Assignment 4, SCI 113 Spring 2008

due date: May 7,2008

- Write your name and student number on each page you hand in.
- You are allowed to use the book Mathematical Techniques by Jordan and Smith and the lecture notes by Frits Beukers.
- You should explain how you have calculated your answers
- You should do this assignment individually. You are not allowed to work in groups.
(1) (a) Calculate the Taylor polynomial of degree 4 around the point $\pi / 6$ for the function $f(x)=\sin ^{2} x$.
(b) If you use the polynomial of part (a) to approximate $\sin 31^{\circ}$, how many correct digits do you expect?
(c) Use the polynomial of part (a) to approximate $\sin 31^{\circ}$.
(2) Using Taylor series, find the following limits
(a) $\lim _{x \rightarrow 0} \frac{x \sin x}{\cos x-1}$.
(b) $\lim _{x \rightarrow 1} \frac{\ln x}{x^{2}-1}$.
(3) (a) Show that $10!\geq 3 \cdot 10^{6}$. Here you may use your calculator.
(b) Show that

$$
n!\geq 3 \cdot 10^{n-4}
$$

for all integers $n \geq 10$.
(c) Show that for any $n \geq 9$,

$$
\left|e^{-1}-\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}\right| \leq 10^{3-n}
$$

(d) We want to approximate e^{-1} by means of the finite sum $\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}$. How large should n be in order to approximate e^{-1} with an accuracy of 15 decimals? Motivate your answer.
(e) Use Mathematica to make a table which confirms the correctness of your answer.
(4) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $z=f(x, y)=x^{3}+y^{3}-3 x-12 y+20$.
(a) Find all stationary points of the above function.
(b) For each stationary point obtained in part (a), determine whether f attains a local maxima, local minima, a saddle point, or is of a different nature.
(c) Find the equation of the tangent plane to the surface $z=f(x, y)$ at the point $(2,1,11)$.
(5) Consider a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with the property that the partial derivatives

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial x \partial y}
$$

are all defined and continuous. For x, y different from zero, we consider the function

$$
Q(x, y)=\frac{f(x, y)-f(0, y)-f(x, 0)+f(0,0)}{x y}
$$

(a) Show that for each x, y there exists a real number $t_{x, y}$ lying between 0 and x such that

$$
Q(x, y)=\frac{\frac{\partial f}{\partial x}\left(t_{x, y}, y\right)-\frac{\partial f}{\partial x}\left(t_{x, y}, 0\right)}{y}
$$

Hint: apply the mean value theorem to the one variable function $\phi(x)=f(x, y)-f(x, 0)$.
(b) Show that in addition there exists a real number $s_{x, y}$ lying between 0 and y such that

$$
Q(x, y)=\frac{\partial^{2} f}{\partial y \partial x}\left(t_{x, y}, s_{x, y}\right)
$$

(c) Show that

$$
\lim _{(x, y) \rightarrow(0,0)} Q(x, y)=\frac{\partial^{2} f}{\partial y \partial x}(0,0)
$$

(d) By applying a similar argument as above, show that also

$$
\lim _{(x, y) \rightarrow(0,0)} Q(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(0,0)
$$

