Solutions Book Chapter 11, SCI 113 Spring 2008

(1) Exercise 11.1 (a) $4 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k}$ and in component form $(4,7,5)$, (b) $-4 \mathbf{i}-$ $7 \mathbf{j}-5 \mathbf{k}$ and in component form $(-4,-7,-5)$, (c) $\mathbf{0}$ (zero vector), (d) -9 , (e) -9 .
(2) Exercise 11.4 Note that the vector a is perpendicular to the plane $a_{1} x+$ $a_{2} y+a_{3} z=d$. Thus, to show that the vector $\mathbf{a} \times \mathbf{u}$ is parallel to the plane, it is enough to show that $\mathbf{a} \times \mathbf{u}$ is perpendicular to \mathbf{a}. This is indeed true since $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{u})=0$ (property (d) in section 11.3 p .220).
To find a vector parallel to the plane $2 x-3 y-z=1$, we choose any vector \mathbf{u} say $\mathbf{u}=\mathbf{i}=(1,0,0)$, and calculate $\mathbf{a} \times \mathbf{u}$ with $\mathbf{a}=(2,-3,-1)$, we get vector $\mathbf{w}=(0,-1,3)=-\mathbf{j}+3 \mathbf{k}$. So \mathbf{w} and $-\mathbf{w}$ are two vectors parallel to the given plane.
(3) Exercise 11.5 We check when $|\mathbf{a} \times \mathbf{b}|=0$. Since $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$ (θ is the angle between vectors \mathbf{a} and \mathbf{b}), we see that the cross product is zero in three cases: either $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$ or \mathbf{a} and \mathbf{b} are parallel (this corresponds to the case $\sin \theta=0$).
(4) Exercise 11.6 Since $\mathbf{a} \cdot \mathbf{b}=0$, the vectors \mathbf{a} and \mathbf{b} are perpendicular. The vector $\mathbf{c}=\mathbf{a} \times \mathbf{b}=-21 \mathbf{i}+42 \mathbf{j}-14 \mathbf{k}$ is perpendicular to \mathbf{a} and \mathbf{b}.

