

Boedapestlaan 6

3584 CD Utrecht

Measure and Integration Exercises 4

- 1. Let $A, B \subseteq \mathbb{R}^N$, and suppose that $A \subseteq B$ and $|B \setminus A|_e = 0$. Show that if A is measurable, then B is measurable and |A| = |B|.
- 2. Prove that $|x + E|_e = |E|_e$ for all $x \in \mathbb{R}^N$ and every $E \subseteq \mathbb{R}^N$.
- 3. Let $A \subseteq \mathbb{R}^M$. The inner Lebesgue measure of A is defined by

$$|A|_i = \sup\{|K|_e : K \subseteq A, K \text{ is compact }\}.$$

Prove the following.

- (a) $|A|_i \leq |A|_e$ for all $A \in \mathbb{R}^M$.
- (b) If $A \subseteq B$, then $|A|_i \le |B|_i$.
- (c) If A_1, A_2, \ldots are disjoint, then $|\bigcup_{n=1}^{\infty} A_n|_i \ge \sum_{n=1}^{\infty} |A_n|_i$.
- (d) If A is compact or open, then $|A|_e = |A|_i$.