Solutions Book Chapter 11, SCI 113 Spring 2008

- (1) Exercise 11.1 (a) 4i + 7j + 5k and in component form (4, 7, 5), (b) -4i 7j 5k and in component form (-4, -7, -5), (c) 0 (zero vector), (d) -9, (e) -9.
- (2) Exercise 11.4 Note that the vector **a** is perpendicular to the plane $a_1x + a_2y + a_3z = d$. Thus, to show that the vector $\mathbf{a} \times \mathbf{u}$ is parallel to the plane, it is enough to show that $\mathbf{a} \times \mathbf{u}$ is perpendicular to **a**. This is indeed true since $\mathbf{a} \cdot (\mathbf{a} \times \mathbf{u}) = 0$ (property (d) in section 11.3 p.220). To find a vector parallel to the plane 2x 3y z = 1, we choose any vector \mathbf{u} say $\mathbf{u} = \mathbf{i} = (1, 0, 0)$, and calculate $\mathbf{a} \times \mathbf{u}$ with $\mathbf{a} = (2, -3, -1)$, we get vector $\mathbf{w} = (0, -1, 3) = -\mathbf{j} + 3\mathbf{k}$. So \mathbf{w} and $-\mathbf{w}$ are two vectors parallel to the given plane.
- (3) Exercise 11.5 We check when $|\mathbf{a} \times \mathbf{b}| = 0$. Since $|\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ (θ is the angle between vectors \mathbf{a} and \mathbf{b}), we see that the cross product is zero in three cases: either $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$ or \mathbf{a} and \mathbf{b} are parallel (this corresponds to the case $\sin \theta = 0$).
- (4) Exercise 11.6 Since $\mathbf{a} \cdot \mathbf{b} = 0$, the vectors \mathbf{a} and \mathbf{b} are perpendicular. The vector $\mathbf{c} = \mathbf{a} \times \mathbf{b} = -21\mathbf{i} + 42\mathbf{j} 14\mathbf{k}$ is perpendicular to \mathbf{a} and \mathbf{b} .