Solutions Test 1, SCI 113 Spring 2008

- Write your name and student number on each page you hand in.
- You are allowed to use the book Mathematical Techniques by Jordan and Smith and the lecture notes by Frits Beukers.
- You should explain how you have calculated your answers
- Define $\cos z=\frac{e^{i z}+e^{-i z}}{2}, z \in \mathbb{C}$.
(1) Find all solutions of the following system of linear equations

$$
\left\{\begin{array}{l}
x+y-3 z=1 \\
3 x-y+2 z=4 \\
5 x+y-4 z=6 .
\end{array}\right.
$$

Solution We write the corresponding augmented matrix

$$
\left(\begin{array}{cccc}
1 & -1 & -3 & 1 \\
3 & -1 & 2 & 4 \\
5 & 1 & -4 & 6
\end{array}\right)
$$

and using Gauss Elimination method we transform it to the matrix

$$
\left(\begin{array}{cccc}
1 & -1 & -3 & 1 \\
0 & -4 & 11 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

From which we read that the system has infinitely many solutions of the form: $z=t$ is any real number, $y=\frac{11}{4} t-\frac{1}{4}$ and $x=\frac{1}{4} t+\frac{5}{4}$. In vector form, the set of all solutions is given by

$$
\left\{\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\frac{1}{4}\left(\begin{array}{c}
t+5 \\
11 t-1 \\
4 t
\end{array}\right), t \in \mathbb{R}\right\}
$$

(2) (a) Given two vectors $\mathbf{u}=(1,1,1)$ and $\mathbf{v}=(2,-1,2)$ in \mathbb{R}^{3}. Compute the angle between vectors \mathbf{u} and \mathbf{v}.
(b) Given a point $M=(1,2)$ and a vector $\mathbf{u}=(3,5)$ in \mathbb{R}^{2}. Determine the equation of the line passing through M and is perpendicular to $(3,5)$.
Solution(a) We first calculate $\mathbf{u} \cdot \mathbf{v}=2-1+2=3,|\mathbf{u}|=\sqrt{3}$ and $|\mathbf{v}|=\sqrt{9}=3$. Hence,

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}=\frac{3}{3 \sqrt{3}}=\frac{1}{\sqrt{3}}
$$

Which implies that $\theta=54.74^{\circ}$.
Solution(b) Notice that the equation of a line has the form $a x+b y=c$, where $\binom{a}{b}$ is a vector perpendicular to the line. In our case $\mathbf{u}=\binom{3}{5}$ is perpendicular to the line, so the line has the equation $3 x+5 y=c$. To find c, we plug in the coordinates of the point M in the equation to get $3(1)+5(2)=c$ so $c=13$, and the equation is: $3 x+5 y=13$.
(3) (a) Express the following complex numbers in standard form $a+i b$ with $a, b \in R$:
$\frac{1+5 i}{2-3 i}, 3 e^{3-i \pi / 3}, \pi \cos (\pi i)$.
(b) Express the following numbers in polar (exponential) form $r e^{i \theta}$, where $-\pi<\theta \leq \pi$:

$$
(1-i \sqrt{3})^{99},\left(\frac{-1+i \sqrt{3}}{1+i}\right)^{2} .
$$

(c) Determine all complex solutions of the equation $z^{4}=(1-i)^{3}$.
(d) Use De Moivre's Theorem to find an expression for $\cos ^{2} \theta$ in terms of $\cos (2 \theta)$. Use this expression to prove that $\cos (\pi / 12)=\frac{\sqrt{\sqrt{3}+2}}{2}$.
Solution(a)

$$
\begin{gathered}
\frac{1+5 i}{2-3 i}=\frac{1+5 i}{2-3 i} \cdot \frac{2+3 i}{2+3 i}=\frac{-13+13 i}{13}=-1+i \\
3 e^{3-i \pi / 3}=3 e^{3} e^{-i \pi / 3}=3 e^{3}(\cos \pi / 3-i \sin \pi / 3)=3 e^{3} / 2-i 3 e^{3} \sqrt{3} / 2
\end{gathered}
$$

Solution(b)

$$
\begin{gathered}
(1-i \sqrt{3})^{99}=\left(2 e^{-i \pi / 3}\right)^{99}=2^{99} e^{-i 33 \pi}=2^{99} e^{-i \pi}=2^{99} e^{i \pi} \\
\left(\frac{-1+i \sqrt{3}}{1+i}\right)^{2}=\frac{-1-i \sqrt{3}}{i}=-\sqrt{3}+i=2 e^{i 5 \pi / 6}
\end{gathered}
$$

Solution(c) First, $z=|z| e^{i \theta}$, and

$$
(1-i)^{3}=\left(\sqrt{2} e^{-i \pi / 4}\right)^{3}=2^{3 / 2} e^{i(-3 \pi / 4+2 n \pi)}
$$

Hence

$$
|z|^{4} e^{i 4 \theta}=2^{3 / 2} e^{i(-3 \pi / 4+2 n \pi)}
$$

implying that $|z|^{4}=2^{3 / 2}$ or $|z|=2^{3 / 8}$ and $4 \theta=-3 \pi / 4+2 n \pi$ or $\theta=$ $-3 \pi / 16+n \pi / 2$, for $n \in \mathbb{N}$. Since the degree of the polynomial is 4 , we know that there are only 4 distinct solutions obtained when n is replaced by $0,1,-1,2$. Therefore, the solutions are

$$
2^{3 / 8} e^{i-3 \pi / 16}, 2^{3 / 8} e^{i 5 \pi / 16}, 2^{3 / 8} e^{-i 11 \pi / 16}, 2^{3 / 8} e^{i 13 \pi / 16}
$$

Solution From De Moivre's Theorem, we have

$$
\cos 2 \theta+i \sin 2 \theta=(\cos \theta+i \sin \theta)^{2}
$$

leading to

$$
\cos 2 \theta+i \sin 2 \theta=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)+i 2 \sin \theta \cos \theta
$$

Thus,

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1
$$

or $\cos ^{2} \theta=\frac{1}{2}(\cos 2 \theta+1)$. Plugging in $\theta=\pi / 12$ leads to

$$
\cos ^{2} \pi / 12=\frac{1}{2}(\cos \pi / 6+1)=\frac{\sqrt{3}+2}{4}
$$

giving

$$
\cos \pi / 12=\frac{\sqrt{\sqrt{3}+4}}{2}
$$

