## Solutions Book Chapter 13 (Continued), SCI 113 Spring 2008

(1) Exercise 13.12 Eigenvalues are $\lambda_{1}=-5, \lambda_{2}=-1$ and $\lambda_{3}=0$. Corresponding eigenvectors are $t\left(\begin{array}{c}7 \\ -5 \\ 1\end{array}\right), t\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)$, and $t\left(\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right)$. The $\operatorname{matrix} C=\left(\begin{array}{ccc}7 & -1 & -1 \\ -5 & -1 & 0 \\ 1 & 1 & 2\end{array}\right)$ satisfies

$$
C^{-1} A C=\left(\begin{array}{ccc}
-5 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(2) Exercise 13.13 The matrix $C=\left(\begin{array}{cc}-2 & 2 \\ 1 & 1\end{array}\right)$ diagonalizes $A$ since

$$
C^{-1} A C=\left(\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right)
$$

(3) Exercise 13.14 $C=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & -1 \\ 0 & 1 & 2\end{array}\right)$, and

$$
C^{-1} A C=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

(4) Exercise 13.15 First note that if $D=\left(\begin{array}{ccccc}\lambda_{2} & 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & \lambda_{n}\end{array}\right)$ is an $n \times n$ diagonal matrix, then $\operatorname{det}(D)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$. If $C^{-1} A C=D$, then $A C=C D$, hence $\operatorname{det}(A C)=\operatorname{det}(A) \operatorname{det}(C)=\operatorname{det}(C) \operatorname{det}(D)=\operatorname{det}(C D)$. Since $C$ is an invertible matrix $\operatorname{det}(C) \neq 0$. Dividing both sides by $\operatorname{det}(C)$ we get that $\operatorname{det}(A)=\operatorname{det}(D)=\lambda_{1} \lambda_{2} \cdots \lambda_{n}$.
(5) Exercise 13.28 Eigenvalues of $A$ are $\lambda_{1}=4, \lambda_{2}=1$ and $\lambda_{3}=-1$. The matrix $C$ is given by $C=\left(\begin{array}{ccc}2 & -1 & -3 \\ 2 & -1 & 3 \\ 2 & 2 & 0\end{array}\right)$, and

$$
C^{-1} A C=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

(6) Exercise 9.4.3 Lecture Notes (1) Matrix $M$ corresponds to $S_{1}$, matrix $N$ corresponds to $S_{2}$, and matrix $L$ corresponds to $S_{3}$. (2) Stable distribution $=$ components of the eigenvector corresponding to the dominant eigenvalue. For matrix $L$ the stable distribution is $\left(\begin{array}{c}16 \\ 2 \\ 1\end{array}\right)$, for matrix $M$
the stable distribution is $\left(\begin{array}{l}8 \\ 2 \\ 1\end{array}\right)$, and for matrix $N$, the stable distribution is $\left(\begin{array}{l}2 \\ 1 \\ 1\end{array}\right)$. (3) Under matrix $L$ we have

$$
\left(\begin{array}{l}
N_{1}(n) \\
N_{2}(n) \\
N_{3}(n)
\end{array}\right)=\frac{1}{2^{n}}\left(\begin{array}{c}
16 \\
2 \\
1
\end{array}\right)
$$

Under matrix $M$ we have

$$
\left(\begin{array}{l}
N_{1}(n) \\
N_{2}(n) \\
N_{3}(n)
\end{array}\right)=\left(\begin{array}{l}
8 \\
2 \\
1
\end{array}\right)
$$

Under matrix $N$ we have

$$
\left(\begin{array}{l}
N_{1}(n) \\
N_{2}(n) \\
N_{3}(n)
\end{array}\right)=\frac{1}{2^{n}}\left(\begin{array}{l}
2 \\
1 \\
1
\end{array}\right)
$$

