Universiteit Utrecht

Mathematisch Instituut

Universiteit Utrecht

Boedapestlaan 6 3584 CD Utrecht

Measure and Integration Final Exam Due date: June 30, 2004 You must work on this exam individually. It is not allowed to discuss this exam with your fellow student.

- 1. Let ν be a σ -finite measure on (E, \mathcal{B}) , and suppose $E = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\nu(E_n) < \infty$ for all $n \ge 1$. Define μ on \mathcal{B} by $\mu(\Gamma) = \sum_{n=1}^{\infty} 2^{-n} \nu(\Gamma \cap E_n) / (\nu(E_n) + 1)$.
 - (a) Prove that μ is a finite measure on (E, \mathcal{B}) .
 - (b) Show that for any $\Gamma \in \mathcal{B}$, $\nu(\Gamma) = 0$ if and only if $\mu(\Gamma) = 0$.
 - (c) Find explicitly two positive measurable functions f and g such that

$$\mu(A) = \int_A f d\nu$$
 and $\nu(A) = \int_A g d\mu$

for all $A \in \mathcal{B}$.

- 2. Suppose that μ_i, ν_i are finite measures on (E, \mathcal{B}) with $\mu_i \ll \nu_i$, i = 1, 2. Let $\nu = \nu_1 \times \nu_2$ and $\mu = \mu_1 \times \mu_2$.
 - (a) Show that $\mu \ll \nu$.
 - (b) Prove that $\frac{d\mu}{d\nu}(x,y) = \frac{d\mu_1}{d\nu_1}(x) \cdot \frac{d\mu_2}{d\nu_2}(y) \nu$ a.e.
- 3. Let (E, \mathcal{B}, μ) be a measure space.
 - (a) Suppose $f, g \in L^1(\mu)$ are such that $\int_A f d\mu \leq \int_A g d\mu$ for all $A \in \mathcal{B}$. Show that $f \leq g \ \mu$ a.e.
 - (b) Show that μ is σ -finite **if and only if** there exists a **strictly** positive measurable function $f \in L^1(\mu)$.
- 4. Let (E, \mathcal{B}, μ) be a measure space, and $\{f_n\} \subseteq L^1(\mu), f \in L^1(\mu)$ be such that (i) $f_n, f \ge 0$ for $n \ge 1$, (ii) $\int_E f_n d\mu = \int_E f d\mu < \infty$ for $n \ge 1$, and (iii) $f_n \to f \mu$ a.e.
 - (a) Show that $\lim_{n \to \infty} \int_E (f f_n)^+ d\mu = 0.$ (b) Prove that $\lim_{n \to \infty} \sup_{A \in \mathcal{B}} |\int_A f_n d\mu - \int_A f d\mu| = 0.$

- 5. Consider the measure space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda)$, where $\mathcal{B}(\mathbb{R})$ is the Borel σ -algebra, and λ Lebesgue measure.
 - (a) Let μ be a probability measure on $(\mathbb{R}, \mathcal{B}(\mathbb{R}) \text{ and } f : \mathbb{R} \to [0, 1)$ a measurable function such that $\mu\left(f^{-1}([\frac{k}{2^n}, \frac{k+1}{2^n}))\right) = \frac{1}{2^n}$ for $n \ge 1$ and $k = 0, \dots, 2^n 1$. Show that $f \in L^2(\mu)$, and determine the value of $||f||_{L^2(\mu)}$.
 - (b) Show that $\lim_{n \to \infty} \int_0^n \left(1 \frac{x}{n}\right)^n e^{x/2} d\lambda(x) = 2.$
 - (c) Let $f : \mathbb{R} \to \overline{\mathbb{R}}$ be measurable, and suppose $\int_{\mathbb{R}} f(x) d\lambda(x)$ exists. Show that for all $a \in \mathbb{R}$, one has

$$\int_{\mathbb{R}} f(x-a) d\lambda(x) = \int_{\mathbb{R}} f(x) d\lambda(x)$$

(d) Let $k, g \in L^1(\lambda)$. Define $F : \mathbb{R}^2 \to \mathbb{R}$, and $h : \mathbb{R} \to \overline{\mathbb{R}}$ by

$$F(x,y) = k(x-y)g(y)$$
 and $h(x) = \int_{\mathbb{R}} F(x,y)d\lambda(y).$

- (i) Show that F is measurable.
- (ii) Show that $\lambda(|h| = \infty) = 0$ and $\int_{\mathbb{R}} |h| d\lambda \leq \left(\int_{\mathbb{R}} |k| d\lambda \right) \left(\int_{\mathbb{R}} |g| d\lambda \right)$.
- 6. Consider the measure space $([a, b], \mathcal{B}, \lambda)$, where \mathcal{B} is the Borel σ -algebra on [a, b], and λ is the restriction of the Lebesgue measure on [a, b]. Let $f : [a, b] \to \mathbb{R}$ be a bounded Riemann integrable function. Show that the Riemann integral of f on [a, b] is equal to the Lebesgue integral of f on [a, b], i.e.

$$(R) \int_{a}^{b} f(x)dx = \int_{[a,b]} fd\lambda.$$