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Abstract

A superintegrable system has more integrals of motion than degrees d of freedom.
The quasi-periodic motions then spin around tori of dimension n < d. Already under
integrable perturbations almost all n–tori will break up; in the non-degenerate case
the resulting d–tori have n fast and d − n slow frequencies. Such d–parameter
families of d–tori do survive Hamiltonian perturbations as Cantor families of d–tori.
A perturbation of a superintegrable system that admits a better approximation by
a non-degenerate integrable perturbation of the superintegrable system is said to
remove the degeneracy. In the minimal case d = n+1 this can be achieved by means
of averaging, but the more integrals of motion the superintegrable system admits
the more difficult becomes the perturbation analysis.

1 Introduction

Integrable Hamiltonian systems are in d ≥ 2 degrees of freedom the exception rather than
the rule. This makes the behaviour of the dynamics under non-integrable perturbations
one of the key properties of an integrable system. On a general level one obtains infor-
mation on motions of an open subset of all Hamiltonian systems [32], and for concretely
given systems one can address the question how the dynamics organizes the phases space.

The typical bounded motion in an integrable system is quasi-periodic, spinning densely
around invariant tori. This makes the phase space a ramified torus bundle, the regular
fibres of n–tori forming families that are organized by families of invariant (n − 1)–tori,
which in turn are organized by bifurcating (n − 1)–tori and by (n − 2)–tori and so on,
down to the equilibria of the Hamiltonian system. In the case n = d of Lagrangean tori
one can apply kam theory directly to the integrable system, yielding persistence of the
Lagrangean tori [2, 9, 18], of elliptic/hyperbolic lower dimensional tori [35, 10, 9] and
of invariant tori that undergo bifurcations [28, 29, 7]. Such results are valid under non-
degeneracy conditions [30], the best-known being Kolmogorov’s non-degeneracy condition
which expresses that the frequency mapping from the families of Lagrangean tori to R

d

is a submersion.
Superintegrable systems fail to satisfy such non-degeneracy conditions on a funda-

mental level and are consequently termed properly degenerate systems in [3]. Famous

1



examples are the 2–body problem, resonant oscillators, rigid bodies fixed at their centre
of mass and combinations of these; in particular the Kepler approximation of the n–body
problem, with all planets only interacting with the sun and not with each other.

The additional integrals of motion of a superintegrable system simplify the analysis of
the (unperturbed) dynamics. For instance, in the maximally superintegrable case of 2d−1
conserved quantities the regular fibres of the ramified torus bundle are merely periodic
orbits (or circles of equilibria) organized by bifurcating periodic orbits and by (isolated)
equilibria. However, the price to pay is that the perturbation analysis becomes more
complicated and involves the perturbation as well. In the extreme case of a maximally
superintegrable system one has to study the Hamiltonian system in d − 1 degrees of
freedom that is obtained by averaging the perturbation along the unperturbed periodic
orbits and reducing the acquired S1–symmetry.

A Hamiltonian system that is closer to the perturbed system than the unperturbed
superintegrable system is called an intermediate system if it has additional integrals of
motion compared to the perturbed system but less integrals of motion than the unper-
turbed system. Normal forms provide the means to obtain intermediate systems, and the
most obvious way is to normalize by averaging along the unperturbed dynamics. In gen-
eral such an intermediate system inherits n + 1 integrals of motion in involution and the
perturbation is said to remove the degeneracy [3] in case of a (non-degenerate) integrable
intermediate system.

In the minimally superintegrable case d = n + 1 the intermediate system is auto-
matically integrable. Between these two extreme cases there is a whole hierarchy of
superintegrable systems with 2d − n independent conserved quantities, n = 1, . . . , d − 1.
Reducing the acquired T

n–symmetry leads to d−n degrees of freedom and in general one
is back to studying a general Hamiltonian system (albeit with fewer degrees of freedom).
A general statement of quasi-periodic persistence is proven in [3] under the condition that
the reduced intermediate system is a non-degenerate integrable system and the frequency
mapping of the superintegrable system onto R

n is a submersion as well.
This review is organized as follows. Section 2 contains the behaviour of the unper-

turbed system, in particular the geometry imposed by the dynamics. In section 3 the
treatment of perturbed minimally superintegrable systems is exemplified for the Euler
top and the logarithmic potential. Section 4 is devoted to resonant oscillators, where
superintegrability may or may not be minimal, and more examples of the latter are given
in section 5. The final conclusions constitute section 6.

2 Unperturbed dynamics

Let (P, σ) be a symplectic manifold of dimension dimP = 2d and define first Hamiltonian
vector fields by means of σ(XH, Y ) = dH(Y ) for all vector fields Y on P and then the
Poisson bracket {f, g} := −σ(Xf , Xg).

The simplest way to define a superintegrable system is to require it to be an integrable
Hamiltonian system, with d integrals of motion in involution {Ik, Iℓ} = 0 and admitting
at least one more conserved quantity independent of I1, . . . , Id. Since the Poisson bracket
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of two conserved quantities is again an integral of motion all these form a Lie algebra,
and as the symplectic structure is non-degenerate such a Lie algebra is necessarily non-
commutative once the dimension exceeds d. One therefore also speaks of non-commutative
integrabililty [34]. The following result from [23] clarifies the semi-local situation (i.e.
locally around a maximal torus).

Theorem 2.1 On the subset M ⊆ P of the phase space with symplectic structure σ
let f : M −→ B ⊆ R

2d−n be a submersion with compact and connected fibres (hence,
a fibration). Assume that {fi, fj} = Pij ◦ f , i, j = 1, . . . , 2d − n and that the matrix P
with entries Pij : M −→ R has rank 2(d − n) at all points of B. Then every fibre of f is
diffeomorphic to T

n and the fibration f has local trivialisations which are symplectic.

Taking for M the regular part of the phase space where the integrals are independent
and have compact (common) level sets, every fibre of f has a neighbourhood U with
co-ordinates

(x, y, q, p) : U −→ T
n × R

n × R
d−n × R

d−n (1)

such that the level sets of f coincide with the level sets of (y, q, p) and

σ|U =
n
∑

k=1

dxk ∧ dyk +
d−n
∑

ℓ=1

dqℓ ∧ dpℓ .

These co-ordinates are Nekhoroshev’s generalized action angle variables [36]. In particular
we see that locally we have d commuting integrals of motion y1, . . . , yn, p1, . . . , pd−n and
d − n additional conserved quantities q1, . . . , qd−n that are in involution with the first n
integrals y1, . . . , yn.

On M the superintegrable system is equivariant with respect to the T
n–action x 7→

x+ ξ and in examples this action often extends to all of P (simple counter-examples with
n = 1 can be constructed from Hamiltonian systems in one degree of freedom). Reduction
of such a T

n–action leads to d − n degrees of freedom where (q, p) provide canonical co-
ordinates. This can in particular be applied to an intermediate system obtained from a
given perturbation by averaging over the unperturbed fast motion.

The perturbation is said to remove the degeneracy (of the superintegrable or ‘properly
degenerate’ unperturbed system) if the intermediate system is indeed integrable. Then
we may choose (q, p) to be action angle variables of the reduced intermediate system and
the Lagrangean tori

T
n × T

d−n × {y} × {p}

with angular variables (x, q) have frequency vectors

ω(y, p) = (ω1(y), . . . , ωn(y), ωn+1(y, p), . . . ωd(y, p)) (2)

where the last d−n components — those that do depend on the variables p1, . . . , pd−n —
are of the order of the perturbation (while ω1, . . . , ωn are of order one). Non-degeneracy
of the frequency mapping

ω : M −→ R
d = R

n × R
d−n
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defined by (2) then yields Cantor families of invariant Lagrangean tori in the (original)
perturbed system, cf. [3, 4].

The leaves of the fibration f : M −→ B are n–tori on which the symplectic structure
vanishes; one also speaks of an isotropic fibration [23]. The symplectic leaves of the base
space B have dimension d−n and constitute the phase space for the reduced intermediate
system. In case these define a fibration s : B −→ A the composition s ◦ f : M −→ A is
the co-isotropic fibration [16, 23] and the actions y1, . . . , yn conjugate to the toral angles
are local co-ordinates on the base space A.

The fibres of the co-isotropic fibration are the Fassò flowers [22, 23] and form them-
selves fibrations fy : f−1(s−1(y)) −→ s−1(y), y ∈ A. The symplectic leaf s−1(y) is the
centre of the flower and the isotropic n–tori f−1(z), z ∈ s−1(y) are the petals, while the
action manifold A is the meadow on which the flowers grow. The bifibration M → B → A
allows to distinguish between semi-local properties (in a neighbourhood of an n–torus)
and semi-global properties (in a neighbourhood of a flower). In particular, the general-
ized action angle variables (1) are semi-local co-ordinates, while a semi-global chart of M
would also be global onto (a model space for) the symplectic fibres of B.

3 Minimally superintegrable systems

The intermediate sytem is always integrable if d − n = 1 and ∂pωd(y, p) 6= 0 is all that is
needed for (2) to be non-degenerate (provided that the superintegrable frequency mapping
y 7→ (ω1(y), . . . , ωn(y)) is non-degenerate). This is a genericity condition on the perturba-
tion which can be explicitly checked after averaging over the unperturbed fast motion. For
a concretely given system the task is therefore to fully analyse the one-degree-of-freedom
problem parametrised by n actions — and thus identifying how the families of d–tori are
organized by the fast n–tori and their bifurcations.

Both examples in this section have d = 3 degrees of freedom and are superintegrable
because the energy H and the three components µ1, µ2, µ3 of the angular momentum
are conserved quantities. Replacing one of the components, say µ1, by the total angular
momentum |µ| =

√

µ2
1 + µ2

2 + µ2
3 yields three commuting integrals H , |µ| and, say, µ3

with the fourth integral µ2 commuting with H and |µ| (but not with µ3).
Note that there are moreover invariant lower dimensional tori in the intermediate

system that have one slow frequency, these come from the singular fibres of the ramified
torus bundle defined by the unperturbed dynamics. The symplectic normal behaviour
of such a torus, and whether this undergoes a bifurcation, is then decided by the fast
dynamics as well. Also the combination of e.g. two bifurcations in both the fast and the
slow dynamics is possible, with resulting phenomena in 1 + 1 rather than truly 2 degrees
of freedom (for co-dimension 1 bifurcations).

3.1 The Euler top

The configuration space of a rigid body with a fixed point is SO(3), whence we have
P = T ∗SO(3) for the phase space. In the absence of external forces or torques the system
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Figure 1: Schematic representation of the bundle structure of the phase space P =
T ∗SO(3). The value y2 = |µ| = 0 is excluded from the picture, in this limit the product
of the spheres with S1 attached results in a fibre SO(3).

is invariant under the left action of SO(3) — the lift of (g, h) 7→ gh. The components
ℓ1, ℓ2, ℓ3 of the angular momentum with respect to the body axes transform as ℓ 7→ g−1(ℓ)
under the right action — the lift of (g, h) 7→ hg — whence the (kinetic) energy

H0(g, ℓ) =
ℓ2
1

2I1

+
ℓ2
2

2I2

+
ℓ2
3

2I3

is invariant under the left action but not invariant under the right action. Here I1, I2, I3

are the principal moments of inertia, the body set of axes been chosen along the principal
axes of inertia. Still, the SO(3)–symmetry from the left action makes the components
µ1, µ2, µ3 of the angular momentum with respect to the spatial axes conserved quantities,
next to the Hamiltonian H0.

The spatial components of the angular momentum constitute the momentum map-
ping J of the left SO(3) action and the isotropy group Gµ of the co-adjoint action of
SO(3) on so(3)∗ ∼= R

3 consists of the rotations about 0 6= µ ∈ R
3. Reducing the SO(3)–

symmetry leads to a one-degree-of-freedom system on the co-adjoint orbit

J−1(µ)/Gµ

∼= SO(3)/S1

∼= S2
|µ| =

{

ℓ ∈ R
3 | ℓ2

1 + ℓ2
2 + ℓ2

3 = |µ|2
}

. (3)

Action angle variables (x1, y1) of this integrable system serve as starting point for the
construction of generalized action angle variables for the free rigid body. The second
angle x2 measures the rotation (=precession) about the angular momentum vector, with
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conjugate action y2 = |µ|. The phase space P = T ∗SO(3) has left trivialization

(π, T ∗
e Lg) : T ∗SO(3) −→ SO(3)× R

3

αg 7→ (g, ℓ)

and right trivialization

(T ∗
e Rg, π) : T ∗SO(3) −→ R

3 × SO(3)
αg 7→ (µ, g)

where π : T ∗SO(3) −→ SO(3) is the bundle projection. In the right trivialization x1, x2

and y1 are co-ordinates on SO(3) and y2 fixes the radius of the sphere

{

µ ∈ R
3 | µ2

1 + µ2
2 + µ2

3 = y2
2

}

. (4)

Choosing canonical co-ordinates (q, p) on the latter yields generalized action angle vari-
ables (x, y, q, p), while (x, y, µ) define semi-global charts when restricting µ to (4).

The angle x2 is not globally defined since SO(3) → S2 is not a trivial S1–bundle,
being related to the Hopf fibration. In the dynamically symmetric case I1 = I2 6= I3 we
may use y1 = ℓ3 and the action angle variables (x1, y1) are cylindrical co-ordinates on
the ‘right’ sphere (3), this is the situation sketched in figure 1. Choosing also cylindrical
co-ordinates (q, p) on the ‘left’ sphere (4) yields the Andoyer variables (x, y, q, p). Note
that

H0(y) =
y2

2

2I1

−
I3 − I1

I1I3

y2
1

2

in the dynamically symmetric case whence

det D2H0(y) = −
I3 − I1

I2
1I3

6= 0

shows that the frequency mapping is a submersion.
The T

2–action x 7→ x + ξ is globally defined in the dynamically symmetric case,
except for the zero-section SO(3) ⊆ T ∗SO(3) of the phase space. Furthermore, the
elliptic functions solving ℓ̇ = ℓ × I−1(ℓ) become sines and cosines (the rotation along the
angle x1 measures the spinning of the rigid body) and the intermediate system can be
computed by hand. For instance, averaging an affine force field [27] along the Eulerian
tori yields

H̄(y, µ) = H0(y) +
a + b + c

2
(I1 + (I3 − I1)

y2
1

y2
2

)

+ s3

y1

y2
2

(αµ1 + βµ2 + γµ3) −
I3 − I1

2

3y2
1 − y2

2

y4
2

(

aµ2
1 + bµ2

2 + cµ2
3

)

where s3 is the component of the centre of mass along the third body axis and the other
coefficients come from the (small) potential V = αx + βy + γz + ax2 + by2 + cz2 of the
affine force field.
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Figure 2: A slice y2 = |µ| of the set of critical values of the energy-momentum mapping
EM = (y, H̄) with axes y1 = ℓ3 and H̄ for the ‘middle’ case s3 · (α, β, γ) ≈ (a, b, c).

The phase space structure of the intermediate system can be read off from the slice
y2 = |µ| of the set of singular values of the energy-momentum mapping, see figure 2. For
values of y1 near ±1

3
|µ| the linear part of the force field has negligeable influence and the

angular momentum rotates (=nutates) about the direction of the constant part of the
force field. Lowering the value of |y1| leads to two successive centre-saddle bifurcations
and when y1 passes through 0 the two resulting saddles undergo a connection bifurcation
(where only the linear part of the force field contributes, the saddles are connected by
heteroclinic orbits).

There is no centre-saddle bifurcation for |y1| increasing from 1

3
|µ| if the constant part

of the force field dominates the linear part while both centre-saddle bifurcations also
take place for |y1| increasing from 1

3
|µ| to |µ| if the constant part of the force field is

itself dominated by the linear part. Figure 2 depicts the middle case where both parts
of the affine force field are of comparable influence, then only the first centre-saddle
bifurcation occurs as |y1| comes close to |µ|. For fixed values of y the Eulerian tori and
their separatrices thus organize the distribution of 3–tori into 1–5 families. Most of the
invariant 3–tori persist under the perturbation from the intermediate system back to the
original rigid body subject to a weak affine force field [33]. That the necessary non-
degeneracy condition holds true — the slow frequency varies from torus to torus — is in
fact enforced by the way the Eulerian tori organize the phase space.

In the intermediate system the connection bifurcation takes place exactly at the strong
resonance ω1(y) = 0 of the Eulerian tori, see figure 1. Also the centre-saddle bifurcations
do not persist by general theory [29]. Indeed, the same ratio y1

y2

that parametrises the
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lines of parabolic Eulerian tori also fixes the frequency ratio ω1

ω2

= I3−I1
I3

y1

y2

and the whole
bifurcation scenario may fall into a resonance gap. However, for most values of param-
eters s3, I1, I3 the quasi-periodic centre-saddle bifurcations turn out to be present in the
original dynamics [28].

3.2 The logarithmic potential

The motion of a mass point subject to a central force field provides for a whole class of
Hamiltonian systems with SO(3)–symmetry; here the natural action on the configuration
space R

3 is lifted to the diagonal action on the phase space T ∗
R

3 = R
3 × R

3. Again
the components µ1, µ2, µ3 of the angular momentum are conserved quantities, next to the
Hamiltonian H0. To fix thoughts we concentrate on the case

H(ξ, η) =
η2

1 + η2
2 + η2

3

2
+

1

2
ln
(

R2 + ξ2
1 + ξ2

2 + ξ2
3

)

of logarithmic potentials, where we scaled the mass to 1. Note that the origin (ξ, η) = (0, 0)
of the phase space is an equlibrium for R > 0, while in the so-called scale-free case R = 0
the potential is not defined at the origin ξ = 0 of the configuration space.

The components of the angular momentum constitute the momentum mapping J of the
SO(3) action and the isotropy group Gµ of the co-adjoint action of SO(3) on so(3)∗ ∼= R

3

consists of the rotations about 0 6= µ ∈ R
3. Reducing the SO(3)–symmetry leads to a

one-degree-of-freedom system on

J−1(µ)/Gµ

∼=
{

(q, p) ∈ R
4 | q1p2 − q2p1 = |µ|

}

/S1
(5)

where (q, p) ∈ T ∗
R

2 are linear variables on the plane perpendicular to µ in which the
motion takes place. The diagonal S1–action on the latter can be factored out using the
invariants

u =
q2
1 + q2

2

2
, v =

p2
1 + p2

2

2
, w = q1p1 + q2p2

which together with |µ| = q1p2 − q2p1 generate the ring of S1–invariant functions on
T ∗

R
2 = R

2 × R
2. This turns (5) into

P|µ| =
{

(u, v, w) ∈ R
3 | u ≥ 0, v ≥ 0, S|µ|(u, v, w) = 0

}

where the syzygy

S|µ|(u, v, w) =
w2

2
− 2uv +

|µ|2

2

between the invariants also allows to write down the Poisson bracket

{f, g} = 〈∇f ×∇g | ∇S|µ|〉

on R
3 and thus on P|µ|. Alternatively, one can work with the effective potential

V|µ|(u) =
1

2
ln(R2 + 2u) +

|µ|2

4u
.
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Action angle variables (x1, y1) of the resulting one-degree-of-freedom system serve as
starting point for the construction of generalized action angle variables. The second an-
gle x2 measures the rotation about the angular momentum vector, with conjugate action
y2 = |µ|. Restricting µ ∈ R

3 to the sphere

{

µ ∈ R
3 | µ2

1 + µ2
2 + µ2

3 = y2
2

}

(6)

yields a semi-global chart (x, y, µ), while any choice of canonical co-ordinates on (6) defines
generalized action angle variables for H0. The Hamiltonian

H(ξ, η) =
η2

1 + η2
2 + η2

3

2
− Ω(ξ1η2 − ξ2η1) +

1

2
ln

(

R2 +
ξ2
1

ρ2
1

+
ξ2
2

ρ2
2

+
ξ2
3

ρ2
3

)

(7)

models a simple but realistic 3–dimensional matter distribution, with reflectional sym-
metries with respect to the principal planes of the system and (for Ω 6= 0) overall bulk
rotation. The scale-factors ρk describing the axial ratios of the equipotential surfaces are
close to each other, i.e. the differences between the ρk are small, and the angular veloc-
ity Ω of the rotating galaxy is a small parameter as well. The astrophysical relevance
of the model [5, 6] is based on its ability to describe in a simple way the gross features
of elliptic galaxies embedded in a dark matter halo. It has therefore been the subject of
several applications in galactic dynamics [24, 38, 43].

Reducing the T
2–symmetry of the intermediate system leads to a one-degree-of-freedom

problem on (6). Its dynamics describes the slow (periodic) variation of the (q, p)–plane
within which the fast rosetta-orbits of H0 take place. These invariant 3–tori are organized
by the equilibria of the one-degree-of-freedom problem — the surviving fast 2–tori — and
their bifurcations.

Persistence of invariant 3–tori when perturbing from the intermediate system back
to the original (7) relies on separate non-degeneracy conditions on the slow and fast
frequencies. The numerical results in [41] indicate that the latter are iso-energetically
non-degenerate, with a frequency ratio that decreases monotonically under variation of y2.
The 3–tori in [37] are computed for such high values of ρk − ρℓ (while Ω = 0) that the
distinction between slow and fast frequencies disappears and low order resonances emerge.

4 Resonant equilibria

An elliptic equilibrium of a Hamiltonian system has all eigenvalues on the imaginary axis
but no multiple eigenvalues. In particular 0 is not an eigenvalue, the equilibrium persists
and all eigenvalues remain on the imaginary axis if the system is slightly perturbed. The
quadratic part

H2
α(q, p) =

d
∑

ℓ=1

αℓ
p2

ℓ + q2
ℓ

2
(8)

may have imaginary part αℓ of the eigenvalues of both signs — since the equilibrium does
not need to be a local extremum of the Hamiltonian it is not possible to enforce αℓ > 0
for all ℓ — the so-called symplectic sign.
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One speaks of a resonance between the normal frequencies α1, . . . , αd if there are
integers k1, . . . , kd ∈ Z, not all zero, such that

k1α1 + . . . + kdαd = 0 . (9)

Here k1, . . . , kd can be taken relatively prime and |k| = |k1|+ . . . + |kd| is called the order
of the resonance. Since we excluded the 1:0 and 1:±1 resonances we have |k| ≥ 3. If there
are no resonances of order |k| ≤ m, then the normal form truncated at order m depends
on (q, p) only as a function of the invariants

Iℓ =
p2

ℓ + q2
ℓ

2
≥ 0

whence we obtain for m = 4 the (truncated) Birkhoff normal form

Hα,β(I) = H2
α(I) +

d
∑

k,ℓ=1

βkℓ
IkIℓ

2

with a symmetric matrix β = (βkℓ)k,ℓ=1,...,d. This normal form Hα,β is (near the equi-
librium) an integrable approximation of the original Hamiltonian and under e.g. Kol-
mogorov’s non-degeneracy condition det β 6= 0 a measure-theoretically large part of a
neighbourhood of the equilibrium is foliated by a Cantor family of invariant d–tori [4].

The structure of the ramified torus bundle defined by the dynamics of Hα,β is very
transparant. The values Iℓ > 0 parametrise the periodic orbits in the (qℓ, pℓ)–plane, where
I1, . . . , Iℓ−1, Iℓ+1, . . . , Id vanish. Taking n ≥ 2 among the Iℓ to be non-zero parametrises
the various n–parameter families of invariant n–tori, up until the single d–parameter
family of Lagrangean tori.

Liapunov’s Centre Theorem yields persistence of those (qℓ, pℓ)–planes of periodic orbits
for which none of the other frequencies is an integer multiple of αℓ. Persistence of n–tori
with 2 ≤ n ≤ d − 1, parametrised by, say, I1, . . . , In, requires non-degeneracy conditions
on the frequencies ωℓ(I) = αℓ +βℓ1I1 + . . .+βℓnIn that ensure the Diophantine conditions

| k1ω1(I) + . . . + knωn(I) + kn+1αn+1 + . . . + kdαd | ≥
γ

|k|τ

to hold true for all k1, . . . , kn ∈ Z (not all zero) and kn+1, . . . , kd ∈ {0,±1,±2} on large
Cantor sets in I–space R

n.

4.1 Integrable resonances

The resonances (9) of order |k| ≤ 4 read

αℓ = ±2αj , αℓ + αj = ±αi (10)

and
αℓ = ±3αj , αℓ = ±αj ± 2αi , αℓ + αj = ±αi ± αm (11)
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and if we also allow for multiple (but non-zero) eigenvalues on the imaginary axis we
furthermore have

αℓ = ±αj .

In case of a single low order resonance the Hamiltonian (8) is superintegrable with quasi-
periodic motions spinning densely around (d − 1)–tori. To fix thoughts let the resonance
read

α1 = ±kα2 , k ∈ {2, 3}

whence the real and imaginary parts of

J =
1

k!
(q1 ± ip1)(q2 − ip2)

k

are among the generators of the T
d−1–symmetric functions, leading to the syzygy

|J |2

2
=

2k

k!
I1I

k
2 . (12)

Note that
K := ±k I1 + I2

has vanishing Poisson bracket not only with I1, . . . , Id, but also with

u := Re J , v := Im J

and with
w := ∓k I1 + I2 .

Fixing y1 = K the syzygy (12) reads

Sy(u, v, w) =
u2 + v2

2
±

(w − y1)(w + y1)
k

2k · k!
= 0

and together with the actions yℓ := Iℓ+1, ℓ = 2, . . . , d − 1 and conjugate angles xℓ,
ℓ = 1, . . . , d − 1 we obtain a semi-global chart (x, y, u, v, w) when restricting (u, v, w) to

Py :=
{

(u, v, w) ∈ R
3 | −y1 ≤ w ≤ y1, Sy(u, v, w) = 0

}

in the definite case α1 = kα2 and to

Py :=
{

(u, v, w) ∈ R
3 | w ≥ |y1|, Sy(u, v, w) = 0

}

in the indefinite case α1 = −kα2 (recall k ∈ {2, 3}). Any choice of canonical co-ordinates
on Py yields generalized action angle variables.

For a single resonance the intermediate system is given by the truncated Gustavson
or resonant (Birkhoff) normal form

Hα,λ(y, u, v, w) = H2
α(y) + λw + γ(λ)u +

d
∑

j,ℓ=1

βjℓ(λ)
yjyℓ

2
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of order 4, where λ is the so-called detuning parameter and we abused notation by letting
yd = w in the final sum. Note that the (linear) term in v has been removed by means of
a λ–dependent rotation in the (u, v)–plane [19, 31].

Reducing the T
d−1–symmetry of the intermediate system leads to a one-degree-of-

freedom problem on Py that determines how the invariant d–tori are organized into d–
parameter families. The resulting ramified torus bundle has d − 1 fast frequencies (in
the angles x1, . . . , xd−1) and one slow frequency (for y1 and λ sufficiently small). The
final step then is to apply kam theory to obtain Cantor sub-families of invariant tori that
survive the perturbation back to the original Hamiltonian.

4.2 Non-integrable resonances

For two or more resonances (9) the resonant Birkhoff or Gustavson normal form is no
longer guaranteed to be integrable. Writing d − n for the number of independent reso-
nances, the superintegrable system of coupled harmonic oscillators (8) defines a ramified
T

n–bundle, the geometry of which depends on the resonances at hand. In particular the
flow is periodic in the maximal case of d − 1 resonances. Let us restrict to d = 3 coupled
oscillators whence scaling time allows to rewrite (8) as

H2
m(q, p) = m1I1 + m2I2 + m3I3 (13)

with integer vector m ∈ Z
3 satisfying 0 < m1 < |m2| < |m3|. The cases where both reso-

nances (9) are of order 3 are called of genuine first order [39], these are the cases 1:±2:±3
and 1:±2:±4. Here already the cubic normal form is expected to be non-integrable, in
the definite cases 1:2:3 and 1:2:4 this has been proven in [12].

In cases of genuine second order both resonances (9) are of order at most 4. For
m = 1:±3:±k, k ∈ {5, 7, 9} both resonances are of the form (11) and the cubic normal
form is trivial; the fourth order normal form is again expected to be non-integrable. In a
genuine second order case where exactly one resonance is of order 3, i.e. of the form (10),
the fourth order normal form is still expected to be non-integrable, but the cubic normal
form is integrable and may serve as intermediate system.

If we allow for multiple eigenvalues mℓ = ±mj , then there are additional cases m =
1:±1:±2, 1:±2:±2 of genuine first order and m = 1:1:±1, 1:±1:±3, 1:±3:±3 of genuine
second order [39]. In the definite case 1:1:2 the cubic normal form is known to be non-
integrable [20, 12] while for m = ±1:2:2 the cubic normal form may serve as intermediate
system [1, 31, 25]; in the additional cases of genuine second order the cubic normal form is
again trivial. In indefinite cases with double eigenvalues of opposite symplectic sign these
may be involved in a Krein collision and leave the imaginary axis during a subordinate
Hamiltonian Hopf bifurcation.

To construct generalized action angle variables for (13) we take y = H2
m itself as action,

the conjugate angle x then is the time along the periodic flow of the resonant oscillator.
Abusing notation by also writing y for the (fixed) value of (13) and dividing out the
S1–action defined by the periodic flow we obtain the reduced phase space

Py := (H2
m)−1(y)/S1

12



and any choice (ξ1, ξ2, η1, η2) of canonical co-ordinates on Py yields generalized action
angle variables (x, y, ξ, η). The global structure of Py depends on m ∈ Z

3 and can e.g. be
studied using the invariants of the S1–action [29, 39].

Reduction of the first non-trivial normal form leads to a two-degree-of-freedom problem
on Py and since normalization preserves symmetries a simple way to enforce integrability
is to require the original Hamiltonian to admit the suitable symmetry. The resonance
mℓ = mj makes an axial S1–symmetry an obvious candidate, but all that is needed is to
prevent certain third or fourth order terms to appear in the normal form whence invariance
under a discrete subgroup Zk of S1 suffices, with k = 2 for third order terms, k = 3 for
fourth order terms or k ≥ 5 just to be sure. Discrete symmetries can also provide the
other cases with an integrable normal form [39], often a reversing reflection pℓ 7→ −pℓ is
all that is needed.

5 Higher superintegrability

For minimally superintegrable Hamiltonian systems, normalization of a given perturbation
with respect to the unperturbed flow always removes the degeneracy — subject to a non-
degeneracy condition on the intermediate system, i.e. on the perturbation. In some cases
this remains true where superintegrability is not minimal, for instance in the presence
of additional symmetry. However, if already the first non-trivial normal form is not
integrable, then alternative ways to obtain an integrable intermediate system become
important.

For a free rigid body with principal moments of inertia I1 = I2 = I3 all motions are
periodic (as every axis is a main axis of inertia); recall that we exclude the zero section
SO(3) ⊆ T ∗SO(3) of equilibria. This is a maximally superintegrable system and a semi-
global chart (x, y, µ, ℓ) is given by the angle x measuring the rotation (=precession) about
the angular momentum vector, by the length y of that vector and by restricting µ, ℓ ∈ R

3

to the symplectic fibres

S2
y × S2

y =
{

(µ, ℓ) ∈ R
6 | µ2

1 + µ2
2 + µ2

3 = ℓ2
1 + ℓ2

2 + ℓ2
3 = y2

}

of the bifibration, see figure 1. Already quadratic force fields have averages that cannot
be used as integrable intermediate system (while the linear part of a force field can not
be ‘seen’ by a dynamically spherically symmetric top).

Coupling m such tops gives rise to a superintegrable system with tori of dimension
n = m in d = 3m degrees of freedom. Replacing some (or all) of them with Euler and
Lagrange tops allows to obtain ramified T

n–bundles with any m ≤ n ≤ d = 3m. Recall
that imposing d − n resonances on an elliptic equilibrium even allows for all n between
the maximal case n = 1 and the case n = d − 1 of minimal superintegrability.

5.1 Perturbations that remove the degeneracy

The (spatial) Kepler system is the most famous example of a maximally superintegrable
system in three degrees of freedom. Some perturbed Keplerian systems like the lunar
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problem [14, 40] and in the hydrogen (or Rydberg) atom in crossed fields [15, 21] display
a helpful time scale phenomenon. In both cases the normal form

H̄ = K + ε K L

obtained by averaging along the Keplerian ellipses is the sum of the unperturbed H0 = K
and a scalar multiple of the product KL, where L is the third component of the angular
momentum. This special structure of H̄ allows for a second normalization, now with
respect to L, that results in

H = K + ε K L + ε2H1(K, L, I)

with an appropriately chosen third action I. For the lunar problem the difference between
the twice normalized H and the original Hamiltonian H is of order ε8/3 and taking H as
intermediate system yields a Cantor family of 3–tori with three time scales (and two
time scales ε and ε2 of rates of change of these freqencies) that persist into the original
system [40].

Perturbations of superintegrable systems always have three time scales: the fast motion
on the n–tori (the petals of the Fassò flowers), the slow motion on the symplectic fibres
(the centres of the Fassò flowers) and the very (exponentially) slow motion of the actions
(in the meadow for the Fassò flowers). Where the dynamics on the symplectic fibres of the
reduced averaged system has as many time scales as degrees of freedom — slow, slower,
. . . , slowest (but still faster than exponentially slow) — it should be possible to construct
an appropriate intermediate system [26].

5.2 The C.Neumann hierarchy

The Neumann system describes a particle confined to a sphere Sd and moving in a

quadratic potential 1

2

∑

biq
2
i . Only the differences between the eigenvalues bi, i = 0, . . . , d

of the linear force field have dynamical consequences and indexing equal eigenvalues bσ by
Iσ, σ = 0, . . . , ℓ with |Iσ| = mσ, the Hamiltonian is invariant under the symmetry group

O(m0) × O(m1) × . . . × O(mℓ) (14)

(in particular d+1 = m0 for ℓ = 0 where the Neumann system becomes the geodesic flow
on Sd). Integrals of motion are the angular momenta

Lij = qipj − qjpi , i, j ∈ Iσ

together with

Fσ =
mσ
∑

i∈Iσ

q2
i +

ℓ
∑

τ 6=σ

mσ
∑

j∈Iσ

mτ
∑

k∈Iτ

L2
ij

bσ − bτ
, σ = 0, . . . , ℓ.

For mσ = 1 the latter turn into the Uhlenbeck integrals; the Neumann system is integrable
even if all eigenvalues are different from each other. From now on we assume mσ ≥ 2
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for all σ = 0, . . . , ℓ (see [17] for the general case). Note that the symmetry group (14) is
commutative if mσ = 2 for all σ and almost all quasi-periodic motions have d frequencies.

For mσ ≥ 3 the factor O(mσ) is non-commutative and enforces superintegrability.
Reducing (14) leads to the Rosochatius system on Sℓ and action angle variables (u, v) ∈
T

ℓ×R
ℓ of this integrable system serve as starting point for the construction of generalized

action angle variables. The additional actions are the total angular momenta

yσ =

(

mσ
∑

i,j∈Iσ

L2
ij

)
1

2

, σ = 0, . . . , ℓ

with conjugate angles xσ measuring the rotation in the plane singled out by Lij , i, j ∈ Iσ

(for mσ = 3 this is the usual plane perpendicular to the angular momentum vector). The
symplectic leaves of the bifibration are the co-adjoint orbits

Gm02 × Gm12 × . . . × Gmℓ2
(15)

of products of Graßmannians

Gmσ2 = O(mσ)/SO(2) × O(mσ − 2)

parametrising the oriented planes in R
mσ . Any choice of canonical co-ordinates (wk, zk),

k = 1, . . . ,
∑

(mσ − 2) defines generalized action angle variables (u, x, v, y, w, z) for the
Neumann system. Note that the torus dimension is n = 2ℓ + 1 — even dimensions n can
be achieved if also allowing for mσ = 1, i.e. eigenvalues that are distinct from all other
eigenvalues [17].

Averaging a perturbation of the Neumann system along the quasi-periodic n–tori
introduces a T

n–symmetry, the reduction of which leads to a Hamiltonian system on (15),

in d − n =
∑

(mσ − 2) degrees of freedom. In the minimal case mσ = 3 (all other

mτ = 2) the product (15) has a single non-trivial factor Gmσ2
∼= S2

yσ
, the sphere of possible

directions of the angular momentum vector. In the maximal case ℓ = 0, m0 = d + 1 we
have a single Graßmannian as well.

6 Conclusions

kam theory is about integrable systems — under strong non-resonance conditions their
quasi-periodic solutions persist under sufficiently small perturbations. This does not di-
rectly apply to superintegrable Hamiltonian systems. Here it is the ramified d–torus
bundle of an integrable intermediate system that is Cantorised by the perturbation, with
information not only from the unperturbed system but also from the perturbation itself.

In the minimally superintegrable case of d + 1 conserved quantities the perturbation
analysis consists of three steps: compute a normal form that serves as intermediate system,
study how the dynamics of the intermediate system structures the phase space (organized
by the fast (d − 1)–tori, the relative equilibria) and check the necessary non-degeneracy
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conditions concerning both the superintegrable system and the reduced intermediate sys-
tem.

Where an integrable intermediate system can be found in cases with n ≤ d − 2 this
three-step-programme still applies. However, while this is automatic in the case n = d−1
of minimal superintegrability, additional properties are needed when n ≤ d − 2 — for
instance symmetries of the (perturbed) system or d− n time scales within the perturbed
dynamics (apart from the multi-periodic fast angles and the exponentially slow variation
of the actions). In principle, the perturbation problem may lead to any Hamiltonian
system in d − n degrees of freedom.

The resonant lattices studied in [42] are maximally superintegrable; reducing the nor-
mal form with respect to the periodic flow leads to a quotient S2d−1/S1 where the S1–
action is free only for the case 1:1:1:. . . :1. In the other cases the S1–action is locally free
and the (discrete) isotropy groups lead to singularities of the reduced phase space: the
Hamiltonian system in d − 1 degrees of freedom is not defined on a symplectic manifold
but on a Poisson space. For indefinite lattices the reduced phase space is furthermore not
compact.

Every resonance (9) of an elliptic equilibrium increases the co-dimension of that Hamil-
tonian system within the universe of all Hamiltonian systems. For instance, two param-
eters are needed to generically encounter an equilibrium with quadratic part (13) of the
Hamiltonian; both parameters detune the frequency ratio. However, if these are normal
resonances of invariant tori, then the complete unfolding may be encountered within a
single (generic) Hamiltonian system.

In this way the 3–parameter families of invariant 3–tori in six degrees of freedom can
have 1–parameter subfamilies with normal behaviour (13). A successful application of
kam theory would eventually lead to 1–parameter Cantor families of such 3–tori, organiz-
ing the Cantorised ramified torus bundle of the unfolding [29]. Clearly, the development
of such a theory has to start with elliptic equilibria of Hamiltonian systems depending on
external parameters.

Perturbing resonant d–tori of a (non-degenerate) integrable system resembles perturb-
ing a superintegrable system. Letting d− n denote the number of independent (internal)
resonances, normalizing with respect to the quasi-periodic flow with n frequencies yields
a Hamiltonian that admits a local T

n–action and can be reduced to d − n degrees of
freedom with a cylinder T

d−n × R
d−n as phase space. For n = d − 1 the resulting family

of integrable intermediate systems can in particular be used to identify those (d− 1)–tori
foliating the resonant d–tori that persist the perturbation [8].

The Cantor families of such (d − 1)–tori organize the phase space and persistently
undergo bifurcations of co-dimension up to d−2. Similar approaches [11, 13] with n ≤ d−2
restrict to elliptic and hyperbolic tori, the minimal number of which is expected to coincide
with the minimal number n + 1 of critical points of a smooth function on T

n. A better
understanding of perturbed superintegrable systems would entail a better understanding
of the perturbed dynamics near resonant tori.
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[27] H. Hanßmann : Quasi-periodic Motions of a Rigid Body I — Quadratic Hamiltonians on
the Sphere with a Distinguished Parameter ; Reg. & Chaot. Dyn. 2(2), p. 41 – 57 (1997)

[28] H. Hanßmann : The Quasi-Periodic Centre-Saddle Bifurcation ; J. Diff. Eq. 142(2), p.
305 – 370 (1998)

[29] H. Hanßmann : Local and Semi–Local Bifurcations in Hamiltonian Dynamical Systems —

Results and Examples ; LNM 1893, Springer (2007)

[30] H. Hanßmann : Non-degeneracy conditions in kam theory ; Indag. Math. 22, p. 241 – 256
(2011)

[31] M. Kummer : On resonant Hamiltonian systems with finitely many degrees of freedom ;
p. 19 – 31 in Local and global methods of nonlinear dynamics, Silver Spring 1984 (eds.
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