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Chapter 1

Taylor series

1.1 Derivatives

Suppose we have a function f(x) which is defined on a domain V ⊂ R. This
domain can be an interval, such as (2, 3) (endpoints not included) or [3, 4]
(endpoints included), halflines, such as [2,∞) (all numbers ≥ 2), or the set
of real numbers itself. Let us assume that f(x) can be differentiated at every
point of the domain V . The derivative is a new function on V for which we
have various notations, such as

f ′(x),
df

dx
(x), Df(x).

Suppose that the derivative can again be differentiated. The resulting second
derivative function can be denoted by

f ′′(x),
d2f

dx2
(x), D2f(x).

Similarly, the n-th derivative function is denoted by

f (n)(x),
dnf

dxn
(x), Dnf(x).

1.2 Computation of functions

We know how to compute a function like f(x) = x2, simply take x and
multiply with itself. But what about the sine function, i.e. how to compute
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6 CHAPTER 1. TAYLOR SERIES

sin(0.3) for example? One might grab a pocket calculator and compute the
value. But then the question arises how the calculator gets its value. Or,
suppose we want sin(0.3) to a higher precision than the one provided by the
pocket calculator, what should we do then?
The difference between the functions x2 and sin(x) is that the first is a so-
called rational function and the second is a transcendental function. Rational
functions can be computed directly, transcendental functions are defined by
limit procedures. Limit procedures are computations where we get better and
better approximations of the actual value as we continue our computation.
An example of a limit procedure is the use of Taylor approximations.
Here is the general theorem we like to use. In it we have a function f(x) which
is defined in an interval (−p, p) around x = 0 and which can be differentiated
as many times as we like.

Theorem 1.2.1 (Taylor) Let x ∈ (−p, p) and let n = 1, 2, 3, . . .. Then

f(x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 + · · ·+ 1

n!
f (n)(0)xn + Error

where

|Error| ≤ |x|n+1

(n + 1)!
max
t∈I

|f (n+1)(t)|.

Here I is the interval between 0 and x (i.e. [0, x] if x > 0 and [x, 0] if x < 0).

The application of this Theorem lies in the observation that if we take x
not too big, like x = 0.1, then the power xn+1 = 0.1n+1 in the Error term
will be quite small, i.e. the Error term itself is small. In that way we can
compute approximations of values of f(x) by evaluating the summation in
our Theorem (assuming we know f(0), f ′(0), f ′′(0), . . .).
Let us take the example f(x) = sin(x). We take n = 5. Here is a table of
the first 6 derivatives of sin(x) and their values in x = 0.

k f (k)(x) f (k)(0)
0 sin(x) 0
1 cos(x) 1
2 − sin(x) 0
3 − cos(x) −1
4 sin(x) 0
5 cos(x) 1
6 − sin(x)
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Application of our Theorem now tells us that

sin(x) = x − x3

6
+

x5

120
+ Error

with

|Error| ≤ |x|6
720

× max
t∈[0,x]

| sin(t)| ≤ |x|6
720

.

Check this yourself!! Taking x = 0.3 we find that

sin(0.3) ≈ 0.3 − 0.33

6
+

0.35

120
= 0.29552

with an error estimate

|Error| ≤ 0.36

720
≤ 0.0000011.

If we want sin(0.3) with a better precision, we simply choose a bigger value
of n and compute more terms. The expression

Tn(x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3 + · · ·+ 1

n!
f (n)(0)xn

is called the n-th order Taylor approximation of f(x) around x = 0 and we
shall denote it by Tn(x). We have seen above that we can compute values of
sin(x) with any precision we like by taking higher and higher order Taylor
approximations. The construction of a Taylor approximation of sin(x) is
based on the fact that we do know explicit values of sin(x) and its derivatives
at the point x = 0.

1.3 Philosophy of Taylor approximations

You may wonder where the expressions for the Taylor approximations come
from. Consider the n-th order Taylor approximation Tn(x). Take its value
in x = 0. We get Tn(0) = f(0) (Check this!). Now take the first derivative
of Tn(x) and then set x = 0. We get T ′

n(0) = f ′(0) (Check!). Similarly for
the second derivative, T ′′

n (0) = f ′′(0). This holds all the way up to the n-the

derivative, T
(n)
n (0) = f (n)(0). In other words, Tn(x) is a so-called polynomial

function, whose derivatives in the point 0 are the same as those of f(x) all
the way up to the n-th derivative.
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The philosophy is that if two functions have the same derivatives at the
point 0 up to a high order, then their function values near 0 will also have
a tendency to be close together. Of course this is only a philosophy and it
remains to be seen how it works in practice. As a matter of fact, in many
cases it does work quite well. As an illustration you see here a combined plot
of sin(x) and its Taylor approximations T1(x), T3(x), T5(x) and T7(x),

sin x

T3 T7

T5T1

x

y

Observe that the approximations become better and better as the order in-
creases. As a further illustration you see here a plot of sin(x) with T1(x), . . . , T47(x),

5 9 13 17 21 25 29 33 37 41 45

3 7 11 15 19 23 27 31 35 39 43 47

x

y

We will not give a proof of Taylor’s theorem. However, in the Appendix to
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this chapter we do give a proof for the first order taylor approximation, i.e.
the case n = 1. This approximation is a very important one, also known as
the linear approximation of f(x) at the point x = 0.

1.4 Taylor approximations at arbitrary points

There is no reason why we should restrict ourselves to approximations near
the point x = 0. Suppose we have a function f(x), which can be differentiated
any number of times, and which is defined in an interval (a−p, a+p) around
some point a. We now like to choose our values of x close to a and we suggest
this by writing x = a+h, where h is considered as a small displacement from
a. We have the following Theorem,

Theorem 1.4.1 (Taylor) Let h ∈ (−p, p) and let n = 1, 2, 3, . . .. Then

f(a+h) = f(a)+f ′(a)h+
1

2
f ′′(a)h2 +

1

6
f ′′′(a)h3 + · · ·+ 1

n!
f (n)(a)hn +Error

where

|Error| ≤ |h|n+1

(n + 1)!
max
t∈I

|f (n+1)(t)|.

Here I is the interval between a and a+h (i.e. [a, a+h] if h > 0 and [a+h, a]
if h < 0).

You may be able to notice that this Theorem follows from the previous
Theorem applied to the function g(x) = f(a + x) and then x replaced by h.

As before, the most important approximation is the linear approximation

T1(a + h) = f(a) + f ′(a)h

or, if we replace h by x − a,

T1(x) = f(a) + f ′(a)(x − a).

The graph of this linear approximation is simply the straight line which is
tangent to the graph of f(x) above x = a.
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x
a

f(x)

f(a)

f(a) + f’(a) (x-a)

From the expression f(a) + f ′(a)(x − a) we see that the slope (= tan(α)
where α is the angle between the line and the x-axis) of the tangent is equal
to f ′(a). Since the tangent line and the graph of f(x) have the same slope,
the graph of f(x) has also a slope of f ′(a) above the point x = a.

1.5 Exercises

Exercise 1.5.1 Compute the fifth order Taylor approximation of ex around
x = 0. Using this Taylor approximation, compute an approximation of e0.1.
To how many digits is this value correct? Using your approximation, compute
an appriximation of e. (Use of a pocket calculator is encouraged, without
touching the ex button however).

Exercise 1.5.2 Write down the Taylor approximation for ex for any n. Do
the same for sin(x), cos(x) and 1/(1 − x).

Exercise 1.5.3 Compute the third order Taylor approximation of
√

1 + x
around x = 0. If you use this third order approximation to determine

√
1.1,

how many correct digits do you expect? Do the evaluation.

Exercise 1.5.4 Compute the third order Taylor approximation of
√

1 + 4x
in two ways. First by computing the derivatives, secondly by taking the pre-
vious exercise and replacing x by 4x.
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Exercise 1.5.5 To see that Taylor approximations do not always a nice pat-
tern evaluate the third order Taylor approximation of tan(x) around x = 0.

1.6 Appendix

For those interested we prove Taylor’s Theorem for the case n = 1:

Theorem 1.6.1 (Taylor for n = 1) Let x ∈ (−p, p). Then

f(x) = f(0) + f ′(0)x + Error

where

|Error| ≤ |x|2
2

max
t∈I

|f ′′(t)|.

Here I is the interval between 0 and x.

Proof We rewrite f(x) as

f(x) = f(0) +

∫ x

0

f ′(t)dt.

To check this, simply compute the integral on the right hand side. We
now perform a partial integration with the underlying observation that the
derivative of (t − x)f ′(t) with respect to t is f ′(t) + (t − x)f ′′(t).

f(x) = f(0) +

∫ x

0

f ′(t)dt

= f(0) + [(t − x)f ′(t)]x0 −
∫ x

0

(t − x)f ′′(t)dt

= f(0) + xf ′(0) −
∫ x

0

(t − x)f ′′(t)dt

You may recognize the first order Taylor approximation and the error term
should be

Error = −
∫ x

0

(t − x)f ′′(t)dt.

This integral can be estimated by the maximal absolute value of f ′′(t) over
the interval between 0 and x (denoted by I), multiplied by the integral of
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t − x. So,

|Error| =

∣

∣

∣

∣

∫ x

0

(t − x)f ′′(t)dt

∣

∣

∣

∣

≤ max
t∈I

|f ′′(t)| ·
∣

∣

∣

∣

∫ x

0

(t − x)dt

∣

∣

∣

∣

≤ |x|2
2

max
t∈I

|f ′′(t)|.

2



Chapter 2

Solving equations

2.1 Introduction

In many situations the solution of a mathematical problem amounts to the
solution of one or more equations in one or more unknowns. There is no
general method to solve a system of equations and the approach will have to
depend on the number of equations, the number of unknowns and also the
complexity of the functions involved.

Another matter that needs to be addressed is the question of what you mean
by a solution. For example, a solution to the equation x2 − 2 = 0 is of
course

√
2 (and −

√
2 the other solution). But what does the symbol

√
2

mean? A pocket calculator gives us 1.414213562373. But of course this is
only a numerical approximation. This is handy if you want to have numerical
answers in your computations, but the approximation will never allow you
to verify with one hundred percent certainty that for example

√

3 + 2
√

2 = 1 +
√

2.

To verify this we simply square both sides and use the fact that
√

2 squared
equals 2 precisely. In this course we shall mainly aim for numerical answers
of our computations, but it is good to be aware of the phenomenon of exact
versus approximate values. In particular because Mathematica and others
good quality mathematical software packages make this distinction.

13



14 CHAPTER 2. SOLVING EQUATIONS

2.2 Equations in one variable

At high school you have probably solved such equations. For example 2x =
1, 3x − 2 = 0, etc. Equations of the form

ax − b = 0

where a, b are given numbers, a 6= 0, and x is the unknown quantity to be
solved. These equations are called linear equations in one variable. The word
linear refers to the fact that the unknown occurs only to the first power in
the equation. There is one solution x, which is of course

x =
b

a
.

You have probably also seen equations of the form

ax2 + bx + c = 0

where a, b, c are given numbers with a 6= 0 and x is again the unknown.
These equation are called quadratic equations in one unknown since x2 is the
highest power of x that occurs in the equation. There are two solutions x1, x2

given by

x1,2 =
−b ±

√
b2 − 4ac

2a

if b2 − 4ac > 0, there is only one solution if b2 − 4ac = 0 and there are no
solutions if b2 − 4ac < 0. This formula is probably familiar from high school
and it is known since Babylonian times. When we speak of solutions here we
think about solutions in R, the real numbers. Later, we extend the world of
real number by the symbol

√
−1 and obtain the so-called complex numbers.

Quadratic equations always have solutions in the complex numbers.
Of course we can now proceed and consider equations of the form

ax3 + bx2 + cx + d = 0

where a, b, c, d are given, a 6= 0, and x is agian the unknown. This is called
a cubic or third degree equation for obvious reasons. Its solution was found
by the renaissance mathematician Tartaglia, but the formula is refered to as
Cardano’s formula. Mathematica has Cardano’s formula in its database and
if you issue the command

Solve[a ∗ x3 + b ∗ x2 + c ∗ x + d == 0, x]
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Mathematica spits out

−b

3 a
− 2

1

3 (−b2 + 3 a c)

3 a

(

−2 b3 + 9 a b c − 27 a2 d +
√

4 (−b2 + 3 a c)3 + (−2 b3 + 9 a b c − 27 a2 d)2
) 1

3

+

(

−2 b3 + 9 a b c − 27 a2 d +
√

4 (−b2 + 3 a c)3 + (−2 b3 + 9 a b c − 27 a2 d)2

)
1

3

3 · 2 1

3 a

as one of the solutions. Of course this is an answer, but the question is
whether this is a useful answer. If you look at it critically, its only merit is
that the Cardano formula has expressed the solution of a cubic equation in
terms of the root extractions

√
A = A1/2 and 3

√
A = A1/3. But for numerical

solution the formula is much too complicated.
There is a similar story for fourth degree equations. Again there is a formula,
this time found by Ferrari in the 16th century. Ferrari’s formula is even
more complicated than Cardano’s. It expresses the solution of the fourth
degree equation in terms of root and cube root extractions. To make things
worse, for fifth degree equations it is even impossible to express its solutions
in terms of (higher) root extractions. This was shown by the Norwegian
mathematician N.H.Abel in the beginning of the 19th century.

2.3 The Newton-Raphson method

Despite the fact that it becomes difficult, or even impossible, to write down
formulae for the solution of higher order equations, they often do possess one
or more solutions. In this section we discuss a numerical procedure which
allows us to compute the solution of a one variable equation very quickly to
any precision we like. It is called the Newton-Raphson method.
It is based on the following idea. Suppose we have an equation of the form
f(x) = 0, where f(x) can be a polynomial of degree 3 or 4, but also a
function like tan(x) − x. By plotting the graph we may see several zeros of
f(x). We select the one that interests us and call it z (of zero). Choose a first
approximation x0 to z. Now draw the tangent to the graph of f(x) above the
point x0. This tangent intersects the x-axis in another point, which is often
a better approximation to z. Call this point x1 and repeat the operation,
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but now with x1 instead of x0. We get a new point x2, and continue our
procedure. Here is a picture of what we had in mind.

x

y

x1

x2 x0

z

In this way we get a sequence of x-values x0, x1, x2, . . . , xn, . . . that approx-
imate the zero z better and better. The relation between the n-th approxi-
mation point xn and n + 1-st point xn+1 is given by

xn+1 = xn − f(xn)

f ′(xn)
.

This can be seen as follows. The tangent to the graph of f above the point
xn is given by

y = f(xn) + f ′(xn)(x − xn).

We intersect this line with the x-axis by putting y = 0. So we get

0 = f(xn) + f ′(xn)(x − xn).

Solving for x gives us

x = xn − f(xn)

f ′(xn)

and this gives us precisely the desired formula for xn+1.
Let us do a simple example with f(x) = x2 − 10. We like to determine its
positive zero by taking x0 = 2 as a starting approximation. Notice that with
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f(x) = x2 − 10 we have

x − f(x)

f ′(x)
= x − x2 − 10

2x
= x − x

2
+

10

2x
=

1

2

(

x +
10

x

)

.

So we get the recursive relation

xn+1 =
1

2

(

xn +
10

xn

)

, n ≥ 0

Starting with x0 = 2 we can compute x1, x2, . . . and we get for the first few
values

n xn

0 2.0000000000 . . .
1 3.5000000000 . . .
2 3.17857142857 . . .
3 3.16231942215 . . .
4 3.16227766044 . . .
5 3.16227766016 . . .
6 3.16227766016 . . .

Note that after 6 steps the first ten digits of our approximation have sta-
bilised. We can check that

√
10 = 3.1622776601683 . . .. In fact, the Newton-

Raphson method works so well that at every step the number of correct
digits is roughly doubled. Such convergence speed is quite exceptional in
the branch of numerical mathematics. Moreover, the beauty is that it works
equally fast for the solution of third order and higher order equations, with-
out ever knowing about Cardano’s or Tartaglia’s formulae. It also works very
well for transcendental equations like tan(x) − x = 0.

Although the source code of Mathematica is not public, it is very likely that
the Mathematica function FindRoot works by using the Newton-Raphson
method.

2.4 Systems of linear equations

In many applications we need to solve systems of equations in several un-
knowns. For example, if we are asked for a pair of numbers whose sum equals
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100 and whose difference equals 40, this amounts to the set of equations

x + y = 100

x − y = 40

This is an example of a system of two linear equations in two unkowns. The
term linear refers to the fact that both unknowns x, y occur only to the first
power in the equations. In general a system of two linear equations in two
unknowns x, y has the form

ax + by = p

cx + dy = q

where a, b, c, d, p, q are given numbers. Equations like this can be solved by
using elimination of variables. In our first example we can express y in terms
of x by using the first equation to get y = 100−x. We can use this knowledge
in the second equation x − y = 40 when we replace the y there by 100 − x.
We get x − (100 − x) = 40. After a little algebra we see that 2x = 140 and
so, x = 70. The value of y is then 100− 70 = 30. The elimination of y could
have been done a bit more elegant by simply adding the two equations to
obtain 2x = 140. Here is another example of a system of 3 equations in 3
unknowns x, y, z,

−x + y + z = −1

2x − y − z = 0

3x + 2y − z = 2

Elimination of variables is achieved by taking linear combination of the equa-
tion. Add the first equation twice to the second, and three times to the third.
We find,

−x + y + z = −1

y + z = −2

5y + 2z = −1

Notice that the last two equations only contain the unknowns y and z. De
unknown x has been eliminated form these equations. Now subtract the
second five times from the third,
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−x + y + z = −1

y + z = −2

−3z = 9

From the last equation follows z = −3. From the second it follows that,
y = −2 − z = 1 and from the first, x = 1 + y + z = 1 + 1 − 3 = −1. The
solution reads, x = −1, y = 1, z = −3. Verify that this is indeed a solution
to our original set of equations.
We can also write down the above operations in a schematic bookkeeping
style. Denote the system of equations by the matrix





−1 1 1
2 −1 −1
3 2 −1

∣

∣

∣

∣

∣

∣

−1
0
2





Add the first row twice to the second and three times to the third,




−1 1 1
0 1 1
0 5 2

∣

∣

∣

∣

∣

∣

−1
−2
−1





Subtract the second row 5 times from the third,




−1 1 1
0 1 1
0 0 −3

∣

∣

∣

∣

∣

∣

−1
−2
9





The last row schematicaaly represents −3z = 9 and so we find z = −3 again.
The value of x, y can be recovered similarly.
The systematic procedure we have just sketches is known as Gaussian elim-
ination.
You might think that if we have two linear equations in two unknows, or three
linear equations in three unknowns, the number of solutions is always one,
or at least finite. However, this is not so, as we can see from the following
example which has infinitely many solutions.

Example Solve,
x +y −2z = 1

2x +y −3z = 2
−x +2y −z = −1
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Schematically




1 1 −2
2 1 −3
−1 2 −1

∣

∣

∣

∣

∣

∣

1
2
−1





Elimination of x from the second and third equation,




1 1 −2
0 −1 1
0 3 −3

∣

∣

∣

∣

∣

∣

1
0
0





Elimination of y from the third equation,




1 1 −2
0 −1 1
0 0 0

∣

∣

∣

∣

∣

∣

1
0
0





The last equation reads 0 = 0 which is no restriction on x, y, z at all. So we
can just drop the last equation to find

x +y −2z = 1
y −z = 0

From the second it follows that y = z and from the first, x = 1−y+2z = 1+z.
Apparently we can choose z arbitraily and the values of x, y just follow the
choice of z. So we have an infinity of solutions.

It may also happen that there are no solutions at all.

Example We take the same equation as before, but replace the −1 on the
bottom right into a −2. Schematically,

x +y −2z = 1
2x +y −3z = 2
−x +2y −z = −2

The elimination procedure is entirely similar, except that we end with




1 1 −2
0 −1 1
0 0 0

∣

∣

∣

∣

∣

∣

1
0
−1





The last equation reads 0 = −1. This can never happen, no matter how we
choose x, y, z. We call the system contradictory.
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2.5 A geometrical interpretation

Let us consider an arbitrary system of two linear equations in two unknowns
x, y again.

ax + by = p

cx + dy = q

In general such a system will have precisely one solution, but there are ex-
ceptions. Sometimes there are no solutions, sometimes infinitely many. A
system which has no solutions is for example

x + y = 1

x + y = 2

An example of a system with infinitely many solutions,

x + y = 1

2x + 2y = 2

Both statements are very easy to check (Do this!). You may find the above
examples a cheat, but actually all cases of systems of two linear equations
with two unknowns, having infinitely many or no solutions at all, are of this
level of difficulty.
To see this, we use a geometrical interpretation of the equations. The points
(x, y) in the plane that satisfy an equation of the form ax + by = p form a
straight line, except when a, b are both zero. Let us assume that a, b are not
both zero and call the line l. Another equation of the form cx + dy = q also
represents a straight line, which we denote by m. Finding a simultaneous
solution for the system

ax + by = p, cx + dy = q

actually comes down to the determination of the point of intersection of l and
m. Usually two lines l, m in the plane intersect in precisely one point. But
there are two exceptions. The first is when l and m are distinct but parallel.
Parallel lines do not intersect, so there is no solution for the corresponding
system. The other exception is when l and m coincide. Then there are of
course infinitely many points of intersection. The lines l, m coincide if the
corresponding equations differ by a constant factor (as in our example).
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Now you can also understand why three linear equations in two unknowns
generally do not have a solution. Three lines in the plane generally do not
meet in one point. If they do, we are in a very special situation.
A similar geometrical interpretation holds for equations in 3 unknowns x, y, z.
The points (x, y, z) in three dimensional space that satisfy a linear equation
ax+by+cz = p form a two-dimensional plane (assuming that not all numbers
a, b, c are zero). Solving three linear equations in three unknowns thus comes
down to determining a common point of intersection of three planes in space.
If the planes are in general position, they meet in exactly one point, and the
corresponding linear equations have precisely one solution. But there are
special configurations of the three planes, which have no common point or
which have infinitely points in common. It is a very nice exercise to think of
all such possible configurations.

2.6 Arbitrary systems of equations

As we said before, there is no general method to solve systems van m equa-
tions in n unknowns. The general principle is to eliminate variables, but this
may become quite complicated. So we just give a number of examples here.

Example The system

y = x2

x2 + y2 = 2

We can eliminate y by substitution of y = x2 in the second equation. We
get x2 + x4 = 2. Usually we use the computer to solve such fourth degree
equations, but here we are lucky to see that x = 1 and x = −1 are solutions.
They are also the only solutions, which we can see by making a plot of
x4 + x2 − 2,

-2 -1 1 2

-2

2

4

6

8
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There is also geometrical interpretation of our system. The points (x, y) that
satisfy y = x2 form a parabola and x2 +y2 = 2 is a circle. Solving the system
comes down to determining the intersection of these two curves. Here is a
combined picture,

-1.5 -1 -0.5 0.5 1 1.5

-1.5

-1

-0.5

0.5

1

1.5

2

Note the two points of intersection corresponding to x = ±1 and y = 1. If
we would sink the parabola a bit, there is a possibility that the parabola
intersects the circle in four points. Here is a picture of the system

y = x2 − 2

x2 + y2 = 2

-1.5 -1 -0.5 0.5 1 1.5

-2

-1.5

-1

-0.5

0.5

1

Substitution of y = x2 − 2 in x2 + y2 = 2 gives x2 + (x2 − 2)2 = 2. After
evaluation of the square we get x4 − 3x2 + 2 = 0. Again we see the solutions
x = ±1, but in addition we get x = ±

√
2. The corresponding values of y are

y = −1 and y = 0 respectively.
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Sinking the parabola even lower, say y = x2 − 3 would give us a system
that has no solutions at all. Here is the combined plot of y = x2 − 3 and
x2 + y2 = 2,

-2 -1 1 2

-3

-2

-1

1

2.7 Exercises

Exercise 2.7.1 We determine 3
√

10 via Newton’s method, by determining
the zero of x3 − 10.

1. Show that the Newton iteration looks like

xn+1 =
1

3

(

2xn +
10

x2
n

)

.

2. Choose a starting value x0 and make a table of the values x0, x1, . . . , x6

(you can use your pocket calculator to do the computations, without
touching the cube root button though). Compare the final x6 with the
actual value of 3

√
10 (now you may use the cube root button, or simply

take the cube of x6).

Exercise 2.7.2 We perform the same exercise, but now to determine the
(unique) zero of x3 − x − 1.

1. Show that the Newton iteration looks like

xn+1 =
2x3

n + 1

3x2
n − 1
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2. Choose a starting value x0, say x0 = 2, and make a table of the values
x0, x1, . . . , x6 (you can use your pocket calculator to do the computa-
tions). To check how close x6 is to the actual root, simply compute
x3

6 − x6 − 1.

Exercise 2.7.3 Solve the following systems of linear equations

(a)

{

x1 −3x2 = 5
x2 = 4

(b)

{

x1 −3x2 = 5
−2x1 + 5x2 = 4

(c)







x1 +3x2 −2x3 = 4
x2 +5x3 = 2

x3 = 2
(d)







x1 −2x2 −x3 = 5
x2 +3x3 = 4

x3 = −2

Exercise 2.7.4 Solve the following systems of linear equations

(a)







x1 +x2 = −7
2x1 +4x2 +x3 = −16
x1 +2x2 +x3 = 9

(b)







x +2y +z = 0
3x +2y +z = 2
2x +3y +2z = 2

Exercise 2.7.5 Suppose we have three non-zero numbers x, y, z that add up
to 1000. Suppose we also know that x is three times y and z two times x−y.
Determine x, y, z.

Exercise 2.7.6 Certain rocks are composed of the minerals wollastonite CaSiO3

(Wo), pyroxene CaAl2SiO6 (Py) and quartz SiO2 (Qu). These minerals are
all composed of the oxides SiO2, Al2O3 and CaO. Analysis of such rock sam-
ples reveal the weight percentages of these oxides. In a certain sample, entirely
composed of the above minerals, it is found that there is 63.8 weight percent
SiO2, 14.0 percent Al2O3 and 22.2 percent CaO. It is given that the atomic
weights of O,Al,Si and Ca are 16,27,28 and 40 respectively.

1. Determine the molecular weights of the oxides and minerals.

2. Let x1, x2, x3 be the weight percentages of Wo, Py, Qu present in the
rock sample. Compute x1, x2, x3.

Exercise 2.7.7 A greengrocer sells apples, bananas and oranges. Altogether
he has 1500 pieces of fruit. The average weight of an apple, banana and
orange are 120, 140 and 160 gram respectively. He sells the apples for 50 ct
apiece, the bananas for 40 ct and the oranges for 60 cent. Suppose the total
weight of the fruit is 208 kilogram and the greengrocer sells everything for
760 guilders. How many pieces of each fruit did he have at the beginning?
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Exercise 2.7.8 Make a geometrical sketch of the following two systems of
equations and then solve them.

(a)

{

x2 + y2 = 2
y = 2x + 3

(b)

{

x2 + y2 = 2
(x − 1)2 + (y − 2)2 = 1

Exercise 2.7.9 Solve the following two systems of equations.

(a)







x2 + 2y2 = 6
y = zx
x = 4zy

(b)







x2 + y2 + z2 = 10
y = x + 2
z = 2x − y



Chapter 3

Complex numbers

3.1 Introduction

From the moment the root function
√

x was introduced, we were told that
one cannot extract roots from negative numbers. In other words, the square
root of a negative number does not exist. However, history of mathematics
has taught us otherwise. It turns out that we can simply pretend that

√
−1

exists for example, and that we can just compute with it like any other
number. It should only be realised then, that we are not working within the
system of common numbers, or real numbers R, but in the larger system of
complex numbers. Before 1750 the use of complex numbers was restricted
as a handy tool to determine (real) solutions of polynomial equations. After
1750 it became increasingly clear that complex numbers play a fundamental
role in the study of functions and their integrals. Nowadays complex numbers
are as indispensable in the exact sciences as the common real numbers.

3.2 Arithmetic

We shall denote the quantity
√
−1 by i. An expression of the form a + bi,

where a and b are real numbers, is called a complex number. Examples:
2 + i, −1 + 3i, π −

√
2 i, e + πi, etcetera. The set of complex numbers

is denoted by C. It is obvious that the real numbers R form a subset of
C. For any complex number z = a + bi we call a the real part of z and b
the imaginary part of z. Complex numbers with zero imaginary part are of
course real numbers. Numbers with zero real part, i.e. of the form bi, are

27
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called imaginary numbers.

Within the complex numbers we can do arithmetic in the usual way. We
have

Addition and subtraction. In general,

a + bi + c + di = a + c + (b + d)i

and

a + bi − (c + di) = a − c + (b − d)i

Example: 3+2i + (−5+3i) = 3−5+(2+3)i = −2+5i en 3+2i − ((−5)+3i) =
3 + 5 + (2 − 3)i = 8 − i.

Multiplication. In general:

(a + bi)(c + di) = ac + adi + bci + bdi2 = ac − bd + (ad + bc)i

Example: (3 + 2i)(−5 + 3i) = −15 + 9i − 10i + 6i2 = −21 − i. Notice in
particular that (a + bi)(a − bi) = a2 + b2.

Division.In general:

a + bi

c + di
=

(a + bi)(c − di)

(c + di)(c − di)
=

ac + bd + (bc − ad)i

c2 + d2
=

ac + bd

c2 + d2
+

bc − ad

c2 + d2
i.

In the first step we multiplied numerator and denominator by c− di. In this
way the numbers becomes equal to c2 +d2, which is a real number. Example:

3 + 2i

−5 + 3i
=

(3 + 2i)(−5 − 3i)

(−5 + 3i)(−5 − 3i)
=

−15 + 6 − (9 + 10)i

25 + 9
= − 9

34
− 19

34
i.

Complex numbers can be represented in the XY-plane. We simply associate
the point (a, b) to the complex number a + bi. In this way we can think of
the entire XY-plane as being occupied by complex numbers. We therefore
speak of the complex plane. The real number are then located precisely on
the X-axis. The numbers on the Y-axis are the imaginary numbers.
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X

Y

1 2

i 2+i

-1+2i

-2-1.5i

To any complex number z = a+ bi we assign the absolute value or modulus r
and an argument φ as in the following picture. Notation, r = |z|, φ = arg(z).

X

Y a+bi

r
ϕ

Convince yourself that a complex number is uniquely determined by its ab-
solute value and argument. So the numbers r and φ give a second charac-
terisation of complex numbers. They are often called the polar coordinates.
There are two subtleties though. One is that the argument is not uniquely
determined, but only up to multiples of 2π. To any argument we can add 2π
radians (or 360 degrees), and the complex number doesn’t change. A second,
smaller subtlety is dat the argument of z = 0 is completely undetermined.
However, having an argument in this case is not really necessary since |z| = 0
already determines z uniquely as z = 0.
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Using the complex plane representation we can illustrate addition and mul-
tiplication. Addition:

X

Y

a+bi

(a+c)+(b+d)i

c+di

It turns out that addition of the complex numbers a+bi and c+di corresponds
simply to the vector addition of the vectors (a, b) and (c, d).

For multiplication we have the following useful rules.

Theorem 3.2.1 Let z1, z2 be any complex numbers. Then,

1. i) |z1z2| = |z1||z2| (‘The absolute value of a product equals the product
of the absolute values’).

2. ii) arg(z1z2) = arg(z1)+arg(z2) (‘The argument of a product equals the
sum of the arguments’).

In the last section of this chapter we shall show prove this theorem. We
illustrate multiplication by i with two pictures. In the left hand picture we
have selected a number of points in the complex plane. In the right hand
picture you see these points, all multiplied by i.
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X

Y

X

Y

Multiplication by i causes a 90 degree anti-clockwise rotation. The explana-
tion is simple. For any complex number z we have |iz| = |i| · |z| = |z| and
arg(iz) = arg(i)+arg(z) = π/2+arg(z). In other words, iz has been rotated
90 degrees (=π/2 radians) with respect to z.

Another example, multiplication by −1 +
√

3 i. We have | − 1 +
√

3 i| = 2
and arg(−1 +

√
3 i) = 2π/3. This means that multiplication by −1 +

√
3 i

causes a magnification by a factor 2 and rotation over an angle 2π/3 (=120
degrees).

X

Y

X

Y

3.3 The exponential notation

It is not very hard to establish the connection between the rectangular co-
ordinates a, b of a complex number and its polar coordinates r, φ. Convince
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yourself that thsi relation is given by

a = r cos φ, b = r sin φ.

So we get
a + bi = r(cos φ + i sin φ).

Complex numbers of the form cos φ + i sin φ lie on the unit circle in the
complex plane (i.e. their absolute value is 1, and their argument is equal
to φ. Using this representation it is not hard to prove Theorem 3.2.1 about
the rules of multiplication for complex numbers. Suppose that we have two
complex numbers z1, z2 whose absolute values are r1, r2 and with arguments
φ1, φ2. Then we have

z1z2 = r1r2(cos φ1 + i sin φ1)(cos φ2 + i sin φ2)

= r1r2(cos φ1 cos φ2 − sin φ1 sin φ2 +

i(sin φ1 cos φ2 + cos φ1 sin φ2))

Now we use the standard addition formulae for sine and cosine,

cos φ1 cos φ2 − sin φ1 sin φ2 = cos(φ1 + φ2)

sin φ1 cos φ2 + cos φ1 sin φ2 = sin(φ1 + φ2)

to get
z1z2 = r1r2(cos(φ1 + φ2) + i sin(φ1 + φ2)).

From this formula we can read off that the absolute value of z1z2 is r1r2 =
|z1| · |z2| and that the argument of z1z2 is equal to φ1 +φ2 = arg(z1)+arg(z2).
On might say that the argument of a complex number acts as if it is some
sort of logarithm with respect to multiplication. An immediate consequence
of the addition property of arguments is the following.

Theorem 3.3.1 (De Moivre’s theorem) We have for any integer n and
any real number φ that

(cos φ + i sin φ)n = cos(nφ) + i sin(nφ).

Now comes an interesting step. We put

eiφ = cos φ + i sin φ.
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Then De Moivre’s formula can be rewritten as

(eiφ)n = enφ,

a very natural looking formula. With this notation we also get the natural
looking formula

eiφ1eiφ2 = ei(φ1+φ2).

In fact, the connection between the exponential function ez at imaginary
values z and cos, sin becomes even more apparent if we look at Taylor series
expansions. Notice that

eiφ = 1 +
iφ

1!
+

(iφ)2

2!
+

(iφ)3

3!
+

(iφ)4

4!
+

(iφ)5

5!
+

(iφ)6

6!
+ · · ·

First we collect the even powers of iφ. We get

1 +
(iφ)2

2!
+

(iφ)4

4!
+

(iφ)6

6!
+ · · · = 1 − φ2

2!
+

φ4

4!
− φ6

6!
+ · · ·

You probably recognize the Taylor series for the cosine function. If you don’t
believe, just compute a few more terms. If we collect the odd powers of iφ
we get

iφ

1!
+

(iφ)3

3!
+

(iφ)5

5!
+

(iφ)7

7!
+ · · · = i

φ

1!
− i

φ3

3!
+ i

φ5

5!
− i

φ7

7!
+ · · ·

This time you may recognize i times the Taylor series of the sine function.
So we conclude that, once again,

eiφ = cos φ + i sin φ.

This relation was discovered by the famous 18-th century mathematician
Leonhard Euler. In particular, if we take φ = π we get

eπ
√
−1 = −1,

a formula which gives a mysterious looking connection between the three
equally mysterious numbers e, π,

√
−1.

From now on, when we have a complex number z with absolute r and argu-
ment φ, we write

z = reiφ.
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3.4 Polynomial equations

We have seen that complex arose because we extended the real numbers R

by the new quantity i =
√
−1. Notice now that the roots of all negative

numbers belong to C. For example,
√
−2 =

√
2 i,

sqrt−9 = 3i etc. Notice by the way that −i, −
√

2 i, −3i can be considered
as roots of −1,−2,−9 equallly well. This corresponds to the fact that x2 =
−1, x2 = −2, x2 = −9 etc. has two solutions. For square roots of positive
numbers you are probably used to taking the positive value, but of course
we could also have taken the negative root.

The nice thing about complex numbers is, that square roots of complex
numbers also exist. An example, solve X2 = i (i.e. determine

√
i). The

easiest way to do this is to use the exponential notation and writing i = eπi/2.
So we must solve

X2 = eπi/2

This gives us X = eπi/4. This solution is a complex number with a 45 degree
argument and absolute value 1. In a picture,

X

Y

1

1/ √ 2

1/ √ 2

π/4

We see that 1/
√

2+ i/
√

2 is a solution. There is also a second solution which
we get if we write i = e(2+1/2)πi. Solving X2 = e(5/2)πi gives us X = e5πi/4 =
eπieπi/4 = −eπi/4 as was to be expected. The second solution is opposite,
namely −1/

√
2 − i/

√
2.

But there is more. For example, consider the equation X5 = 1. One solution
is clear, X = 1 and this is the only real solution in R. In C there are more
solutions however. We can see them if we write 1 = e2πki where k is an
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integer. Solving X5 = e2πki gives us

X = 1, e2πi/5, e4πi/5, e6πi/5, e8πi/5

In principle we could continue with e10πi/5 but this equals e2πi = 1 and the
sequence of solutions repeats itself. So we have found five distinct solutions
whose absolute values are 1 and with arguments 0, 2π/5, 4π/5, 6π/5, 8π/5.
Here is a picture in the complex plane,

X

Y

1

ζ

ζ
2

ζ
3

ζ
4

Moreover, these are all solutions and we have that

X5 − 1 = (X − 1)(X − ζ)(X − ζ2)(X − ζ3)(X − ζ4).

Perhaps you find it a number like e2πi/5 a bit unsatisfactory. It is possible to
write its real and imaginary part. We would get

ζ = −1

4
+

√
5

4
+ i

√

5 +
√

5

8
.

Not very illuminating. Also, writing down its numerical value does not reveal
much,

ζ = 0.3090169943 · · ·+ (0.9510565162 · · ·)i.
The important thing to remember is that e2πi/5 is a complex number, which
is uniquely determined by its absolute value and argument.
One of the amazing things about complex numbers is that they do not only
allow us to take suare roots, or higher roots, but also allow us to solve any
polynomial equation.
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Theorem 3.4.1 (Main Theorem of algebra) Consider any polynomial P (X)
of degree n given by

Xn + an−1X
n−1 + an−2X

n−2 + · · ·+ a1X + a0

where a0, a1, . . . , an−1 ∈ C. Then there exist precisely n complex numbers
α1, α2, . . . , αn such that

P (X) = (X − α1)(X − α2) · · · (X − αn).

In particular, α1, α2, . . . , αn are solutions of P (X) = 0.

Roughly speaking, this theorem tells us that an n-th degree polynomial equa-
tion has n solutions in C (α1, α2, . . . , αn, to wit). Proving this theorem is
not very easy. Although complex numbers were used in the 18-th century,
it was not until the beginning of the 19-th century that the famous mathe-
matician C.F.Gauss convincingly showed that the theorem is true under all
circumstances.

3.5 Exercises

Exercise 3.5.1 Determine the sum and product of the following pairs of
numbers

(a)
2 + i
3 + 2i

(b)
1 − 2i
1 + 3i

(c)
2i

3 + 7i
(d)

i +
√

3
1 + i

√
3

(e)
5 + 3i
5 − 3i

.

Exercise 3.5.2 Determine the following quotients,

(a)
2 + i

3 + 2i
(b)

2 + 3i

1 + 2i
, (c)

2i

2 − 5i
(d)

5

2 + i
(e)

3 + i

1 + i
.

Exercise 3.5.3 Write the following complex numbers in the polar form reiφ,

(a) 1 + i (b) 1 + i
√

3 (c) − 3

(d) 4i (e)
√

3 − i (f) − 1 − i.

Exercise 3.5.4 Put the following complex numbers in the rectangular form
a + bi,

(a) e3πi (b) e2πi/3 (c) 3eiπ/4 (d) πe−iπ/3.

(e) e2πi/6 (f) 2e−iπ/2 (g) e−iπ (h)e−5iπ/4.
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Exercise 3.5.5 Let α be a complex number 6= 0. Show that there are two
distinct complex numbers whose square is α.

Exercise 3.5.6 Let a + bi be a complex number. Find real numbers x, y so
that

(x + iy)2 = a + bi

by expressing x, y in terms of a, b.

Exercise 3.5.7 Find the real and imaginary part of i1/4, with argument lying
between 0 and π/2.

Exercise 3.5.8 Using De Moivre’s formula for n = 3, show that

cos(3φ) = (cos φ)3 − 3 cosφ(sin φ)2.



Chapter 4

Functions in several variables

In practical applications we often encounter functions in several variables of
which we need to determine (local) maxima and minima.

First we say what is meant by a function in several variables. Let D be a
region of Rn. A function f which assigns to every point in D a real number
value, is called a function in n variables. Examples of two variable functions
are

f(x, y) = x2 + y2 on D = R
2

f(x, y) = y/x on D = R
2 minus y − axis

f(x, y) =
1

1 − x2 − y2
on x2 + y2 < 1.

Examples of three variable functions,

f(x, y, z) = x2 + y2 + z2, f(x, y, z) =
sin(z)

x + y + 1
, f(x, y, z) = log(x − yz).

In the remainder of this chapter we will restrict our attention to two-variable
functions. However, most of the things we say, almost immediately carries
over to n-variable functions.

Functions of two variables can be plotted in three dimensions. Here are two
examples, the functions f(x, y) = x2 + y2 and f(x, y) = xy both defined on
D = R2.

38
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Another two examples are f(x, y) =
√

x2 + y2 − 1 defined on x2 + y2 ≥ 1
and sin(x2 + y2) defined on R

2.
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As you see, the three-dimensional graphs of functions of two variables look
like mountaineous landscapes. This immediately suggests another way of
plotting two-variable functions. By drawing the curves of equal height we
get a so-called contour plot of our function. This is nothing else than the
lines of altitude that one can see plotted on maps of mountain ranges. Or, if
you want, the isobaric lines on a weather map. Here are the contourplots of
f(x, y) = x2 + y2 and f(x, y) = xy,
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Strictly speaking, in a contourplot we plot the so-called level lines of the
function f(x, y). The level line of f(x, y) corresponding to the value c is the
curve in the x, y-plane given by the implicit equation f(x, y) = c.

From your experience with mountain maps you can undoubtedly see that the
point (0, 0) in the first contour plot indicates either a mountain peak or the
bottom of a valley (which one is it?). The second plot, that of f(x, y) = xy,
strongly indicates a mountain pass at the point (0, 0) (compare with the 3D-
plot). In the next section we shall continue the discussion of local maxima
and minima for functions in several variables. For the moment we need a
few more facts on functions in several variables.

4.1 Partial derivatives

Functions in several variables can be differentiated, just like functions of one
variable. But since there are more variables we can also choose with respect
to which variable we like to differentiate. Let f(x, y) be a function of two
variables. The partial derivative with respect to x is the derivative we get if
we treat y as an ordinary constant. Notations: ∂xf, ∂f

∂x
or fx. Similarly, if we

treat the x-variable as a constant we get the partial derivative with respect
to y. Notations: ∂yf, ∂f

∂y
or fy. Of course we can also repeat differentiation

to get second and higher derivatives. But there are several kinds of them,
since we can choose a variable at each differentiation. Here are the second
derivatives,

∂2f

∂x2
,

∂2f

∂x∂y
,

∂2f

∂y∂x
,

∂2f

∂y2
.
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In alternative notations

∂2
xf, ∂x∂yf, ∂y∂xf, ∂2

yf

and
fxx, fxy, fyx, fyy.

Of course these differentiations can only take place under the assumption that
the derivatives actually exist. Here are some partial derivatives of x sin(x2 +
y2).

∂f

∂x
= 2x2 cos(x2 + y2) + sin(x2 + y2),

∂f

∂y
= 2xy cos(x2 + y2)

and the second derivatives

∂2f

∂x2
= 6x2 cos(x2+y2)−4x3 sin(x2+y2),

∂2f

∂y2
= 2xy cos(x2+y2)−4xy2 sin(x2+y2)

∂2f

∂y∂x
= 2y cos(x2+y2)−4x2y sin(x2+y2),

∂2f

∂x∂y
= 2y cos(x2+y2)−4x2y sin(x2+y2).

Carry out the computation yourself (by hand!). Notice that the last two
mixed derivatives are equal. You may not have expected this while doing the
calculation, but this equality is no coincidence. It works for any function f
that is sufficiently often differentiable.

Theorem 4.1.1 Let f(x, y) be a function of two variables in a region D ⊂
R2. Suppose that the first and second order derivatives of f exist and are
continuous functions in the interior of D. Then we have

∂2f

∂y∂x
=

∂2f

∂x∂y

in every point (x, y) in the interior of D.

Roughly speaking, when doing calculations with repeated differentiation, the
ordering of the variables in the differentiation does not matter. Just as with
one variable functions, we have also Taylor approximations for functions
in several variables. Suppose we have a function f(x, y) in two variables
defined in the neighbourhood of a point (a, b) and whose partial derivatives
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of sufficient high order also exist and are continuous. Then the linear Taylor
approximation of f(x, y) near the point (a, b) is given by

f(a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b).

This is a function of the form Ax + By + C, a linear function of x, y, and
its three dimensional graph is a plane. In fact, this plane is precisely the
tangent plane of the graph of f(x, y) above the point (a, b).
There is also a second order Taylor approximation which reads,

f(a, b) +
∂f

∂x
(a, b)(x − a) +

∂f

∂y
(a, b)(y − b)

+
1

2

∂2f

∂x2
(a, b)(x − a)2 +

∂2f

∂x∂y
(a, b)(x − a)(y − b) +

1

2

∂2f

∂y2
(a, b)(y − b)2.

In less elaborate notation,

f(a, b) + fx(a, b)(x − a) + fy(a, b)

+
1

2
fxx(a, b)(x − a)2 + fxy(x − a)(y − b) +

1

2
fyy(a, b)(y − b)2.

There also exist higher order Taylor approximations, but they become pro-
gressively more complicated. The general shape of the n-th order term is like
this. Write down all possible terms of the form

1

n!

∂nf

∂x1∂x2 · · ·∂xn
(a, b)(x1 − a1)(x2 − a2) · · · (xn − an)

where, for each i the variables xi, ai are either x, a or y, b. So for each i we
have 2 choices, which gives us a total of 2n terms. The sum of all these terms
is the n-th term in a Taylor approximation.
For example, for n = 2 the four terms read

1

2

∂2f

∂x2
(a, b)(x − a)2,

1

2

∂2f

∂x∂y
(a, b)(x − a)(y − b)

1

2

∂2f

∂y∂x
(a, b)(y − b)(x − a),

1

2

∂2f

∂y2
(a, b)(y − b)2

Since the order of differentiation does not matter, the middle two terms are
the same and we can group them together to get the three second order terms
you see in the second order Taylor approximation.
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4.2 The gradient

Suppose we have a function of two variables defined in a region D ⊂ R2.
In every point (a, b) ∈ D we can consider the 2-vector (fx(a, b), fy(a, b)).
This vector is called the gradient of the function f at the point (a, b). It is
denoted by ∇f or by gradf . The gradient vectors form an examples of a so-
called vector field. At every point we can draw an arrow corresponding to the
gradient. Here is a picture of the contourlines of the function xy/(2+x2+y2)2

together with the gradient vectors at a large number of points.
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Notice that the gradient vectors are all perpendicular to the level lines. In
fact, the direction of a gradient vector in a point (a, b) is precisely the di-
rection of steepest ascent of f at the point (a, b). An explanation for this
phenomenon can be found in the rest of this section.

Theorem 4.2.1 Suppose we have a curve C in the plane given by the im-
plicit equation g(x, y) = 0. Let (a, b) be a point on C. Then the line in the
plane which is tangent to C in the point (a, b) is given by the equation

gx(a, b)(x − a) + gy(a, b)(y − a) = 0.

As an example consider the circle x2 + y2 = 5. It contains the point (2, 1).
Taking f(x, y) = x2 + y2 − 5 we get fx(2, 1) = 4, fy(2, 1) = 2. So the tangent
in (2, 1) of the circle is given by

4(x − 2) + 2(y − 1) = 0.

In simplified form, 4x + 2y − 10 = 0 or, if you want, y = 5 − 2x.
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The idea of the proof is simply that the tangent line is actually the 0-level
line of the linear approximation of g(x, y) at the point (a, b). The linear
approximation of g is given by gx(a, b)(x− a) + gy(a, b)(y − b) and its 0-level
line by 0 = gx(a, b)(x − a) + gy(a, b)(y − b). This is precisely the equation of
our tangent.
As an application to the level lines of a function we have,

Consequence 4.2.2 Let f(x, y) be a function defined in a region D ⊂ R2

and (a, b) an interior point of D. Then the tangent to the level line of f
through the point (a, b) is given by fx(a, b)(x − a) + fy(a, b)(y − b) = 0.

Suppose f(a, b) = C. Then the level line of f through (a, b) is given by
f(x, y) = C or, f(x, y) − C = 0. Now apply Theorem 4.2.1 to the function
g(x, y) = f(x, y) − C. Since gx = fx and gy = fy, our consequence follows
immediately.
The explanation why the gradient is perpendicular to the level line is now
simple. Suppose we have a straight line given by the equation Ax + By =
C with (A, B) 6= (0, 0). Then the vector (A, B) is perpendicular to this
line. For a derivation see the Chapter on Vectors. In particular, we know
that the level line of the function f through (a, b) has tangent given by
fx(a, b)(x − a) + fy(a, b)(y − b) = 0. Hence the vector (fx(a, b), fy(a, b)) is
perpendicular to it and thus perpendicular to the level line.

4.3 Exercises

Exercise 4.3.1 Determine fx(x, y), fy(x, y) when

(a) f(x, y) = exy, (b) f(x, y) = x sin y, (c) f(x, y) = y log x.

Exercise 4.3.2 Determine fxx(x, y), fxy(x, y), fyx(x, y), fyy(x, y) when

(a) f(x, y) = exy, (b) f(x, y) = x sin y, (c) f(x, y) = y log x, (d) f(x, y) = xexy+y.

Exercise 4.3.3 An important equation in mathematical physics is the heat
equation. The unknown function is a function of two variables, t (time) and
x (place). It reads ut = Duxx, where D is some material constant. Show
that each of the following functions is a solution

1. u(x, t) = x4 + 12Dx2t + 12D2t2
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2. u(x, t) = e4Dt−2x

3. u(x, t) = e−4Dt cos(2x)

4. u(x, t) = e−x2/4Dt/
√

t

Exercise 4.3.4 Determine the equation of the plane in R3 which is tangent
to the surface z = F (x, y) in the point P for the following choices of F and
P ,

1. F (x, y) = x3 + 2xy2 − 6xy and P = (1, 1,−3)

2. F (x, y) = log(1 + x2 + 2y2) and P = (0, 0, 0)

3. F (x, y) =
√

6 − x2 − y2 and P = (1, 1, 2)

Exercise 4.3.5 Determine the equation of the line in R2 which is tangent
to the curve g(x, y) = 0 in the point P for the following choices of g and P ,

1. g(x, y) = x3 − 3x2 + 4y2 and P = (−1, 1)

2. g(x, y) = y2 + xy2 + x − 1 and P = (0, 1)

For each of these two cases also determine all points of the curve where the
tangent is horizontal respectively vertical.

Exercise 4.3.6 Determine the second order Taylor approximation of

exy

1 + x2 + y2

around the point (0, 0).

Exercise 4.3.7 Let us determine the third order Taylor approximation of
a function in the point (a, b). We have already seen the shape of the lin-
ear and quadratic part of this approximation from the second order Taylor
approximation. Determine the third order part we write down all possible
terms

1

3!

∂3f

∂x1∂x2∂x3

(a1, a2)(x1 − a1)(x2 − a2)(x3 − a3)

where (xi, ai) runs over both choices (x, a) and (y, b) for i = 1, 2, 3. In total
there are 8 such terms.

1. Write down all these terms.

2. Group these terms together, using the fact that the order of differenti-
ation does not matter.



Chapter 5

Maxima and minima

5.1 Introduction

The problem of maxima and minima is something that keeps virtually ev-
erybody busy in daily life. For example, where do I buy the cheapest car,
how do I invest my money at maximal profit, what is the shortest path from
the bus stop to the lecture room, and so on. You can probably think of
a host of similar problems. Questions like these may arise on a personal
scale, a corporate scale, national scale or even international scale. An ex-
ample of the latter is how to maximize world wide economic growth while
keeping the CO2-level at an accepted rate. Although mathematics cannot
solve all these questions for us, there are certainly mathematical principles
underlying these problems. Ever since the Second World War a new branch
of mathematics, called optimisation and control theory, has evolved. It was
stimulated precisely by optimisation problems in economics both on a micro
and macroscopical scale. In this chapter we shall discuss the theory of max-
ima and minima of functions in one and several variables and have a brief
meeting with so-called Lagrange multipliers. These Lagrange multipliers play
an all pervasive role in optimisation theory.

5.2 Local maxima and minima in one variable

Let us consider a function f(x) on an interval V . Let a be a point in V .
We say that f(x) has a local maximum in a if there is a small open interval
D = (a− ε, a + ε) around a, such that f(a) ≥ f(x) for every point in V ∩D.

46
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Similarly, f(x) has a local minimum in a if there is a small open interval
D = (a− ε, a + ε) around a, such that f(a) ≤ f(x) for every point in V ∩D.
There is a very nice criterion to determine local maxima and minima of a
function f(x). However, it only works for functions that are differentiable.
To make thing mathematically correct we have to speak of the interior of
interval. By this we mean all points of V minus its possible boundary points.
So the interior of the interval 1 ≤ x ≤ 2 is 1 < x < 2, and the interior of the
set of points with x ≥ 5 is x > 5.

Theorem 5.2.1 Let f(x) be a function defined on an interval V , and let a
be a point in the interior of V . Assume that f(x) can be differentiated on
the interior of V and that f ′x) is continuous. Suppose that f(x) has a local
maximum or minimum in a. Then f ′(a) = 0.

We do not give a rigorous proof, but informally it is not hard to see why this
theorem is true. Above the point a the function f(x) can be approximated by
its linear approximation l(x) = f(a) + f ′(a)(x− a). The graph of this linear
approximation is a straight line, tangent to the graph of f(x) above x = a.
If f ′(a) > 0 or f ′(a) < 0 the tangent line has positive, resp. negative slope.
This means that the linear approximation is increasing resp. decreasing in
a, and the same holds for f(x). So if f ′(a) > 0 or f ′(a) < 0, the function
f(x) cannot have a local extreme in a. The only conclusion left is that f ′(a)
should be zero.
So, to find local extrema of f(x) we have to determine the zeros of f ′(x).
The zeros of f ′(x) are called the stationary points of f(x). However, not
every stationary point is a point where f(x) is locally extreme. For example,
f(x) = x3. Notice that f ′(0) = 0, but f(x) has no local extreme in x = 0
(explain why!). So, if we have found a stationary point of f(x) we need some
additional verification to see if we are dealing with a local extreme. There
are various ways of doing this, but the most automatic one is by using the
following Theorem.

Theorem 5.2.2 Let f(x) be a function defined on an interval I. Assume
that f(x) is at least twice differentiable in the interior of I and that f ′′(x) is
continuous on I. Let a be a stationary point of f(x). Then,

i) f ′′(a) > 0 ⇒ f(x) has a local minimum in a.

ii) f ′′(a) < 0 ⇒ f(x) has a local maximum in a.
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Again we do not give a rigorous proof. But we can get some insight of why
this theorem is true by looking at the second order Taylor approximation of
f(x) around x = a. Because f ′(a) = 0 this second order approximation has
the form

q(x) = f(a) +
1

2
f ′′(a)(x − a)2.

When f ′′(a) 6= 0 the graph of this quadratic function is a parabola of one of
the following two forms

The first picture corresponds to f ′′(a) > 0, the second to f ′′(a) < 0. The
graph of f(x) has a similar shape around x = a, and so we recognize which
is the local maximum and which the local minimum.

When f ′′(a) = 0 the matter is undecided. For example, consider the functions
x3 and x4 around x = 0. They both have first and second order derivative
at x = 0. But x3 has no local extremum at x = 0, whereas x4 has a local
minimum at x = 0. In cases like that, further investigation is required. We
shall not do that however, since cases like these rarely occur in practice.

5.3 Local maxima and minima in several vari-

ables

In many practical circumstances one is asked to find the (local) maxima and
minima of functions of several variables. In this section we shall discuss a
technique to compute them. You will probably see that many of the things
that in this section are almost the exact analogue of the one variable case.

First we need to say what we mean by a local minimum or maximum. Let
f(x, y) be a function of two variables which is defined in a region V ⊂ R2. We
say that f assumes a local maximum in a point (a, b) ∈ V if there is a small
disk D, with positive radius and (a, b) as center, such that f(x, y) ≤ f(a, b)
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for all points (x, y) ∈ V ∩ D. Similarly, f assumes a local minimum in (a, b)
if there is a small disk D such that f(x, y) ≥ f(a, b) for all (x, y) ∈ V ∩ D.

Just as in the one variable case there is a criterion which enables one to
compute local maxima and minima. This criterion holds for interior points
of V . A point (a, b) of a domain V ⊂ R2 is called interior point if there is a
small disk around (a, b) with positive radius, which is completely contained
in V . Roughly speaking, a point (a, b) ∈ V is called interior if it is completely
surrounded by points of V . The set of all interior points of V is simply called
the interior of V , i.e. V with its boundary points stripped.

Theorem 5.3.1 Let f(x, y) be a function defined in a domain V ⊂ R2 and
suppose its first derivatives exist in the interior of V and are continuous there.
Suppose (a, b) is an interior point of V where f assumes a local maximum
or minimum. Then

∂f

∂x
(a, b) = 0

∂f

∂y
(a, b) = 0.

Again we do not give an exact proof. Intuitively one sees that the tangent
plane of the graph of f(x, y) in a local extremum should be horizontal. The
tangent plane is given by z = f(a, b)+ fx(a, b)(x− a)+ fy(a, b)(y− b), which
is precisely horizontal if

fx(a, b) = fy(a, b) = 0.

A point (a, b) where both first partial derivatives vanish is called a stationary
point. So to compute local extrema, we must compute stationary points of
f(x, y).

Example. Compute the local extrema of

f(x, y) =
xy

(2 + x2 + y2)2
.

Here is a Mathematica plot of the three dimensional graph.
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To compute the stationary points we set the partial derivatives equal to 0.

y(2 − 3x2 + y2)

2 + x2 + y2
= 0,

x(2 − 3y2 + x2)

2 + x2 + y2
= 0.

Hence we must solve the system

y(2 − 3x2 + y2) = 0, x(2 − 3y2 + x2) = 0.

The solutions read

(x, y) = (0, 0), (1, 1), (1,−1), (−1, 1), (−1,−1)

and these are the stationary points of f (Check!). From the 3D plot we can
decide in which points f has a local maximum or minimum. We find that
(1, 1) and (−1,−1) are local maxima and (1,−1), (−1, 1) local minima. The
point (0, 0) does not correspond to a local extremum. In the neighbourhood
of (0, 0) we see that the graph of f(x, y) is saddle shaped, or a mountain
pass. Apparently such points are also stationary.
Besides looking at graphs plotted by Mathematica there is another way to
decide whether a stationary point corresponds to a local maximum, minimum
or saddle point which involves second order derivatives of f . It is the analogon
of the second order criterion for one variable functions.

Theorem 5.3.2 Let f(x, y) be a function of two variables with continuous
first and second order derivatives in some region V . Suppose (a, b) ∈ V is a
stationary point of f . Define

H = fxx(a, b)fyy(a, b) − fxy(a, b)2.

Then
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1. If H < 0 then the graph of f has a saddle shape above (a, b).

2. If H > 0 and fxx(a, b) > 0 then f has a local minimum in (a, b).

3. If H > 0 and fxx(a, b) < 0 then f has a local maximum in (a, b).

By looking at the second order Taylor approximation we can see why this
theorem holds. In a stationary point the first partial derivates are zero and
the second order Taylor approximation has the form

f(x, y) = f(a, b)+
1

2
fxx(a, b)(x−a)2 +fxy(a, b)(x−a)(y−b)

1

2
fyy(a, b)(y−b)2.

So around the stationary point (a, b) the second order part of the Taylor
approximation is responsible for the behaviour of f(x, y) near the point (a, b).
An expression of the form AX2 +2BXY +CY 2 is called a quadratic form in
X, Y . The numbers A, B, C are given. When we take A = fxx(a, b)/2, B =
fxy(a, b), C = fyy(a, b) and X = x − a, Y = y − b we get the quadratic part
of the Taylor approximation as an example. Let us define D = AC − B2.
Quadratic forms with D 6= 0 occur in different types.

1. Forms which assume both positive and negative values. These are called
indefinite forms and are characterised by D < 0.

2. Forms which assume only values ≥ 0. These are called positive definite
forms, they are characterised by D > 0, A > 0.

3. Forms which assume only values ≤ 0. These are called negative definite
forms, they are characterised by D > 0, A < 0.

Check for yourselves that these characterisations give rise to the classification
of stationary points given in Theorem 5.3.2.
To see why the characterisation of quadratic forms is true we remark that

AX2 + 2BXY + CY 2 = Y 2(At2 + 2Bt + C),

where t = X/Y . Since Y 2 > 0, the sign of At2 +2Bt+C is the same as that
of the quadratic form. From the theory of quadratic polynomials we know
that At2 + 2Bt + C assumes both positive and negative values if it has real
zeros. I.e. 0 < (2B)2 − 4AC = −4D, from which we get D < 0.
When (2B)2 − 4AC < 0 (i.e. D > 0) the function At2 + 2Bt + C has no
zeros, so all of its values have the same sign. This sign is positive when A > 0
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and negative when A < 0. This explains the characterisation of the three
different classes.
Example. We use Theorem 5.3.2 to determine the nature of the stationary
points (0, 0) and (1, 1) of the function

f(x, y) =
xy

(2 + x2 + y2)2

(see example above). After elaborate computation (do it!) of the second
partial derivatives we find that

fxx(0, 0) = 0, fxy(0, 0) = 1/4, fyy(0, 0) = 0.

Hence fxx(0, 0)fyy(0, 0) − fxy(0, 0)2 = −1/16 < 0 and our criterion implies
that (0, 0) is a saddle point. For the point (1, 1) we get

fxx(1, 1) = −3/32, fxy(1, 1) = 1/32, fyy(1, 1) = −3/32.

Hence fxx(1, 1)fyy(1, 1)−fxy(1, 1)2 = 1/128 > 0. Since, in addition fxx(1, 1) <
0, Theorem 5.3.2 implies that f has a local maximum at (1, 1).

5.4 Method of least squares

A very important and often quoted example of optimization in several vari-
ables is the following problem. It occurs when we carry out an experiment
to determine the dependence of a certain quantity y as function of another
quantity x. For example, x could be the temperature and y the length of
a metal bar with temperature x. We assume that the dependence of y on
x is linear, i.e. of the form y = ax + b. The only problem is to determine
a, b experimentally. We do this by a number of measurements in which we
measure the value of y corresponding to a sequence of values of x, which
we denote by x1, x2, . . . , xn. The corresponding values of y are denoted by
y1, y2, . . . , yn. Here is a sample list of results with n = 6.

n xn yn

1 1 0.091
2 2 0.153
3 3 0.435
4 4 0.648
5 5 0.958
6 6 0.934
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Here is a plot of the results
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The question is now to determine a, b in such a way that the graph of the
function y = ax + b fits these data as best as possible. This is usually done
in such a way that the sum of the squares of the differences yi − axi − b is
minimized. I.e. we must minimize

∆(a, b) =
n

∑

i=1

(yi − axi − b)2.

This is called the method of least squares. In our example we must minimize

(0.091 − a − b)2 + (0.153 − 2a − b)2 + (0.435 − 3a − b)2

+(0.648 − 4a − b)2 + (0.958 − 5a − b)2 + (0.934 − 6a − b)2

= 91 a2 + 42 a b + 6 b2 − 29.376 a − 6.438 b + 2.43094

To determine a, b which minimizes ∆(a, b), we take the partial derivatives
and set them equal to zero. In our specific example we get

182a + 42b − 29.376 = 0

42a + 12b − 6.438 = 0

The solution of this system is a = 0.195, b = −0.148. In this case it is
obvious that the solution corresponds to the minimal value. The function
∆(a, b) is always ≥ 0. So it must have a minimum. This minimum is also a
local minimum, which can be found by setting the partial derivatives equal
to zero. Since we have found only one solution in this way, the point we
found must correspond to our minimum.

5.5 Lagrange multiplier method

In the previous section we have concentrated on the determination of local
maxima and minima which could be found by means of Theoren 5.3.1. But
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this theorem deals only with interior points of a domain V . The boundary
points of V need to be analysed separately. Here is an example of what we
mean. Consider the function f(x, y) = (x − 1)2 + (y − 1)2 restricted to the
disc x2 + y2 ≤ 4. Here is a plot of the level lines together with the circle C
given by x2 + y2 = 4.
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We only consider the function values of points within the circle C and wonder
where the minimum and the maximal function value occur. From the picture
this is hopefully clear. The minimum value 0 is attained at x = 1, y = 1,
which is inside C, the maximal value is attained at x = −

√
2, y = −

√
2,

which is on the circle C.
Theorem 5.3.1 only gives us the minimum since this is an interior point of
the inside of C. Putting the two partial derivatives equal to zero gives us

2(x − 1) = 0 2(y − 1) = 0,

hence x = 1 and y = 1. Notice that we did not get the point (−
√

2,−
√

2)
this way. The reason that f has a maximum at this point is that we restricted
our scope of attention to the disc x2 + y2 ≤ 4. In order to find such a point
we have to determine the local maxima and minima of f(x, y) restricted to
the circle C. There are two ways to do this.
The first is by choosing a parametrisation of C, for example x = 2 cos t, y =
2 sin t, substitute this into f(x, y) = (x−1)2+(y−1)2 and then determine t for
which this new function is minimal or maximal. First of all f(2 cos t, 2 sin t) =
(2 cos t − 1)2 + (2 sin t − 1)2. After elaboration we get 4 cos2 t + 4 sin2 t −
4 cos t − 4 sin t + 2 = 6 − 4 cos t − 4 sin t. The local extrema of this function
can determined by setting its derivative equal to 0. So 4 sin t − 4 cos t = 0.
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We find that t = π/4, 5π/4 up to multiples of 2π. The function values of
f(2 cos t, 2 sin t) for t = π/4, 5π/4 are respectively 6−4

√
2 and 6+4

√
2. The

latter value is the maximal value of f we were looking for.
The second method is based on an observation. Consider the picture once
more. It is clear that the maximum on the boundary occurs precisely at the
place where the level lines of f(x, y) are tangent to the circle C. This means
that the gradient vectors of f and x2 + y2 have the same direction in this
point of maximum. The gradient of f is (2(x − 1), 2(y − 1)), the gradient of
x2 + y2 is (2x, 2y). These gradients have the same (or opposite) direction if
there exists λ ∈ R such that (2(x− 1), 2(y− 1)) = λ(2x, 2y). So we get three
equations,

2(x − 1) = 2λx

2(y − 1) = 2λy

x2 + y2 = 4

The last equation expresses the fact that the point we look for must be on
C. First note that x cannot be 0. Because if x = 0, the first equation would
imply x − 1 = 0. But this is impossible, x cannot be 1 and 0 at the same
time. We can now divide the first equation by x to get λ = (x − 1)/x. Use
this to eliminate λ from the second equation. We find

y − 1 =
x − 1

x
y.

Multiply on both sides by x to get x(y − 1) = y(x − 1). Hence y = x. Use
this in the third equation to get 2x2 = 4. So x = ±

√
2. Since y = x we find

the points ±(
√

2,
√

2), the same ones we found before.
The latter computation is based on the following general rule.

Theorem 5.5.1 (Lagrange multiplier method) Consider the function f(x, y)
restricted to a curve C in R2 given by the implicit equation g(x, y) = 0. Sup-
pose that f restricted to the curve C has a local maximum or minimum in a
point (a, b). Then there exists λ ∈ R such that

fx(a, b) = λgx(a, b)

fy(a, b) = λgy(a, b)

g(a, b) = 0
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A similar theorem also holds for functions in 3 variables restricted to a surface
in space given by an equation g(x, y, z) = 0. More generally, the theorem
can also be formulated for functions in n variables on subspaces of Rn given
by several equations.

5.6 Variational calculus

Although optimisation theory is a relatively new field in mathematics, it has
its sources in the 17th century, at the same time when differential and inte-
gral calculus was developed. Two classical problems are the brachistochrone
problem and the problem of the suspended chain. These problems were solved
by Bernoulli and Newton in the 17-th century. These are examples of opti-
misation problems where an infinite number of variables is involved.
A similar famous optimisation phenomenon is Fermat’s principle, which
states that light always follows the path with shortest optical length. This
was one the first times when it was realised that nature also works according
to some optimisation scheme. In the 18-th and 19-th century mathematical
physicists discovered that the laws of classical mechanics can be formulated
in terms of optimisation principles of certain action integrals. This approach
to mechanics has become know as the Lagrange formalism and a related
version, the Hamilton formalism. The mathematical analysis of such opti-
misation problems has become known as variational calculus, first developed
by Euler and Lagrange, and which is still of utmost importance today.
The Hamiltonian version of classical mechanics is usually taken as a point of
departure for quantisation of mechanical systems.

5.7 Exercises

Many of the problems below have been taken from M.de Gee, Wiskunde in
Werking, Epsilon Uitgaven 1994, Utrecht.

Exercise 5.7.1 For each of the following functions F , determine the sta-
tionary points, and the nature of these stationary points.

1. F (x, y) = x3 − 3x2y/2 + 6x2 + y2/2

2. F (x, y) = x2y + xy2 − x2 − xy − y2 + 3
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3. F (x, y) = x3y + xy2 − 5xy

Exercise 5.7.2 Consider the function F (x, y) = xy(8x − x2 − y2).

1. Make a sketch of the 0-level line of F . Also indicate in your sketch for
which points (x, y) in the plane F has positive, resp. negative values.
Can you infer from this picture where the stationary points of F are
located and what their nature is?

2. Compute the stationary points of F and determine their nature.

3. Answer the two above questions for the function F (x, y) = sin 2πx sin 2πy.

Exercise 5.7.3 An enterprise manufactures the same article in two different
factories A and B. The production cost to manufacture a quantity q in these
two factories are different. In A the cost of production is 20q2 − 60q + 100,
in factory B it is 10q2 − 40q + 90.

1. Suppose one unit produced can be sold at the price p = 220. Determine
the production levels qA, qB in each factory to achieve maximal profit.

2. Suppose now that the price per unit depends on the supply as follows
p = 520−10q. Now determine the production levels which yield maximal
profit.

Exercise 5.7.4 A manufacturer produces one product, which is marketed on
two different markets A and B. His total production q is split into two parts,
qA and qB which is sold on market A resp. B. The prices pA and pB per
item depend on the quantity offered on each market as follows,

pA = 57 − 5qA, pB = 40 − 7qB.

The total cost of production is given by K(q) = 3q2 − 5q + 16. Of course the
manufacturer aims for maximal profit. In order to do so, how much should
he produce and how should this production be divided over the two markets?
What is the maximal profit?

Exercise 5.7.5 A rectangular tank, open at the top, has a volume of 4 m3.
If the base measurements (in m) are x by y, show that the surface area (in
m2) is given by

A = xy +
8

x
+

8

y
.

For which x, y is A minimal, and what is the corresponding value of A?
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Exercise 5.7.6 Determine the local extrema of F (x, y) = x2 − y2 restricted
to the points (x, y) with x2 +(y +2)2 = 4. Also determine the nature of these
local extrema.

Exercise 5.7.7 The equation 5x2 + 6xy + 5y2 = 8 represents an ellipse
whose centre is at the origin. By considering the extrema of x2 + y2, obtain
the lengths of the semi-axes of the ellipse.

Exercise 5.7.8 Which point on the sphere x2 +y2 +z2 = 1 is at the greatest
distance from the point (1, 2, 2) ?

Exercise 5.7.9 A student buys x items of product A at price 1 per item and
y items of product B at price 4 per item. The total budget available is 36.
The benefit that the student has from his purchases can be made quantitative.
It is N(x, y) = x2y2. Which quantities of each product should the student
buy to have maximal benefit?



Chapter 6

Vectors

6.1 Intuitive introduction

We have all seen vectors, either with mathematics or with physics. In this
chapter a vector will be a displacement or, if you want, a direction and a
length. A displacement, also called translation, can be pictured by an arrow,
but not in a unique way. Below you see two arrows and it is hopefully clear
that they represent the same vector, since direction and length of the arrows
are the same.

later we shall adopt the habit to let the arrows begin in a specifically chosen
point, called the origin. In this section arrows representing vectors may be
drawn anywhere. The length of the arrow will be called the length of the
vector. The length of the vector v is denoted by |v| (all our vectors will
be written in bold face, in physics one would write ~v). There is one vector
whose length is zero, which is called the zero vector, denoted by 0.
Suppose we have two vectors a en b. We define the sumvector as the transla-
tion we get by first performing the translation a and then b. This sequence
of translations is again a translation which we denote by a+b. In a picture,

59
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a
b

a+b

a

b

a+b

In the right hand picture we have chosen the arrow representing b by letting
it start in the same point where the arrow for a starts. Hopefully it is clear
from the picture why vector addition is done using the so-called parallelogram
law. We also have the difference vector a − b. This is precisely the vector
which, added to b, gives a. In a picture,

a

b

a - b

Next to addition of vectors there is also scalar multiplication. Choose a
vector a and a real number λ. Suppose λ > 0. The vector which has the
same direction as a, but whose length is λ times the length of a is called
the scalar product of a by λ. When λ < 0, the scalar product of λ and a
is the vector with direction opposite to a and whose length is |λ| · |a|. We
denote the scalar product by λa. Finally we always take 0a = 0. Here is an
illustration,

a a
2a

a
- a 0a

An important concept for vectors is the inner product. Let a,b be two non-
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zero vectors and φ the angle between the directions of a and b. The inner
product of a and b is the number |a||b| cos φ. Notation: a · b. Because of
this notation the inner product is also called dot product. When a or b is the
zero vector, we define a · b = 0.
The inner product arises naturally with the cosine rule for triangles. Consider
a triangle whose sides are formed by arrows which represent the vectors
a,b, a − b.

c

b

c - b
φ

A

B

C

According to the cosine rule we have that

|a − b|2 = |a|2 + |b|2 − 2|a||b| cosφ.

This can be seen as a generalisation of Pythagoras’ theorem. The latter
corresponds to the special case φ = π/2, where we get that |a − b|2 =
|a|2 + |b|2. With our notation for inner product we can also formulate the
cosine rule as

|a − b|2 = |a|2 + |b|2 − 2a · b. (6.1)

6.2 Coordinates

The easiest way to compute with vectors is to use their coordinates. In the
previous section we could either have worked in space or in the plane. In
this section we agree to work in the plane, the three dimensional case being
similar.
Choose a vector e1 of length 1 pointing to the right, and a vector e2 per-
pendicular to it, pointing upward. Let us consider the vector e1 as the
translation ”one step to the right” and e2 as ”one upward step” in the plane.
Any translation in the plane can be carried out by taking a number of steps
to the right (a negative number of steps means ”to the left”) and a number of
upward steps (”downward” for a negative number of steps). More precisely
this means that any vector v in the plane can be written as a combination
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xe1+ye2 (i.e. x steps to the right and y steps upward). The numbers x, y are
called the coordinates of the vector v with respect to the basis e1, e2. Let us
now assume we have a fixed basis e1, e2. Then vectors can be characterised
by their coordinates and vice versa. So we can also denote the vector v by
the pair of numbers x, y which is, for historical and future practical reasons,

written as a column of numbers

(

x
y

)

. Although writing coordinates in the

form of columns is the official policy, it is not very handy typographically.
That is why we shall very often deviate from this policy by writing coordi-
nates in row-form. However, when we get to matrix multiplication it is wise
to write coordinates in column from.

Scalar multiplication and vector addition can also be carried out on the
coordinates. We have

λ

(

x
y

)

=

(

λx
λy

)

,

(

x1

y1

)

+

(

x2

y2

)

=

(

x1 + x2

y1 + y2

)

.

The space of ordered pairs of numbers

(

x1

x2

)

is denoted by R
2 (pronounce:

R-two)

As a final step we now make a picture of R2. Fix a point in the plane and
call it O, the origin. We now make a one-to-one identification of points in the
plane and vectors. To a vector v we associate the point gotten by translation

of O over v. We call this point v again, or denote it by its coordinates

(

x
y

)

.

The set of points corresponding to the multiples of e1 is called the x-axis, the
points corresponding to the multiples of e2 is called the y-axis. In this way
we have made an identification of the points in the plane with R2, which is
probably already very familiar to you. Note that this identification depends
on the choice of O and the basis vectors e1, e2. But usually we do not worry
about this in practice.

A vector v having coordinates x, y has length
√

x2 + y2. This is a con-

sequence of Pythagoras’ theorem. Furthermore between points

(

x1

y1

)

and
(

x2

y2

)

we have a distance which is simply the length of the difference vector,

√

(x1 − x2)2 + (y1 − y2)2
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It turns out that the inner product can also be expressed in terms of coordi-
nates.

Theorem 6.2.1 Let a and b be two vectors having coordinates x1, y1 and
x2, y2 respectively. Then,

a · b = x1x2 + y1y2.

It may be a bit mysterious why the definition of inner product, which involves
a cosine, has the nice looking form x1x2 +y1y2. The reason is that the cosine
rule is behind it. We know from (6.1) that

|a − b|2 = |a|2 + |b|2 − 2a · b.

So,
2a · b = |a|2 + |b|2 − |a − b|2 (6.2)

We now note that

|a − b|2 = (x1 − x2)
2 + (y1 − y2)

2 = x2
1 + x2

2 + y2
1 + y2

2 − 2x1x2 − 2y1y2.

Moreover,

|a|2 + |b|2 = x2
1 + x2

2 + y2
1 + y2

2.

Therefore,

2a · b = |a|2 + |b|2 − |a − b|2
= (x2

1 + x2
2 + y2

1 + y2
2) − (x2

1 + x2
2 + y2

1 + y2
2) + 2x1x2 + 2y1y2

= 2(x1x2 + y1y2)

After division by 2 we get the desired a · b = x1x2 + y1y2. 2

Using this formula for the inner product it is very simple to compute angles
between vectors.

Example. Compute the angle φ between a =

(

2
1

)

and b =

(

1
3

)

. Solution:

The lengths of a and b are
√

22 + 12 =
√

5 and
√

12 + 32 =
√

10 respectively.
We get

cos φ =
a · b
|a||b| =

2 · 1 + 1 · 3√
5
√

10
=

1√
2
.
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From cos φ = 1/
√

2 it follows that φ is 45 degrees (check this by making an
accurate drawing of the vectors).

Two vectors a and b will be called perpendicular, or orthogonal, if we have
a ·b = 0. When both a and b are non-zero vectors this makes sense, because
then |a||b| cosφ = 0. And thus cos φ = 0, i.e. φ is 90 degrees. If either of
the vectors is the zero, we cannot speak of an angle, but we formally declare
the vectors perpendicular.

It is now very easy to see that the vectors

(

1
2

)

and

(

−2
1

)

are orthogonal

because their inner product is 1 · (−2) + 2 · 1 = 0.

6.3 Higher dimensions

In three dimensions the story is completely similar. We can identify the space
vectors with R3 by choosing a basis of vectors of length 1 which are mutually
orthogonal (these will be the future x-,y-,z-direction). The spatial points are
then identified with R3 if we also choose an origin O. The length of a vector
with coordinates x, y, z is

√

x2 + y2 + z2. The inner product of two vectors
in terms of coordinates is





x1

y1

z1









x2

y2

z2



 = x1x2 + y1y2 + z1z2.

So we see that it is possible to associate to the plane and space an algebraic
description in terms of R2 and R3. Of course it is not possible to picture
oneself four dimensional or higher dimensional space. But in mathematics we
do speak about higher dimensional space. This is done by simply extending
the algebraic description. For example, four dimensional space is simply R

4,
the space of 4-tuples x, y, z, u with distance function

√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 + (u1 − u2)2.

As soon as we have a space with a distance function we have geometry, even
if we cannot make a mental picture of it.



6.4. EQUATIONS OF LINES AND PLANES 65

6.4 Equations of lines and planes

As an application of Theorem 6.2.1 and its analogue in three dimensional
space we consider the equations of lines and planes.
As we all know, the equation of a line in the plane has the form ax + by = c
where a, b, c are fixed real numbers with (a, b) 6= (0, 0). Let us call the line l.
We assert:

The vector (a, b) is perpendicular to the line l.

We can see this easily as follows. Take a fixed point (p, q) on the line l. So we
have ap+ bq = c. Take any other point (x, y) on the line l. We get a(x−p)+
b(y − q) = ax + by − ap− bq = c− c = 0. This equality can be interpreted as
saying that the vectors (a, b) and (x− p, y− q) are perpendicular. The latter
vector is the difference of the two points, hence its direction is the direction
of the line. So we conclude that (a, b) is perpendicular to l.
In a similar way we can show that the vector (a, b, c) is perpendicular to the
plane in three dimensional space given by the equation ax + by + cz = d.
Suppose we want to find the equation of the plane passing through the points
(1, 0, 2), (0, 1, 1), (−1, 1,−2). In order to do so we must solve a, b, c, d from

a +2c = d
b +c = d

−a +b −2c = d

Bring the unknown d to the left hand side to get

a +2c −d = 0
b +c −d = 0

−a +b −2c −d = 0

We solve this system by our matrix bookkeeping system




1 0 2 −1
0 1 1 −1
−1 1 −2 −1

∣

∣

∣

∣

∣

∣

0
0
0



 .

Elimination of a yields




1 0 2 −1
0 1 1 −1
0 1 0 −2

∣

∣

∣

∣

∣

∣

0
0
0



 .
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Elimination of b yields





1 0 2 −1
0 1 1 −1
0 0 −1 −1

∣

∣

∣

∣

∣

∣

0
0
0



 .

From the last equation we conculde that c = −d. From the second last we get
b = d−c = d−(−d) = 2d and form the first a = −2c+d = −2(−d)+d = 3d.
To get an equation of our plane it suffices to pick one value of d. All other
choices will give the same equation up to a common factor. So let us take
d = 1. Then c = −1, b = 2 and a = 3. So the equation of our plane is

3x + 2y − z = 1.

In particular, the vector (3, 2,−1) is perpendicular to our plane.

6.5 Exercises

Exercise 6.5.1 Let u = (−1, 3,−2),v = (4, 0,−1),w = (−3,−1, 2). Com-
pute the following linear combinations

1. 3u − 2v

2. u + 2(v − 4w)

3. u + v − w

4. 4(3u + 2v − 5w)

Exercise 6.5.2 Let u = (−1, 3, 4),v = (2, 1,−1),w = (−2,−1, 3). Com-
pute the following quantities,

1. |u| (i.e. the length of u)

2. | − v|

3. |u + v|

4. |v − 2u|

5. The unit vector (=vector of length 1) with the same direction as u.
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6. The unit vector with a direction opposite to w.

7. u · v

8. u · (v + w)

9. (u + v) · w

10. The angle between u and v

11. The angle between u and w

12. The value of x such that (x,−3, 5) is perpendicular to u

13. The value of y such that (−3, y, 10) is perpendicular to u

14. A nonzero vector perpendicular to both u and v

15. A nonzero vector perpendicular to both u and w

Exercise 6.5.3 Determine an equation of the line in R2 passing through the
following pairs of points

1. (1, 2), (2, 1)

2. (1,−1), (3, 2)

3. (0, 3), (1, 1)

Exercise 6.5.4 Determine an equation of the plane in R3 passing through
the following triples of points

1. (1, 0, 1), (2,−1, 1), (0, 1, 2)

2. (1, 1, 1), (3, 0, 1), (0, 0, 1)

3. (1,−1, 2), (2, 0, 1), (0, 1, 1)
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Matrices

A matrix is a set of numbers arranged in a rectangular form. For example,

M =





3 −1 2 0
1 4 −2 1
2 −1 −5 2





If the number of rows is r and number of columns equal to k we speak of a
r × k-matrix. In the above example M is a 3 × 4-matrix. The element in
the i-th row and j-th column is denoted by Mij. For example M23 = −2. A
matrix consisting of one column is called a column vector, a matrix consisting
of one row is called row vector. A matrix with the number of rows equal to
the number of columns is called a square matrix. A matrix with 0 at every
place is called null matrix. A square m × m-matrix with 1 on the diagonal
places and 0 elsewhere is called an identity matrix. Notation: Im. Example,

I3 =





1 0 0
0 1 0
0 0 1





7.1 Basic operations

Addition of two matrices A and B is only possible if A and B have the
same rectangular format. Addition is performed bij simply adding the cor-
responding matrix elements. For example,

(

1 −1 0
2 2 −1

)

+

(

2 3 5
1 3 0

)

=

(

3 2 5
3 5 −1

)

68
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Notation: A + B.
Scalar multiplicationg of a matrix A with a real number λ is performed
by multiplying each entry of A by λ. For example,

3 ·
(

1 −1 0
2 2 −1

)

=

(

3 −3 0
6 6 −3

)

Notation: λA.
Transposition of a matrix A is performed by turning rows into columns
and vice versa. For example,

(

1 −1 0
2 2 −1

)T

=





1 2
−1 2
0 −1





Notation: AT .
Matrix multiplication of an r × k-matrix A and a s × l-matrix B is only
possible if s = k. The matrix product AB is an r × l-matrix which is
determined as follows. The entry of AB on position i, j is determined bij
multiplication of every element from the i-th row of A by the corresponding
elements of the j-th column of B and then adding all these products together.
For example,

(

1 −1 0
2 2 −1

)





2 −3 1 0
1 1 2 −2
2 0 3 −1



 =

(

1 −4 −1 2
4 −4 3 −3

)

.

The element 1 from the product matrix arises by the computation 1 · 2 +
(−1) · 1 + 0 · 2 = 1. The other entries of AB are determined similarly. Note
that BA does not exist because the number of columns of B is 4 and the
number of rows of A is 2.
Some important rules for matrix multiplication,

A(B + C) = AB + AC

(A + B)C = AC + BC

(AB)C = A(BC)

(AB)T = BT AT

Finally, when A is an m × n-matrix,

ImA = A AIn = A.
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If it so happens that both AB and BA exist, then most of the time they are
not equal. For example,

A = ( 1 2 −1 ) , B =





3
−1
2





Then,

AB = (−1 ) BA =





3 6 −3
−1 −2 1
2 4 −2





Another example,

A =

(

2 −1
1 1

)

B =

(

1 −1
−1 3

)

Then,

AB =

(

3 −5
0 2

)

BA =

(

1 −2
1 4

)

Verify these examples!

7.1.1 Examples of matrix multiplication

Until now matrix multiplication has been a purely formal operation without
any meaning. It turns out that in many cases matrix multiplication can be
considered as bookkeeping device which arises very naturally. This is why
matrix multiplication was introduced in the first place. In this section we
give two real life situations where matrix multiplication occurs.
Vitamines eating habits. Three food articles S1, S2 en S3 contain the
vitamines A,B,C en D in the following quantities (in vitamine units per
gram)

S1 S2 S3

VA 0, 5 0, 3 0, 1
VB 0, 5 0, 0 0, 1
VC 0, 0 0, 2 0, 2
VD 0, 0 0, 1 0, 5

Suppose that one day mr.Bean consumes 200, 100 and 100 gram of S1 S2

and S3. How much of each vitamine does he consume? For vitamine A this
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is A = 0, 5× 200 + 0, 3× 100 + 0, 1× 100 = 140. Analogous computation for
the other vitamines gives us,

A = 0, 5 × 200 + 0, 3 × 100 + 0, 1 × 100 = 140

B = 0, 5 × 200 + 0, 0 × 100 + 0, 1 × 100 = 110

C = 0, 0 × 200 + 0, 2 × 100 + 0, 2 × 100 = 40

D = 0, 0 × 200 + 0, 1 × 100 + 0, 5 × 100 = 60

Notice that this nothing but the matrix multiplication








0, 5 0, 3 0, 1
0, 5 0, 0 0, 1
0, 0 0, 2 0, 2
0, 0 0, 1 0, 5













200
100
100



 =









140
110
40
60









Lesliematrices As a second concrete example we consider the population
of terns on Texel in the Dutch Waddenzee. This population has fluctuated
in the 1960’s due to toxic waste, which originated from the river Rhine.

jaar 1940 1955 1960 1965 1966 1967 1968 1969 1970
breedingcouples 4000 2600 1200 65 170 100 150 200 250

Closer study reveals that there are three stages in a tern’s life. The phase
until the egg hatches, the phase in which young terns become adults, and the
phase of an adult tern. The second phase is the learning phase, a hazardous
one in which the tern has to learn about the hardships of life. We limit our
consideration to the first three years and to the female population. In this
way we avoid bookkeeping of mixed second/third year couples. In a healthy
population the following occurs. From the first year, between hatching and
learning phase, a fourth survives. Half of those survivors live to see the end
of the second year We consider the tern population at the end of year n.
Suppose N1(n) is the number of chickens that hatched, N2(n) the number of
terns who just survived the learning phase, and N3(n) the number of terns
that are at the end of their third year. So we have N2(n + 1) = N1(n)/4
and N3(n + 1) = N2(n)/2. For the number of female offspring we take from
observations that N1(n + 1) = 2N2(n) + 4N3(n). Schematically,

N1(n + 1) = 2N2(n) + 4N3(n)

N2(n + 1) = N1(n)/4

N3(n + 1) = N2(n)/2
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Again we see a matrix multiplication,




N1(n + 1)
N2(n + 1)
N3(n + 1)



 =





0 2 4
1/4 0 0
0 1/2 0









N1(n)
N2(n)
N3(n)



 .

A large drop in the number of newborns, due to toxic waste, could be given
by the matrix





0 1/2 1/2
1/4 0 0
0 1/2 0



 .

With a lesser toxic concentration the eggs may hatch, but the young could
very vulnerable. This could be described by another matrix





0 2 4
1/16 0 0

0 1/4 0



 .

The question is what happens to the tern population in the long run, i.e.
when n → ∞. We abbreviate the numbers N1(n), N2(n), N3(n) by the col-
umn 3-vector N(n) and the matrix





0 2 4
1/4 0 0
0 1/2 0





by L. Then, N(n + 1) = LN(n). This is a so-called recursive equation for
the population vector N. Suppose we know the population at time n = 0,
say N(0).Then

N(1) = LN(0), N(2) = L · LN(0) = L2N(0), . . . , N(n) = LnN(0)

So the behaviour of the matrix Ln as n → ∞ is important for the future of
the tern colony. The concepts eigenvector, eigenvalue, to be discussed later,
is of crucial importance here.

7.2 Geometrical interpretation of matrix mul-

tiplication

.
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In the 2-dimensional plane, denoted by R2, every point is characterised by
its x and y coordinate. Often we write these coordinates as a column matrix,
(

x
y

)

.

Rotations
Suppose we perform in R2 an anti-clockwise rotation of 90o. As center of
rotation we take the point (0, 0). What happens to the coordinates of the
point (a, b) if we rotate it in this way? The result can be seen in the following
picture,

x

y

(a,b)

(-b,a)

b

a

b

a

The point (a, b) turned into (−b, a) after rotation. Using the column notation
for vectors we can write the relation between the two points in matrix form.

(

−b
a

)

=

(

0 −1
1 0

) (

a
b

)

In other words, the coordinates of the rotated point can be obtained by mul-

tiplication of the original point by the matrix

(

0 1
−1 0

)

. We call

(

0 −1
1 0

)

the rotation matrix with angle π/2.
For rotations around other angles we have a similar story. Consider an anti-
clockwise rotation about the angle φ and again (0, 0) as center. To it, there
corresponds another matrix, namely

(

cos φ − sin φ
sin φ cos φ

)

To see that this is the correct matrix we apply it to

(

1
0

)

. The result,

(

cos φ sin φ
− sin φ cos φ

) (

1
0

)

=

(

cos φ
sin φ

)
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From the picture below we see indeed that

(

cos φ
sin φ

)

has been rotated over

angle φ with respect to

(

1
0

)

,

x

y

(cos φ , sin φ)

(1,0)
φ

Construct a similar picture, but now with the vectors

(

0
1

)

and

(

cos φ sin φ
− sin φ cos φ

) (

0
1

)

.

A very nice consequece is the following. Suppose we first rotate about an
angle α and then about the angle β, the total result will be a rotation about
α + β. In matrix Form,
(

cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

) (

0
1

)

=

(

cos β − sin β
sin β cos β

) (

cos α − sin α
sin α cos α

) (

0
1

)

We work out the right hand matrix multiplication and only write down the
first column of the product,

(

sin(α + β)
cos(α + β)

)

=

(

sin β cos α + cos β sin α
cos β cos α − sin β sin α)

)

We have discovered the addition laws of cosine and sine!
Projections
Suppose we project a point (a, b) perpendicular on the x-axis. This is an
example of an orthogonal projection. The projected point has coordinates
(a, 0).

x

y

(a,b)

(a,0)
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Note that

(

a
0

)

=

(

1 0
0 0

) (

a
b

)

. Orthogonal projection on the x-axis is

given by the matrix

(

1 0
0 0

)

.

Now we take a slightly. Let l be the straight line given by y = x. Choose a
point (a, b) and project it orthogonally on the line l. What are the coordinates
of the projection.

x

y
(a,b)

?

Our projection can be seen as a concatenation three manipulations: clockwise
rotation around 45o, projection onto the x-axis and finally a counter clockwise
rotation around 45o. The corresponding matrix becomes,

(

1/
√

2 1/
√

2
−1/

√
2 1/

√
2

) (

1 0
0 0

) (

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

)

=

(

1/2 1/2
1/2 1/2

)

As a sanity check we verify that the projection o (1, 1) is the point itself and
that the projection of (1,−1) is the zero vector (0, 0). And indeed,

(

1/2 1/2
1/2 1/2

) (

1
1

)

=

(

1
1

) (

1/2 1/2
1/2 1/2

) (

1
−1

)

=

(

0
0

)

Linear maps

Rotation and projection are examples of linear maps from vector spaces to
it itself. In general, linear maps are maps that are given by matrix multipli-
cation.

Let M be an n × n-matrix. We denote the elements of Rn in column form.
For any x ∈ Rn we have of course Mx ∈ Rn The map x 7→ Mx is called a
linear map.
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7.3 Exercises

Exercise 7.3.1 Let

A =

(

−2 1 3
4 0 −1

)

, B =

(

4 1 −2
5 −1 3

)

, C =





2 −1
0 6
−3 2



 D =





−4 2
3 5
−1 −3





Compute the following quantities, if they are defined,

1. 3A

2. A + B

3. B + C

4. C − D

5. 4A − 2B

6. AB

7. (CD)T

8. A2

9. (AC)2

10. ADB

11. (AT )A

12. BC and CB

Exercise 7.3.2 Let

A =





2 0 0
0 −1 0
0 0 1





1. Find A2

2. Find A7
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Exercise 7.3.3 Let

A =





0 0 −1
0 2 0
2 0 0





1. Find A2

2. Find A7

Exercise 7.3.4 Consider

x = (−2, 3,−1), y =





4
−1
3





Compute xy and yx.

Exercise 7.3.5 Give the standard matrix representation of the rotation of
the plane counterclockwise about the origin through an angle of

1. 30o

2. 90o

3. 135o

Exercise 7.3.6 Give the standard matrix representation of the rotation of
the plane clockwise about the origin through an angle of

1. 45o

2. 60o

3. 150o

Exercise 7.3.7 Use the rotation matrix for a general rotation through an
angle of θ to derive formulas which express cos 3θ and sin 3θ in terms of
cos θ and sin θ.

Exercise 7.3.8 Find the matrix representation for the orthogonal reflection
in the plane in the line y = 2x.

Exercise 7.3.9 Let m be a real number. Find the matrix representation for
the orthogonal reflection in the plane in the line y = mx.
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Determinants

8.1 Determinants and equation solving

For simple systems of linear equations it is possible to give general formulas
for its solution. The simplest is one equation in one unknown,

ax = b.

The solution is of course x = b/a provided that a 6= 0. The latter condition
is very important. We now have only one solution, namely x = b/a. What
happens if a = 0?. Our equation becomes 0x = b. There are two possibilities,
either the value of b is 0 and thus we find that every x is a solution of 0x = 0.
The other possibility is that b 6= 0, in which case 0x = b has no solution at
all. This may seem all a bit trivial, but the above phenomena also happen,
in a disguised form, for n equations in n variables..
We restrict ourselves to 2 equations in 2 unknowns,

ax + by = p
cx + dy = q

where a, b, c, d, p, q are given and x, y the unknowns. Take d times the first
equation and subtract b times the second equation. We get (ad − bc)x =
dp− bq. Now take a times the second equation and subtract c times the first
equation. We find (ad − bc)y = aq − cp. Let us suppose that ad − bc 6= 0.
Then we get

x =
dp − bq

ad − bc
, y =

aq − cp

ad − bc
.

78
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So there is precisely one solution, like in the case a 6= 0 of an equation in one
unknown.
What happens if ad−bc = 0? To fix ideas, let us assume that a 6= 0. Multiply
the first equation by c/a. We find,

c

a
(ax + by) =

c

a
p ⇒ cx +

bc

a
y =

pc

a

Since bc = ad the equation goes over into cx + dy = pc/a. We now have a
new system of equations,

cx + dy = pc/a
cx + dy = q

.

We see that we can only have solutions when pc/a = q. In other words, when
ad− bc = 0 there can only be solutions if the equations differ by a factor (in
the case at hand, c/a). We call the equations dependent For the solution it
then suffices to solve only one of the equations, e.g. ax + by = p, which has
an infinite number of solutions.
When ad − bc = 0 and pc/a 6= q we have no solutions at all and we call the
system of equations contradictory.

Example Consider the system

9x + 6y = 1
6x + 4y = 2

Note that ad−bc = 9 ·4−6 ·6 = 0 in this case. Multiply the first equation by
2/3. We get 6x + 4y = 2/3. The left hand side of this equation is the same
as that of the second equation. The right hand sides are not equal however.
Therefore the system is contradictory.
Consider the system

9x + 6y = 0
6x + 4y = 0

Again multiply the first equation by 2/3. We get 6x + 4y = 0, and this pre-
cisely the second equation. The equation are dependent and thus it suffices
to solve only one of them, i.e. 9x + 6y = 0.

The matrix

(

a b
c d

)

corresponding to the system

ax + by = p
cx + dy = q



80 CHAPTER 8. DETERMINANTS

is called the coefficient matrix. The quantity ad−bc is called the determinant

of

(

a b
c d

)

. A common notation for the determinant is

ad − bc =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

.

From the discussion above we get

Theorem 8.1.1 If ad − bc 6= 0, the system
(

a b
c d

) (

x
y

)

=

(

p
q

)

has the solution
(

x
y

)

=
1

ad − bc

(

d −b
−c a

) (

p
q

)

We also have

Theorem 8.1.2 When ad − bc = 0 and p = q = 0, the system of equations

ax + by = 0

cx + dy = 0

is dependent and we have infinitely many solutions.

We call 1
ad−bc

(

d −b
−c a

)

the inverse matrix of

(

a b
c d

)

. The inverse matrix

is characterised by the fact that

1

ad − bc

(

a b
c d

) (

d −b
−c a

)

=
1

ad − bc

(

d −b
−c a

)(

a b
c d

)

=

(

1 0
0 1

)

.

If ad − bc = 0, such an inverse matrix does not exist.
Another important property of determinants is the multiplicative property
which states that for any two 2 × 2-matrices A, B we have det(AB) =
det(A)det(B).

A similar discussion can be held for 3 equations in 3 unknown. We shall only
give the answers here. Consider the system of equations given by,

a11x + a12y + a13z = p
a21x + a22y + a23z = q
a31x + a32y + a33z = r
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Define ∆ = a11a22a33+a12a23a31+a13a21a32−a12a21a33−a13a22a31−a11a23a32.
If ∆ 6= 0, the the system has precisely one solution, namely

x = (pa22a33 + qa23a31 + ra21a32 − qa21a33 − ra22a31 − pa23a32)/∆

y = (qa11a33 + ra12a31 + pa13a32 − pa12a33 − qa13a31 − ra11a32)/∆

z = (ra11a22 + pa12a23 + qa13a21 − ra12a21 − pa13a22 − qa11a23)/∆

Again, if ∆ = 0, the system is either contradictory, or it has infinitely many
solutions. We call ∆ the determinant of the matrix





a11 a12 a13

a21 a22 a23

a31 a32 a33





In general we can write down the general solution of n linear equations in n
unknowns, in which the determinant of the coefficientmatrix plays an impor-
tant role. As n increases these determinants will become progressively more
complicated. The determinant of a 4× 4-matrix contains 24 termen, and the
determinant of a 6 × 6-matrix has 720 terms! We shall not go into these in-
teresting matters, but content ourselves with determinants of 2×2-matrices.

8.1.3 Geometrical interpretation of the determinant

Besides the theory of linear equations, determinants also arise ina geomet-
rical way. Consider two vectors (x1, y1), (x2, y2) in R2, together with the
parallellogram spanned by these vectors.
Question: what is the surface area of this parallellogram? A familiar theorem
from plane geometry tells us that this area equals the product of the two sides
times the sine of the enclosed angle.

x

y

(x1,y1)

(x2,y2)

r1

r2

φ

Opp = r1.r2.sinφ
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Let r1, r2 be the lengths of the vectors (x1, y1), (x2, y2) and φ1, φ2 their angle
with the positive x-axis. We have,

(

x1

y1

)

=

(

r1 cos φ1

r1 sin φ1

) (

x2

y2

)

=

(

r2 cos φ2

r2 sin φ2

)

.

The enclosed angle is equal to |φ2−φ1|. The surface area O can be computed
as follows,

r1r2 sin |φ2 − φ1| = r1r2| sin(φ2 − φ1)|
Apply the difference formula of the sine,

O = |r1r2(sin φ2 cos φ1 − cos φ2 sin φ1)|.

After using xi = ri cos φi, yi = ri sin φi for i = 1, 2 we find that

O = |x1y2 − x2y1|.

In other words, the surface area of the parallellogram spanned by the vectors

(x1, y1) en (x2, y2) is equal to the absolute value of

∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

.

In particular we see that, with non-zero (x1, y1), (x2, y2) the determinant can
only be zero if the vectors (x1, y1) and (x2, y2) point in the same, or the
opposite direction.
A similar derivation can be given in dimension three. A triple of vectors
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3) in R3 spans a block B. A more complicated
calculation then shows that the volume of B equals the absolute value of the
determinant

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

.
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Eigenvectors and eigenvalues

9.1 An example

Consider the 2 × 2-matrix
(

5 −4
3 −2

)

If we apply this matrix to an arbitrary vector, you will not see much similarity
between the vector we started with and the result after multiplication by the
matrix. For example,

(

5 −4
3 −2

) (

1
2

)

=

(

−3
−2

) (

5 −4
3 −2

) (

2
1

)

=

(

6
4

)

But there are exceptions, for example,

(

5 −4
3 −2

) (

1
1

)

=

(

1
1

) (

5 −4
3 −2

) (

4
3

)

=

(

8
6

)

= 2

(

4
3

)

The vectors

(

1
1

)

and

(

4
3

)

change into a scalar multiple after multiplication

by the matrix

(

5 −4
3 −2

)

. One might wonder if there are more of such vectors.

In other words, do there exist x, y, not both zero, and a number λ such that

(

5 −4
3 −2

) (

x
y

)

= λ

(

x
y

)

83
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We call such vector

(

x
y

)

eigenvectors with eigenvalue λ.

To get back to our example, we must solve the explicit system of equations

5x − 4y = λx

3x − 2y = λy

Of course we immediately see the solutions x = y = 0. But that does not
give us eigenvectors. So we want non-trivial solutions, i.e. solutions where
x, y are not both zero. We rewrite our equations as

(5 − λ)x − 4y = 0

3x + (−2 − λ)y = 0

For any λ this set of equations is a homogeneous set of two linear equations
in two unknowns. In Theorem 8.1.2 we have seen that such systems can only
have non-trivial solutions x, y if the coefficient determinant is zero.
So we conclude that

(5 − λ)(−2 − λ) + 12 = 0

This equation is known as the eigenvalue equation. The possible eigenvalues
of our matrix are solutions to this equation. After elaboration we find λ2 −
3λ + 2 = 0 which has the solutions 1 and 2. These are precisely the scalar
multiples we saw above. Now we determine the eigenvectors. We do this by
solving our system of linear equations above.
When λ = 1 we get,

4x − 4y = 0

3x − 3y = 0

These equations are of course dependent. Let us choose y equal to an ar-
bitrary number, say t. Then y = t and from our equations it follows that
x = y = t. The full solution set to equation (E) with λ = 1 reads,

(

x
y

)

= t

(

1
1

)

When λ = 2 we get,

3x − 4y = 0

3x − 4y = 0
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We get 3x − 4y = 0 twice. Let y = t arbitrary, then x = 4y/3 = 4t/3. The
solution set of (E) with λ = 2 reads,

(

x
y

)

= t

(

4/3
1

)

With the choice t = 3 we find the above mentioned vector

(

4
3

)

.

9.2 In general

Let M be a general n × n-matrix. A non-trivial column vector v with n
components is called an eigenvector of M if there exists a number λ such
that Mv = λv. The number λ is called the eigenvalue of M for the vector v.
For computation of eigenvectors and eigenvalues we only give the recipe for

2 × 2 matrices M =

(

a b
c d

)

. First we form the eigenvalue equation,

(a − λ)(d − λ) − bc = 0.

For each solution λ we solve the linear system of equations

(a − λ)x + by = 0

cx + (d − λ)y = 0

An important remark, the eigenvalue equation has degree 2. So, for a 2 × 2
there can be at most two distinct eigenvalues. Similarly, for an n× n-matrix
there can be at most n distinct eigenvalues.

9.3 An application of eigenvectors

Eigenvalues and eigenvectors play a very important role in many areas of
mathematics. In this section we give an application to a population growth
model in theoretical biology. There are also applications to probablity theory
in the form of Markov chains, to be treated in the next chapter. Another
application we will see is to systems of linear differential equations.

Example Consider a rabbit population which can be divided into two age
groups. The first year, in which the young rabbit is born and becomes fertile.
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The second year, in which the animal still produces offspring. We assume
that animals older than two years do not contribute to new rabbits. Let
N1(n) be the number of rabbits in group 1 in year n and N2(n) the number
of rabbits in group 2 in year n. We assume that half of the yearlings makes
it to year two. The offspring production rate of the population is modelled
according to

(

N1(n + 1)
N2(n + 1)

)

=

(

1 4
0.5 0

) (

N1(n)
N2(n)

)

.

Suppose that N1(0) = 60 and N2(0) = 0. What happens to the population
growth and the ratio of the groups in the long run?
To answer these questions we determine the eigenvectors and eigenvalues

of the so-called Lesliematrix

(

1 4
0.5 0

)

. The eigenvalues turn out to be

λ = 2,−1 corresponding to the eigenvectors

(

4
1

)

and

(

2
−1

)

respectively.

The eigenvector

(

4
1

)

has a nice interpretation. Suppose that in year n = 0

the ratio one:two year olds equals 4 : 1. So N1(0) = 4N and N2(0) = N for
some N . Then

(

N1(1)
N2(1)

)

=

(

1 4
0.5 0

) (

N1(0)
N2(0)

)

=

(

1 4
0.5 0

) (

4N
N

)

=

(

8N
2N

)

In other words, the population numbers in both groups have doubled and the
ratio one:two year olds stayed the same as in the previous year. Of course
this happens also in the next years and we find that the ratio N1(n) : N2(n)
is always 4 : 1.
If the ratio N1(0) : N2(0) does not equal 4 : 1, the ratio N1(1) : N2(1) will
generally differ from N1(0) : N2(0). However, it turns out that in the long
run we still have limn→∞ N1(n)/N2(n) = 4, independent of the choice of
N1(0), N2(0)!.
We can see this by taking the example N1(0) = 60, N2(0) = 0. Write the

vector

(

60
0

)

as linear combination of the eigenvectors,

(

60
0

)

= 10

(

4
1

)

+ 10

(

2
−1

)

.

We know that
(

N1(n)
N2(n)

)

=

(

1 4
0.5 0

)n (

60
0

)
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Because

(

1 4
0.5 0

)n (

4
1

)

= 2n

(

4
1

)

and

(

1 4
0.5 0

)n (

2
−1

)

= (−1)n

(

2
−1

)

we get,
(

N1(n)
N2(n)

)

= 10 · 2n

(

4
1

)

+ 10 · (−1)n

(

2
−1

)

.

Divide both sides by 2n and take the limit limn→∞,

lim
n→∞

2−n

(

N1(n)
N2(n)

)

= 10

(

4
1

)

In particular it follows that limn→∞ N1(n)/N2(n) = 4.

We hope that you have understood enough of the above example to appreciate
the following theorem

Theorem 9.3.1 Let M be an m×m matrix and suppose that it has a posi-
tive eigenvalue l which is strictly larger than the absolute values of all other
eigenvalues (including the complex ones). Suppose also that l is not a multiple
solution of the eigenvalue equation.

Let v =





v1
...

vm



 be the corresponding eigenvector. Consider the recursion





x1(n + 1)
...

xm(n + 1)



 = M





x1(n)
...

xm(n)





Write

x(n) =





x1(n)
...

xm(n)





Then,
lim

n→∞
l−nx(n) = av

for a certain constant a.

Remark 1 A positive eigenvalue l, which is not a multiple eigenvalue, and
which is strictly larger than the absolute value of all other (complex and real)
eigenvalues is called dominant.
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Remark 2 The constant a can be computed as follows. Let w be the eigen-
vector with eigenvalue l of the transpose matrix MT . Then a = (w·x(0))/(w·
v). In particular, the theorem is only of interest when a 6= 0, i.e. w·x(0) 6= 0.
This happens most of the time.

Remark 3 When a 6= 0 we see that the ratios x1(n) : x2(n) : · · · : xm(n)
converge to the ratios v1 : v2 : · · · : vm as n → ∞. Furthermore we see that
if l < 1 the xi(n) all tend to 0 as n → ∞.

Remark 4 When M is a Leslie matrix ”the population becomes extinct”
when l < 1. If l = 1 the population survives and when l > 1 it increases
exponentionally. The components of the eigenvector corresponding to the
dominant eigenvalue are sometimes called the stable distribution.

Remark 5 We call l the growth factor of our recursion.

Example We take the example of the tern population from Chapter 7. We
had a recursion of the form,





N1(n + 1)
N2(n + 1)
N3(n + 1)



 =





0 2 4
1/4 0 0
0 1/2 0









N1(n)
N2(n)
N3(n)



 .

To determine the growth behaviour we determine the largest eigenvalue of
the Leslie matrix. We do this by direct solution of the equations





0 2 4
1/4 0 0
0 1/2 0









x
y
z



 = λ





x
y
z





In the case of Leslie matrices this goes very easily by simply writing out
the equations. We find, 2y + 4z = λx, x/4 = λy, y/2 = λz. From this
follows y = 2λz, x = 4λy = 8λ2z and by substitution into the first equation,
4λz+4z = 8λ3z. After division by z we are left with 8l3 = 4l+4. This is the
eigenvalue equation, sometimes called Lotka-equation in the case of Leslie-
matrices. The solutions of our equation are 1, (−1± i)/2. We see that l = 1
is the largest eigenvalue and it is positive. So our population persists and

the ratios of the age groups go to 8 : 2 : 1 because





8
2
1



 is the eigenvector

corresponding to λ = 1
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9.4 Exercises

The exercises below are taken from M.de Gee, Wiskunde in Werking, Epsilon
Uitgaven, Utrecht.

Exercise 9.4.1 We are given the 3 × 3-matrix

A =





3 −1 4
−1 3 4
0 0 0



 .

1. Find out if the vector




1
1
1





is an eigenvector or not.

2. From the matrix A we can immediately see that there is an eigenvector
having eigenvalue 0. Why? Determine an eigenvector.

3. Consider the vectors

v =





1
1
0



 w =





1
−1
0



 .

Show that they are eigenvectors of A and determine their eigenvalues.

Exercise 9.4.2 Determine eigenvectors and eigenvalues of the following ma-
trices

A =

(

1 3
0 1

)

, B =

(

2 −1
1 0

)

, C =

(

2 3
2 −3

)

, D =

(

−6 3
−4 1

)

.

Exercise 9.4.3 For the population growth of a certain bird species three
Leslie matrices are given,

L =





0 2 4
1/16 0 0

0 1/4 0



 , M =





0 2 4
1/4 0 0
0 1/2 0



 , N =





0 1/2 1/2
1/4 0 0
0 1/2 0



 ,

which correspond to the following situations,
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S1 : Good environmental conditions

S2 : Presence in the environment of toxic waste that diminishes fertility.

S3 : Presence in the environment of toxines that kill some of the living
birds.

1. Which matrix corresponds to which situation and why?

2. Determine the stable distribution of each matrix (stable distribution is
the distribution over the age classes in which the ratios do not change
over the years).

3. How does the bird population develop in each situation when we take a
stable distribution as starting point.

Exercise 9.4.4 The female population of the Birma-beetle is divided into
three age classes:

K1 0-1 year

K2 1-2 year

K3 2-3 year

Only the beetles from class K3 produce offspring, about 24 young beetles per
individual. Of class K1 only 2/3 survives, of class K2 half survives.

1. Write down the Leslie matrix L corresponding to this model.

2. The initial population distribution is represented by the vector n(0):

n(0) =





p
q
r



 .

Compute n(1),n(1),n(2).

3. Show that L has one real eigenvalue and compute it. Is this a dominant
eigenvalue?

4. Determine the stable population distribution.
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Exercise 9.4.5 In a closed and isolated vessel there is a mixture of gass and
liquid of the same compound S. At time t the (weight) fraction of liquid is
l(t) and the fraction of gass is g(t). So we have l(t) + g(t) = 1 at all times.
The time t is measured in minutes.
Through evaporation 2% of the liquid turns into gass and 6% of the gass turns
into liquid though condensation. Furthermore, l(0) = 0.1.

1. Show that the change per minute is described by

(

l(t + 1)
g(t + 1)

)

= A

(

l(t)
g(t)

)

, where A =

(

0.98 0.06
0.02 0.94

)

.

2. Compute the distribution gass/liquid after 1 minute.

3. Compute the eigenvectors and eigenvalues of A. Is there a dominant
eigenvalue?

4. What will be the ratio l(t) : g(t) in the long run?


