) Row 3 is the difference of row 1 and row 2. (d) Column 2 and column 3 are identical.
(3) Exercise $8.3 a^{2} c \Delta$.
(4) Exercise 8.4 (a) 1192, (b) 1728, (c) -22 , (d) -8132.
(5) Exercise 8.5 Expand in the first column to get $\Delta=(b-c)(a-b)(c-a)$.
(6) Exercise 8.7 The equation of the line passing through $\left(a_{1}, b_{1}\right)$ and $\left(a_{2}, b_{2}\right)$ is given by

$$
y-b_{1}=\frac{b_{1}-b_{2}}{a_{1}-a_{2}}\left(x-a_{1}\right),
$$

equivalently $y=\frac{b_{1}-b_{2}}{a_{1}-a_{2}} x+\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1}-a_{2}}$. If you expand the determinant in the third column and set it equal to zero (and simplify), you will get the above equation. Finally, (a) $-4 x+y+5=0$ and (b) $x+5 y+1=0$.
(7) Exercise $8.8 a=7$.

