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1. (E,B, µ) be a σ-finite measure space, and f : E → [0,∞) measurable. Define

Γ(f) = {(x, t) ∈ E × [0,∞) : t < f(x)},

and
Γ(f) = {(x, t) ∈ E × [0,∞) : t ≤ f(x)}.

(a) Show that the function F : E × [0,∞) → R given by F (x, t) = f(x) − t is
measurable with respect to the product σ-algebra B × B[0,∞), where B[0,∞) is
the restriction of the Borel σ-algebra on [0,∞).

(b) Show that Γ(f), Γ(f) ∈ B × B[0,∞), and

(µ × λR)(Γ(f)) = (µ × λR)(Γ(f)) =

∫

E

f(x) dµ(x).

Proof (a) We will show that the function F is the composition of measurable
functions. Let f1, f2 : E × [0,∞) → [0,∞) be given by

f1(x, t) = f(x), and f2(x, t) = t.

Then, for any a ≥ 0,

f−1
1 ([a,∞)) = f−1 ([a,∞))×R ∈ B×B[0,∞), and f−1

2 ([a,∞)) = E×[a,∞) ∈ B×B[0,∞).

Thus, f1, f2 are measurable. By Lemma 3.2.2, the tensor product (f1 × f2) : E ×
[0,∞) → [0,∞) × [0,∞) given by (f1 × f2)(x, t) = (f1(x, t), f2(x, t)) = (f(x), t)
is measurable. Let g : [0,∞) × [0,∞) → R be given by g(s, t) = s − t, then g is
continuous, and hence measurable. Now, F (x, t) = g ◦ (f1 × f2)(x, t), hence F is the
composition of two measurable functions, therefore F is measurable.

Proof (b) Notice that Γ(f) = F−1((0,∞)) and Γ(f) = F−1([0,∞)). Since F is
measurable, it follows that Γ(f), Γ(f) ∈ B × B[0,∞).

Since 1Γ(f), 1Γ(f) ≥ 0 are measurable, by Tonelli’s Theorem (Theorem 4.1.5),

(µ × λR)(Γ(f)) =

∫

E×[0,∞)

1Γ(f)(x, t)d(µ × λR)(x, t)

=

∫

E

∫

[0,∞)

1{t≥0: t<f(x)}(t)dλR(t)dµ(x)

=

∫

E

λR ([0, f(x))) dµ(x)

=

∫

E

f(x)dµ(x).
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Similarly,

(µ × λR)(Γ(f)) =

∫

E

λR ([0, f(x)])) dµ(x) =

∫

E

f(x)dµ(x).

2. Let E = {(x, y) : 0 < x < ∞, 0 < y < 1}. We consider on E the restriction of the
product Borel σ-algebra, and the restriction of the product Lebesgue measure λ×λ.

Let f : E → R be given by f(x, y) = y sin x e−xy.

(a) Show that f is λ × λ integrable on E.

(b) Applying Fubini’s Theorem to the function f , show that
∫ ∞

0

sin x

x

(

1 − e−x

x
− e−x

)

dx =
1

2
log 2.

Proof(a) Notice that f is continuous, and hence measurable. Furthermore, |f(x, y)| ≤
ye−xy. The fuction g(x, y) = ye−xy is non-negative measurable function, hence by
Tonelli’s Theorem,

∫

E

|f(x, y)|d(λ× λ)(x, y) ≤

∫

E

ye−xyd(λ × λ)(x, y)

=

∫ 1

0

∫ ∞

0

ye−xydxdy

=

∫ 1

0

1 dy = 1.

Notice that the integrands are Riemann integrable, hence the Riemann integral
equals the Lebesgue integral, also the second equality is obtained by integration by
parts. This shows that f is λ × λ integrable on E.

Proof(b) By Fubini’s Theorem,

∫

E

f(x, y)d(λ× λ)(x, y) =

∫ 1

0

∫ ∞

0

y sin x e−xydxdy =

∫ ∞

0

∫ 1

0

y sin x e−xydydx.

Using integration by parts, one has
∫ ∞

0

y sin x e−xydx =
y

y2 + 1
.

Hence,
∫

E

f(x, y)d(λ× λ)(x, y) =

∫ ∞

0

y

y2 + 1
dy =

1

2
log 2.

On the other hand, again by integration by parts one has,
∫ 1

0

y sin x e−xydy =
sin x

x

(

1 − e−x

x
− e−x

)

.

Therefore,
∫ ∞

0

sin x

x

(

1 − e−x

x
− e−x

)

dx =
1

2
log 2.
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3. Let (L, ( , )) be an inner product space, and let ||x||L = (x, x)1/2. x ∈ L.

(a) Let (xn) ⊆ L, and x ∈ L. Show that if lim
n→∞

||xn − x||L = 0, then lim
n→∞

||xn||L =

||x||L.

(b) Prove that the inner product ( , ) is jointly continuous, i.e. if lim
n→∞

||xn−x||L =

0 and lim
n→∞

||yn − y||L = 0, then lim
n→∞

(xn, yn) = (x, y).

Proof (a)
| ||xn||L − ||x||L | ≤ ||xn − x||L → 0 as n → ∞.

Thus, limn→∞ ||xn||L = ||x||L.

Proof (b) Suppose that lim
n→∞

||xn − x||L = 0 and lim
n→∞

||yn − y||L = 0. By Cauchy-

Schwartz inequality and part (a), we have

|(xn, yn) − (x, y)| = |(xn, yn − y) + (xn − x, y)|

≤ |(xn, yn − y)|+ |(xn − x, y)|

≤ ||xn||L||yn − y||L + ||y||L||xn − x||L

→ ||xn||L · 0 + ||y||L · 0 = 0.

Therefore, lim
n→∞

(xn, yn) = (x, y).

4. Let (E,B, µ) be a measure space, and let {fn} ⊆ L2(µ) be such that

lim
m→∞

sup
n≥m

||fn − fm||L2(µ) = 0.

Show that there exists a function f ∈ L2(µ) such that lim
n→∞

||fn − f ||L2(µ) = 0. In

other words (L2(µ), || ||L2(µ)) is a complete metric space.

Proof By the Markov inequality,

µ(|fn − fm| ≥ ε) = µ(|fn − fm|
2 ≥ ε2) ≤

1

ε2
||fn − fm||

2
L2(µ).

Hence,

lim
m→∞

sup
n≥m

µ(|fn − fm| ≥ ε) ≤ lim
m→∞

sup
n≥m

1

ε2
||fn − fm||

2
L2(µ) = 0.

By Theorem 3.3.10 there exists a measurable function f such that fn → f in µ-
measure. Furthermore, there exists a subsequence (fni

) such that fni
→ f µ a.e.,

hence for each m, fni
− fm → f − fm (as n → ∞) µ a.e.. By Fatou’s lemma

||f − fm||
2
L2(µ) ≤ lim inf

i→∞
||fni

− fm||
2
L2(µ) ≤ sup

n≥m
||fn − fm||

2
L2(µ).

Thus, lim
m→∞

||f − fm||L2(µ) = 0. Furthermore, f − fm ∈ L2(µ) for each m. Since

f = (f − fm) + fm with f − fm ∈ L2(µ) and fm ∈ L2(µ), it follows that f ∈ L2(µ).
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