Solutions to Exercises in Extra Lecture Notes, SCI 113 Spring 2008

(1) Exercise 1 We need to verify properties (1)-(10) of a vector space (p. 1 of extra LN).
(1) If $\mathbf{u}=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M$ and $\mathbf{v}=\left(\begin{array}{cc}d & e \\ f & 0\end{array}\right) \in M$, then $\mathbf{u}+\mathbf{v}=$ $\left(\begin{array}{cc}a+d & b+e \\ c+f & 0\end{array}\right) \in M$.
(2) If $\mathbf{u}=\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right) \in M$ and $\mathbf{v}=\left(\begin{array}{cc}d & e \\ f & 0\end{array}\right) \in M$, then $\mathbf{u}+\mathbf{v}=\left(\begin{array}{cc}a+d & b+e \\ c+f & 0\end{array}\right)=\left(\begin{array}{cc}d+a & e+b \\ f+c & 0\end{array}\right)=\mathbf{v}+\mathbf{u}$.
(3) If \mathbf{u}, \mathbf{v} as above and $\mathbf{w}=\left(\begin{array}{cc}g & h \\ i & 0\end{array}\right)$, then

$$
\mathbf{u}+(\mathbf{v}+\mathbf{w})=\left(\begin{array}{cc}
a+(d+g) & b+(e+h) \\
c+(f+i) & 0
\end{array}\right)=\left(\begin{array}{cc}
(a+d)+g & (b+e)+h \\
(c+f)+i & 0
\end{array}\right)=(\mathbf{u}+\mathbf{v})+\mathbf{w} .
$$

(4) The zero vector is given by $\mathbf{0}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right) \in M$, notice that

$$
\mathbf{u}+\mathbf{0}=\left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & 0
\end{array}\right)=\mathbf{u} .
$$

(5) If $\mathbf{u}=\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right) \in M$, then the vector $-\mathbf{u}=\left(\begin{array}{cc}-a & -b \\ -c & 0\end{array}\right)$ has the property that $\mathbf{u}+-\mathbf{u}=\mathbf{0}$.
(6) If $\mathbf{u}=\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right) \in M$, and λ is a real number, then $\lambda \mathbf{u}=\left(\begin{array}{cc}\lambda a & \lambda b \\ \lambda c & 0\end{array}\right) \in$ M.
(7) If $\mathbf{u}=\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right) \in M$ and $\mathbf{v}=\left(\begin{array}{cc}d & e \\ f & 0\end{array}\right) \in M$, and λ is a real number, then

$$
\lambda(\mathbf{u}+\mathbf{v})=\left(\begin{array}{cc}
\lambda(a+d) & \lambda(b+e) \\
\lambda(c+f) & 0
\end{array}\right)=\left(\begin{array}{cc}
\lambda a & \lambda b \\
\lambda c & 0
\end{array}\right)+\left(\begin{array}{cc}
\lambda d & \lambda e \\
\lambda f & 0
\end{array}\right)=\lambda \mathbf{u}+\lambda \mathbf{v} .
$$

(8) if α, β are real numbers, and $\mathbf{u}=\left(\begin{array}{cc}a & b \\ c & 0\end{array}\right) \in M$, then

$$
(\alpha+\beta) \mathbf{u}=\mathbf{u}=\left(\begin{array}{cc}
(\alpha+\beta) a & (\alpha+\beta) b \\
(\alpha+\beta) c & 0
\end{array}\right)=\left(\begin{array}{cc}
\alpha a & \alpha b \\
\alpha c & 0
\end{array}\right)+\left(\begin{array}{cc}
\beta a & \beta b \\
\beta c & 0
\end{array}\right)=\alpha \mathbf{u}+\beta \mathbf{u} .
$$

(9) if α, β are real numbers, and $\mathbf{u}=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M$, then

$$
\alpha(\beta \mathbf{u})=\alpha\left(\begin{array}{cc}
\beta a & \beta b \\
\beta c & 0
\end{array}\right)=\alpha \beta\left(\begin{array}{cc}
a & b \\
c & 0
\end{array}\right)=(\alpha \beta) \mathbf{u}
$$

(10) If $\mathbf{u}=\left(\begin{array}{ll}a & b \\ c & 0\end{array}\right) \in M$, then it is clear that

$$
1 \mathbf{u}=\mathbf{u}
$$

Hence M is a vector space under the the usual operations of addition and scalar multiplication of matrices.
(2) Exercise 2 We want to write $\mathbf{w}=\left(\begin{array}{l}-1 \\ -2 \\ -2\end{array}\right)$ in \mathbb{R}^{3} as a linear combination of $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}0 \\ 1 \\ 4\end{array}\right), \mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{l}3 \\ 1 \\ 2\end{array}\right)$. In other words, we want to find real numbers c_{1}, c_{2}, c_{3} such that

$$
\mathbf{w}=c_{1} \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}}+c_{3} \mathbf{v}_{\mathbf{3}}
$$

This leads to

$$
\left\{\begin{array}{l}
-c_{2}+3 c_{3}=-1 \\
c_{1}+c_{2}+c_{3}=-2 \\
4 c_{1}+2 c_{2}+2 c_{3}=-2
\end{array}\right.
$$

Solving this system, we get that $c_{1}=1, c_{2}=-2$, and $c_{3}=-1$. Thus,

$$
\mathbf{w}=\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}} .
$$

(3) Exercise 3 To show that S is a spanning set for \mathbb{R}^{3}, we need to prove that any vector \mathbf{u} of \mathbb{R}^{3} can be written as a linear combination of $\mathbf{v}_{\mathbf{1}}=\left(\begin{array}{l}4 \\ 7 \\ 3\end{array}\right)$, $\mathbf{v}_{\mathbf{2}}=\left(\begin{array}{c}-1 \\ 2 \\ 6\end{array}\right)$, and $\mathbf{v}_{\mathbf{3}}=\left(\begin{array}{c}2 \\ -3 \\ 5\end{array}\right)$. So suppose $\mathbf{w}=\left(\begin{array}{c}a \\ b \\ c\end{array}\right)$, we need to find real numbers c_{1}, c_{2}, c_{3} so that $\mathbf{w}=\mathbf{v}_{\mathbf{1}}-2 \mathbf{v}_{\mathbf{2}}-\mathbf{v}_{\mathbf{3}}$. This vector equation leads to the following system of linear equations (in the variables c_{1}, c_{2}, and c_{3})

$$
\left\{\begin{array}{l}
4 c_{1}-c_{2}+2 c_{3}=a \\
7 c_{1}+2 c_{2}-3 c_{3}=b \\
3 c_{1}+6 c_{2}+5 c_{3}=c
\end{array}\right.
$$

This system has a unique solution since the matrix $A=\left(\begin{array}{ccc}4 & -1 & 2 \\ 7 & 2 & -3 \\ 3 & 6 & 5\end{array}\right)$ has a non-zero determinant $(\operatorname{det}(A)=228)$. The unique solution is given by

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=A^{-1}\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\frac{1}{228}\left(\begin{array}{ccc}
28 & 17 & -1 \\
-44 & 14 & 26 \\
36 & -27 & 15
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Hence, \mathbf{w} can be written as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{3}}$. So S is a spanning set.
(4) Exercise 4 To show that the set $S=\left\{x^{2}-1,2 x+5\right\}$ is linearly independent in P_{2}, we need to show that if $c_{1}\left(x^{2}-1\right)+c_{2}(2 x+5)=0$, then $c_{1}=c_{2}=0$.

So assume $c_{1}\left(x^{2}-1\right)+c_{2}(2 x+5)=0$. Rewriting we get $c_{1} x^{2}+2 c_{2} x+$ $\left(-c_{1}+5 c_{2}\right)=0$. Thus

$$
\left\{\begin{array}{l}
c_{1}=0 \\
2 c_{2}=0 \\
-c_{1}+5 c_{2}=0
\end{array}\right.
$$

This system has a unique solution $c_{1}=c_{2}=0$. So S is linearly independent.
(5) Exercise 5 To show that the set $S=\left\{\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right),\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)\right\}$ forms a basis for $M_{2,2}$, we need two verify that S is linearly independent, and that S is a spanning set. We begin with linear independence. Suppose
$c_{1}\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)+c_{2}\left(\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right)+c_{3}\left(\begin{array}{ll}0 & 1 \\ 3 & 2\end{array}\right)+c_{4}\left(\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$.
This lead to

$$
\left\{\begin{array}{l}
2 c_{1}+c_{2}=0 \\
4 c_{2}+c_{3}+c_{4}=0 \\
3 c_{3}+2 c_{4}=0 \\
3 c_{1}+c_{2}+2 c_{3}=0
\end{array}\right.
$$

This system has a unique solution $c_{1}=c_{2}=c_{3}=c_{4}=0$. Thus, S is linearly independent. To show S is a spanning set, we need to show that any 2×2 matrix is a linear combination of elements of S. So given $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, we need to find real numbers c_{1}, c_{2}, c_{3}, and c_{4} such that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=c_{1}\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right)+c_{2}\left(\begin{array}{ll}
1 & 4 \\
0 & 1
\end{array}\right)+c_{3}\left(\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right)+c_{4}\left(\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right) .
$$

This is equivalent to

$$
\left\{\begin{array}{l}
2 c_{1}+c_{2}=a \\
4 c_{2}+c_{3}+c_{4}=b \\
3 c_{3}+2 c_{4}=c \\
3 c_{1}+c_{2}+2 c_{3}=d
\end{array}\right.
$$

Since the matrix $A=\left(\begin{array}{cccc}2 & 1 & 0 & 0 \\ 0 & 4 & 1 & 1 \\ 0 & 0 & 3 & 2 \\ 3 & 1 & 2 & 0\end{array}\right)$ has a non-zero determinant, the system has a unique solution given by

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)=A^{-1}\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

Thus S is a spanning set.

4
(6) Exercise 6 To evaluate $T\left(\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)\right)$, we first need to write the matrix $\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)$ as a linear combination of elements of

$$
S=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

as follows
$\left(\begin{array}{cc}1 & 3 \\ -1 & 4\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+3\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)-\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)+4\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$.
Since T is a linear transformation, then

$$
\begin{aligned}
T\left(\left(\begin{array}{cc}
1 & 3 \\
-1 & 4
\end{array}\right)\right) & =T\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right)+3 T\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)-T\left(\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)+4 T\left(\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)+3\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)-\left(\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right)+4\left(\begin{array}{cc}
3 & -1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
12 & -1 \\
7 & 4
\end{array}\right)
\end{aligned}
$$

(7) Exercise 7 To find the standard matrix A of the linear transformation T, we calculate

$$
\begin{aligned}
& T\left(\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right)=\binom{13}{6}, \\
& T\left(\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\right)=\binom{-9}{5},
\end{aligned}
$$

and

$$
T\left(\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right)=\binom{4}{-3}
$$

Hence, the standard matrix A is given by

$$
A=\left(\begin{array}{ccc}
13 & -9 & 4 \\
6 & 5 & -3
\end{array}\right)
$$

(8) Exercise $\mathbf{8}$ We find the images of the elements of B, and we express them as linear combinations of elements of B^{\prime}. Now

$$
\begin{gathered}
T(1)=\int_{0}^{x} t^{0} d t=x=0(1)+1(x)+0\left(x^{2}\right)+0\left(x^{3}\right)+0\left(x^{4}\right) \\
T(x)=\int_{0}^{x} t^{1} d t=\frac{x^{2}}{2}=0(1)+0(x)+\frac{1}{2}\left(x^{2}\right)+0\left(x^{3}\right)+0\left(x^{4}\right) \\
T\left(x^{2}\right)=\int_{0}^{x} t^{2} d t=\frac{x^{3}}{3}=0(1)+0(x)+0\left(x^{2}\right)+\frac{1}{3} x^{3}+0\left(x^{4}\right) \\
T\left(x^{3}\right)=\int_{0}^{x} t^{3} d t=\frac{x^{4}}{4}=0(1)+0(x)+0\left(x^{2}\right)+0\left(x^{3}\right)+\frac{1}{4}\left(x^{4}\right)
\end{gathered}
$$

Thus, the required matrix is given by

$$
A=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 1 / 3 & 0 \\
0 & 0 & 0 & 1 / 4
\end{array}\right)
$$

