10. Übungsblatt zur Vorlesung Hamiltonsche Dynamische Systeme

- 26. Berechnen Sie den Winkel, in welchem die beiden Äste der kritischen Werte der Energie-Impulsabbildung des sphärischen Pendels in $(h, \mu) = (-1, 0)$ zusammentreffen.
- 27. Klassifizieren Sie die linearen Hamiltonschen Systeme im \mathbb{R}^4 (mit kanonischer Poissonstruktur)
- 28. Um den Einfluß eines magnetischen Monopols im Ursprung auf die Bewegung eines (elektrisch) geladenen Teilchens im $\mathbb{R}^{3\setminus\{0\}}$ zu modellieren, ändert man die kanonische Poissonstruktur mittels $\{y_i,y_j\}=\varepsilon_{ijk}\,\frac{a\,x_k}{|x|^3}$ ab, wo $\varepsilon_{ijk}:=\mathrm{sgn}\,(^{123}_{ijk})$ das alternierende Levi-Civita-Symbol bezeichne. Werden außerdem die Zwangsbedingungen $x_1^2+x_2^2+x_3^2=1$ und $x_1y_1+x_2y_2+x_3y_3=0$ erfüllt, so spricht man vom magnetischen sphärischen Pendel.
 - 1. Bestimmen Sie die zugehörige Poissonstruktur.
 - 2. Reduzieren Sie die axiale S^1 -Symmetrie des magnetischen sphärischen Pendels.
 - Geben Sie die verschiedenen Phasenportraits des reduzierten magnetischen sphärischen Pendels und bestimmen Sie die kritischen Werte der Energie-Impuls-Abbildung.