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Abstract

Near-resonances between frequencies notoriously lead to small denominators when

trying to prove persistence of invariant tori carrying quasi-periodic motion. In

dissipative systems external parameters detuning the frequencies are needed so that

Diophantine conditions can be formulated, which allow to solve the homological

equation that yields a conjugacy between perturbed and unperturbed quasi-periodic

tori. The parameter values for which the Diophantine conditions are not fulfilled

form the so-called resonance gaps. Normal hyperbolicity can guarantee invariance

of the perturbed tori, if not their quasi-periodicity, for larger parameter ranges. For

a 1–dimensional parameter space this allows to close almost all resonance gaps.

1 Introduction

Unlike equilibria or periodic orbits, invariant tori of dynamical systems need at least
one parameter to be dynamically persistent under small perturbations of the dynamics.
Indeed, a dense set of resonances obstructs persistence: every resonance among its fre-
quencies foliates a torus into lower dimensional tori and a small parameter variation is
needed to re-obtain a dense orbit, which turns the torus into a dynamical object.

Imposing Diophantine conditions on the frequencies of the torus yields a strong form of
non-resonance and for such Diophantine tori Kolmogorov–Arnol’d–Moser (kam) theory
allows to prove persistence under — very — small perturbations, providing a conjugacy
with the unperturbed torus. For proving only invariance of the perturbed torus — with
possibly a different dynamics on the torus — normal hyperbolicity supplies an alternative
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approach. It has the added benefit that persistence proofs using normal hyperbolicity do
not lead to as pessimistic bounds as kam-proofs do.

This article combines these two approaches, by ‘fattening’ the Cantor-like subset of pa-
rameters for which the torus as well as its quasi-periodic dynamics persist to a larger and
open subset of parameters for which only the torus persists as an invariant manifold. In
case of a single parameter in the Cantorised direction, this leads to the complement of
the parameter set of persisting tori consisting of only finitely many ‘low order resonance
gaps’.

In the following, we first shortly review separately both kam theory and the theory of
normally hyperbolic invariant manifolds before using the latter to fill the gaps left open
by the former. Then we apply this to three examples, among which the quasi-periodic
Hopf bifurcation where we prove explicit estimates on the — finite — number of gaps still
left open after fattening the Cantor set of Diophantine tori by hyperbolicity.

2 Results

Both kam theory and normally hyperbolic invariant manifold theory are well-established
approaches that yield persistence under sufficiently small perturbations. Before exploring
how their combination allows to better understand the persistence properties of invariant
tori, we present the two approaches in their own right, tailored to the situation at hand.

2.1 kam Theory

Starting point is a vector field X = Xµ on Tn × Rm, depending on a parameter µ ∈ Γ
where Γ ⊆ R open, and a torus Tn × {0} invariant under Xµ for all µ. We require X to
be equivariant with respect to the Tn–action

Tn × (Tn × Rm) −→ Tn × Rm

(ξ, (x, z)) 7→ (x+ ξ, z)
(1)

on the phase space, whence in co-ordinates we have that

X(x, z;µ) = f(z;µ) ∂x + h(z;µ) ∂z (2)

does not depend on the toral angles x. Expanding

f(z;µ) = ω(µ) + O(z) (3a)

h(z;µ) = Ω(µ) · z + O(z2) (3b)

we see that the invariant torus Tn × {0} is automatically in Floquet form, with Ω inde-
pendent of x. Consequently, the dynamics defined by the ‘normally linear’ part

NXµ(x, z) = ω(µ) ∂x + Ω(µ) · z ∂z (4)
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is the superposition of the conditionally periodic motion

x(t) = x(0) + tω(µ) (5)

with frequency vector ω(µ) ∈ Rn and the linear behaviour

z(t) = etΩ(µ) · z(0)

which is governed by the eigenvalues of Ω(µ) ∈ gl(m,R). In particular, the torus Tn×{0}
is normally hyperbolic if Ω(µ) has no eigenvalue on the imaginary axis.

Our interest is in the dynamics defined by a small perturbation

X̃ = X + P

of the integrable dynamics, in particular whether there is an invariant torus of X̃ close to
the invariant torus Tn × {0} of X . Normally hyperbolic invariant manifold theory asks
for persistence of the invariant manifold; kam theory asks additionally for persistence
of the dynamics. For a dynamical persistence result to hold true the invariant torus
of X had better be a dynamical object — with a dense orbit — rather than a union of
other invariant sets, in this case of lower dimensional tori. Such a partition into lower
dimensional tori occurs if there are resonances

〈k | ω〉 := k1ω1 + . . . + knωn = 0

among the frequencies of the torus.

The kam procedure consists of repeated steps of ‘averaging out’ of perturbations along
the unperturbed flow. At resonances, the averaging is relative to the lower dimensional
tori, resulting in obstructions for the persistence of the n–torus itself. To prevent this we
impose Diophantine conditions

|〈k | ω〉| ≥
γ

|k|τ
for all 0 6= k ∈ Zn (6)

where |k| = |k1|+ . . .+ |kn| while γ > 0 is the ‘gap-parameter’, and we choose τ > n− 1
to ensure that the size of all gaps has small relative measure that moreover tends to 0
as γ → 0. This strong non-resonance condition allows for polynomial estimates of the
small denominators that arise if the frequencies are near the dense set of resonances,
which are then outweighed by the exponential decay of Fourier coefficients (Lemma of
Paley–Wiener, see e.g. [5]), a consequence of the regularity of the perturbation.

The occurrence of r normal frequencies α is an additional risk for persistence and leads
to extended Diophantine conditions

|〈k | ω〉+ 〈ℓ | α〉| ≥
γ

|k|τ
for all 0 6= k ∈ Z

n, ℓ ∈ Z
r, |ℓ| ≤ 2 (7)

to avoid normal-internal resonances. Note that already the imaginary parts α of hyper-
bolic eigenvalues β ± iα count as normal frequencies.
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Locally in the frequency space Rn+r, the set Rn+r
τ,γ of all Diophantine frequency vectors

has a product structure: half lines times a Cantor set. Indeed, when (ω, α) ∈ Rn+r
τ,γ then

also (sω, sα) ∈ R
n+r
τ,γ for all s ≥ 1. The intersection R

n+r
τ,γ ∩ S

n+r−1
R with a sphere of radius

R > 0 is closed and totally disconnected; by the theorem of Cantor–Bendixson [15] it is
the union of a countable and a perfect set, the latter necessarily being a Cantor set. For
non-degenerate parameter dependence the 1–dimensional subset

Γτ,γ := ω−1(Rn+r
τ,γ ) = {µ ∈ Γ | ω(µ) Diophantine}

of Γ ⊆ R then is a Cantor set as well. To allow for small shifts in the parameter we
furthermore need the Cantor set

Γγ
τ,γ := {µ ∈ Γτ,γ | dist(µ, ∂Γ) ≥ γ } .

We formulate the persistence results for analytic vector fields, highlighting where loss of
regularity is inevitable. There are C∞ — and even Cr — counterparts of these results,
and sometimes the seeming strength of a theorem is obtained only by accepting the
inevitable already among the assumptions. In the analytic context it is possible to weaken
the Diophantine conditions (7) to so-called Bryuno conditions, replacing the polynomial
bounds of small denominators by acceptable exponential bounds; see [21] and references
therein. We refrain here from such improvements as they do not carry over to less regular
situations.

Theorem 2.1 (Dissipative kam theorem) Let Xµ be a family of analytic vector fields
as in (2) on Tn × Rm, n ≥ 2, with the eigenvalues of Ω(µ) in (3b) bounded away from
the imaginary axis. Assume that the frequency mapping σ := (ω, α) : Γ −→ Rn+r in (3)
and its derivatives span the frequency space at every µ ∈ Γ ⊆ R, i.e.

<σ(µ), σ′(µ), σ′′(µ), . . . , σ(n+r−1)(µ)> = R
n+r . (8)

Then for given γ > 0, τ > n2 + nr − n − 1 there exists a subset Gτ,γ ⊆ Γ, diffeomorphic

to Γγ
τ,γ, such that for a sufficiently close perturbation X̃µ = Xµ + Pµ of Xµ there exist

normally affine diffeomorphisms

Φµ : T
n × R

m −→ T
n × R

m

(x, z) 7→ (x+ ξ(x;µ), z + η(x;µ) + ζ(x;µ) · z)

close to the identity and depending analytically on the angles x, but only Gevrey-smoothly
(in the sense of Whitney) on the parameter µ, that for µ0 ∈ Gτ,γ conjugate X̃µ0

to

(Φµ0
)−1
∗ X̃µ0

= [ω̄(µ0) +O(z)] ∂x +
[
Ω̄(µ0) · z +O(z2)

]
∂z

with x–dependent higher order terms O(z) and O(z2), while ω̄ and Ω̄ are close to ω and Ω,
respectively, and ω̄(µ0) is Diophantine.
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In particular Ω̄(µ0) is again hyperbolic. For the proof of Theorem 2.1 see [5, 21, 24] or
references therein. As discussed in [21] the non-degeneracy condition (8) can be weakened
to only concern derivatives of the internal frequency vector ω; see also [5].

Moser [18] achieves the passage from ω and Ω to ω̄ and Ω̄ through addition of so-called
modifying terms, see also [25, 4]. This can be avoided if there are more parameters, with
µ ∈ Γ ⊆ Rs and s large enough to accomodate for the finite-dimensional space of all
possible modifications. For s ≥ n + r parameters the restriction of X to Tn × {0} × Γγ

τ,γ

is conjugate to a subsystem of X̃ , under preservation of the normal linear behaviour, and
for s = n + r − 1 one can still relate the perturbed tori to the unperturbed ones as they
have the same frequency ratio; this applies in particular to the case n = 2 of invariant
2–tori with no normal frequencies. However, in general a single parameter cannot yield
persistence of individual tori, but only persistence of the 1–parameter family of tori as a
Cantorised family.

For s ≥ n + r − 1 parameters it suffices to take τ > n − 1 in (7), as the image of a
non-degenerate frequency mapping σ = (ω, α) : Γ ⊆ Rs −→ Rn+r is transverse to the half
lines of Diophantine frequencies. Conditions on higher order derivatives can compensate
for a lack of parameters, by making the image of (ω, α) sufficiently curved to prevent it
to remain in a — linearly defined — resonance gap. Taking τ > nL− 1 ensures that the
size of all gaps within Γγ

τ,γ has small relative measure that moreover tends to 0 as γ → 0;
here L is the highest derivative needed. In applications one often can do with L = 2,
see e.g. [19] for examples. In the case s = 1 of a single parameter, all derivatives up to
L = n + r − 1 are needed in (8), leading to the condition τ > nL − 1 = n2 + nr − n− 1
in Theorem 2.1.

There is a vast amount of results concerning dynamical persistence of invariant tori using
kam theory. In particular, Theorem 2.1 has counterparts for conservative dynamical
systems and also for non-hyperbolic tori, see again [5] or references therein.

2.2 Normally hyperbolic invariant manifolds

The tori Tn × {0} in Theorem 2.1 are normally hyperbolic invariant manifolds and as
such they allow for an alternative approach to prove persistence, see [14, 9] and references
therein. While Diophantine conditions are needed when proving dynamical persistence of
tori via kam theory, a persistence proof using normal hyperbolicity needs precise bounds
on the ratio of normal attraction and expansion to that of internal attraction and ex-
pansion of the flow restricted to the invariant manifold. Such bounds also involve the
regularity with which one wants the invariant manifold to persist.

Recall from [14, 11] that hyperbolicity of a given vector field X on a manifold M means
that at each point p ∈ M there exists an X–invariant direct sum splitting of the tangent
space

TpM = Es(p) ⊕ Ec(p) ⊕ Eu(p) (9)

in a stable (s), an unstable (u) and a central direction (c). At points p ∈ M where X(p) 6=
0 the splitting depends continuously on p; the central direction Ec(p) is the 1–dimensional
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vector space generated by X(p). Let ϕt denote the flow of X . For hyperbolicity we require
moreover that

- the splitting is X–invariant, amounting to invariance under the derivative Dϕt in
the sense that for each p ∈ M and t ∈ R we have

Dϕt(E
u(p)) = Eu(ϕt(p)) , Dϕt(E

s(p)) = Es(ϕt(p)) (10a)

and Dϕt(E
c(p)) = Ec(ϕt(p)) ; (10b)

- the vectors v ∈ Eu(p) and w ∈ Es(p) increase and decrease exponentially, respec-
tively, under application of Dϕt as a function of t, in the following sense: there are
constants C ≥ 1 and λ > 0 such that for all 0 < t ∈ R, p ∈ M , v ∈ Eu(p) and
w ∈ Es(p) we have

‖Dϕt(v)‖ ≥ C−1eλt‖v‖ and ‖Dϕt(w)‖ ≤ Ce−λt‖w‖ (11)

where ‖..‖ is the norm of tangent vectors with respect to a Riemannian metric.

For an X–invariant manifold V ⊂ M , we define normal hyperbolicity as a variation on
the above notion of hyperbolicity. We restrict to giving a simplified description, referring
to [14, 9] for details. Normal hyperbolicity means that a splitting (9) exists that is X–
invariant in the sense of (10) and for which exponential estimates of the form (11) hold
true. In this case the central subspace Ec(p) = TpV is more involved since it has to
account for the dynamics inside V . In particular, we have a further invariant splitting

Ec(p) = Ecs(p) ⊕ Ecc(p) ⊕ Ecu(p)

into centre-stable, centre-centre and centre-unstable subspaces on which the invariance-
property (10) and the hyperbolicity-property (11) are valid — there exists a constant
λc > 0 that bounds from above the expansion and contraction rates within V . For any

r <
λ

λc
(12)

the invariant manifold V is r–normally hyperbolic. This roughly means that the normal
expansions and contractions are r times stronger than the internal expansions and con-
tractions; the inequality (12) enforces a spectral gap for all p ∈ V between the eigenvalues
of eigenvectors in Ecs(p)⊕Ecu(p) and in Es(p)⊕Eu(p), respectively. The Normally Hy-
perbolic Invariant Manifold Theorem, Theorem 2.2 below, then ensures that r–normal
hyperbolicity leads to the persistence of V as a Cr–manifold under sufficiently small per-
turbations. The theorem provides a Cr–diffeomorphism between V and its perturbation,
which preserves normal hyperbolicity.

Theorem 2.2 (Normally hyperbolic invariant manifolds) Let Xµ be a family of
analytic vector fields on M that admits a compact connected submanifold Vµ as an r–

normally hyperbolic invariant manifold. Then a sufficiently small perturbation X̃µ =

Xµ + Pµ has a unique Cr–manifold Ṽµ close to Vµ that is Cr–diffeomorphic to Vµ and

invariant under the flow of X̃µ.
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The parameter µ is not needed here and can simply be fixed; on the other hand, for
parameter-dependent X̃µ the resulting Ṽµ is Cr–smooth in µ. For the proof of Theorem 2.2
see [14].

We want to apply Theorem 2.2 for the case when V is an invariant n–torus of an integrable
dissipative system. Since the integrable dynamics is conditionally periodic, there are no
internal contractions or expansions, and λc can be taken as close to 0 as desired. Therefore,
if such a torus is r–normally hyperbolic for any r > 0 it is in fact r–normally hyperbolic
for all r > 0, see e.g. [3]. This implies that for every value of r the invariant torus is
persistent as a Cr–manifold under small perturbations, the maximal perturbation size
depending on r. In particular, it follows that for a smooth family X = Xµ, µ ∈ R

s of
vector fields the µ–regime Gr with r–normally hyperbolic tori is open in Rs and shrinks
as the regularity r increases.

Theorem 2.2 not only applies to invariant tori, but also to other compact manifolds and
even extends to non-compact normally hyperbolic invariant manifolds. The latter requires
uniform estimates, which is automatic in the compact case; for details see [9] or references
therein.

2.3 Fattening by hyperbolicity

Theorem 2.2 in particular applies to invariant tori V = Tn × {0} ⊆ M = Tn × Rm

of a vector field as in (2). By unicity the n–tori carrying quasi-periodic dynamics with
a Diophantine frequency vector must coincide with those obtained from Theorem 2.1.
Hence these are analytic invariant tori of the perturbed vector field X̃ .

The tori V = T
n ×{0} carry conditionally periodic motion irrespective of the strength of

the normal expansions or contractions. So even when the latter are very weak, that is,
when the constant λ bounding the normal expansion and contraction rates from below is
close to 0, the constant λc > 0 in the spectral gap condition (12) can always be chosen
much smaller. Hence (12) effectively puts no bound on the regularity r that can be
achieved by applying Theorem 2.2. However, the allowed size of the perturbation P
decreases as λ → 0 and r → ∞, and in general the regularity of the perturbed tori is
not C∞; compare with [23].

Thus, by normal hyperbolicity any µ0 ∈ Gτ,γ, where Gτ,γ is given by Theorem 2.1, is

contained in a connected open neighbourhood Gr
τ,γ(µ0) ⊆ Γ ⊆ Rs, such that X̃µ has

an r–normally hyperbolic invariant n–torus for every µ ∈ Gr
τ,γ(µ0). The neighbourhoods

Gr
τ,γ(µ0) form an open cover of Gτ,γ , the union of which we denote by Gr = Gr

τ,γ . This yields
a normally hyperbolic fattening of the Diophantine invariant n–tori found by Theorem 2.1.

Assuming Γ ⊆ Rs to be bounded, the set Γγ
τ,γ and thus Gτ,γ is compact and there exists a

finite subcover, which consists of finitely many connected components. By making Gr a
bit smaller, if necessary, we then choose Gr = Gr

τ,γ to be the finite union of this subcover.
For the special case s = 1 of a single parameter µ ∈ Γ ⊆ R this yields the following
consequence of Theorems 2.1 and 2.2.
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Corollary 2.3 (Gap-closing by hyperbolicity) Let Xµ be a family of analytic vector
fields as in (2) on M = Tn × Rm, n ≥ 2, satisfying the conditions of Theorem 2.1 with
relative compact parameter space Γ ⊆ R. Then the normally hyperbolic fattening procedure
as described above leads for given regularity r ∈ N to only finitely many intervals in the
complement Γ \ Gr.

For higher regularity r the number of remaining gaps may increase, and for r → ∞ their
number may even increase to ∞.

Proof. From Theorem 2.1 we obtain a compact set Gτ,γ of parameters µ for which the

vector field X̃µ perturbed fromXµ has a normally hyperbolic invariant n–torus with quasi-
periodic flow (5) with Diophantine frequency vector ω̄(µ). For given r ∈ N, Theorem 2.2
yields an open neighbourhood Gr of Gτ,γ that has finitely many connected components. In
the present case s = 1 these components divide the parameter space Γ and the complement
Γ \ Gr has finitely many connected components as well. �

Only comparatively large resonance gaps are not completely filled up by normally hyper-
bolic tori and these are the gaps opened by the resonances with the smallest denominators.
One might therefore speak of ‘low order’ resonances when not all gaps are filled up by
normal hyperbolicity.

Remarks.

- Note that for non-compact Gτ,γ it is possible that infinitely many low order resonance
gaps remain, but these are discrete and no longer dense within Γ ⊆ R.

- In higher dimension s ≥ 2 of multiple parameters the fattening of a compact set Γγ
τ,γ

of Diophantine frequencies still has only finitely many connected components, but
the complement — if not empty — is expected to have a single connected component,
the web of low order resonances. The finitely many connected components of Gr

is what one actually ‘sees’ when trying to simulate aspects of the dynamics on a
computer.

- Finitely many connected components parametrising non-resonant tori is also what
one ‘sees’ in the resonance web of a Hamiltonian system [16], but here this is due
to ‘finite pixel size’ and a corresponding ‘coarse-grained’ treatment of tori as being
‘non-resonant’.

3 Examples

We illustrate the effect of fattening by hyperbolicity with applications to a normally
attracting torus, a torus losing normal attraction as a pair of eigenvalues passes through
the imaginary axis, and a hyperbolic torus of a conservative dynamical system acquiring
a normal frequency as its eigenvalues pass through 0.
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3.1 Coupled van der Pol oscillators

We consider two autonomous van der Pol type oscillators

z̈1 + c1ż1 + a1z1 + f1(z1, ż1) = εg1(z1, z2, ż1, ż2)

z̈2 + c2ż2 + a2z2 + f2(z2, ż2) = εg2(z1, z2, ż1, ż2) ,

z1, z2 ∈ R, with a weak coupling, that is, with ε small. We assume the ‘damping’ c1
and c2 to be negative, as happens for the values studied by van der Pol [11]. This yields

a vector field X̃µ on the 4–dimensional state space R2 × R2, which reads in co-ordinates
z = (z1, z3, z2, z4) as

ż1 = z3

ż2 = z4

ż3 = −a1z1 − c1z3 − f1(z1, z3) + εg1(z1, z2, z3, z4)

ż4 = −a2z2 − c2z4 − f2(z2, z4) + εg2(z1, z2, z3, z4)

and which constitutes an ε–small perturbation of the vector field Xµ obtained by putting
ε = 0. Here µ ∈ Rs stands for a multi-parameter that includes coefficients like a1 and a2
such that the periods of the periodic orbits in the free oscillators vary with µ. Note
that for ε = 0 the system decouples to 2 independent oscillators and has an attractor
in the form of a 2–dimensional torus Tµ; here we use that the fi consist of higher order
terms, having no constant or linear part in z, and the assumption that the coefficients c1
and c2 are negative. This torus arises as the product of two circles, along each of which
each of the free oscillators has its periodic motion. The circles lie in the 2–dimensional
planes given by z2 = z4 = 0 and z1 = z3 = 0, respectively. The vector field Xµ has a
restriction Xµ|Tµ

of the format

ẋ1 = ω1(µ)

ẋ2 = ω2(µ) .

The non-degeneracy assumption on the µ–dependence means that the frequency mapping
ω : µ 7→ (ω1(µ), ω2(µ)) is a submersion. This allows us to apply Theorem 2.1 and to
conclude that for |ε| ≪ 1 there is quasi-periodicity (with Diophantine frequencies) on a
set Gτ,γ ⊆ Γ of positive measure in parameter space.

Restricting parameters to c1, c2 ≤ −2λ, for a positive constant λ, we may invoke Theo-
rem 2.2. As a consequence it follows that if ε is sufficiently small, depending on λ, then
for the corresponding parameter values µ = (a1, a2, c1, c2) a normally hyperbolic 2–torus
attractor persists. If ω(µ0) is a non-resonant frequency vector also the quasi-periodic
flow generated by ẋ = ω(µ0) persists, without the need for ω(µ0) to be Diophantine.

The reason is that on a 2–dimensional torus T̃µ persistent by normal hyperbolicity, the

perturbation of the dynamics on Tµ to the dynamics on T̃µ is subject to the Theorem of
Denjoy [11].

In order to apply Corollary 2.3 we have to reduce µ ∈ R4 to a single parameter ν. This
prevents ν 7→ (ω1(ν), ω2(ν)) from being a submersion, but by allowing for a rescaling of
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time we may use ν ∈ Γ ⊆ R to control the ratio [ω1(ν) : ω2(ν)] of the internal frequencies.
Then non-degeneracy amounts to requiring the resulting mapping [ω] : Γ −→ RP1 to be a
submersion. For the decoupled van der Pol oscillators the eigenvalues of Ω(ν) in (3b) are
all real whence no normal frequencies have to be excluded by the extended Diophantine
conditions (7).

Hence, taking ν as a linear combination of the components a1, a2, c1, c2 of µ, the gaps
resulting from the resonances are open neighbourhoods of hyperplanes defined by

[ω1(ν) : ω2(ν)] = const. ,

slightly distorted by the diffeomorphism of Theorem 2.1 that relates Gτ,γ to Γ
γ
τ,γ. Applying

Corollary 2.3 now closes all but the low order resonance gaps.

Note that a large part of the above discussion can be generalised to n coupled oscillators,
yielding a persistent n–torus attractor with Diophantine quasi-periodic dynamics corre-
sponding to a set of positive measure in parameter space and a fattening to an open set
of parameters with normally hyperbolic invariant tori.

3.2 The quasi-periodic Hopf bifurcation

The Tn–symmetry (1) on Tn×Rm of the unperturbed integrable system, with a condition-
ally periodic invariant torus Tn×{0}, allows us to reduce to Rm and consider bifurcations
of relative equilibria. The present interest is with small non-integrable perturbations of
such integrable models; we focus on a Hopf bifurcation of the relative equilibria, whence
we may choose m = 2. Paraphrasing the discussion in [8], the unperturbed, integrable
family X = Xµ(x, z) on Tn × R2 has the form

Xµ(x, z) = [ω(µ) + f(z;µ)] ∂x + [Ω(µ) · z + h(z;µ)] ∂z , (13)

where f = O(z) and h = O(z2), while ω : Γ −→ Rn and Ω : Γ −→ gl(2,R) are smooth
mappings. Moreover, we first take µ ∈ Γ ⊆ Rs as a multi-parameter. A full description
of the normal linear behaviour

Ω(µ) =

(
β −α
α β

)

of the planar Hopf bifurcation requires two parameters, the normal frequency α and the
bifurcation parameter β, whose passage through 0 is what triggers the Hopf bifurcation
in the first place. Non-degeneracy now requires that the ‘amended’ frequency mapping

(ω, α, β) : Γ −→ R
n+2

µ 7→ (ω(µ), α(µ), β(µ))

is a submersion, compare with [4]. We may even assume that µ is replaced by

µ = (ω, α, β) ∈ R
n+2 , (14)
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thereby suppressing additional mute parameters. If the nonlinearity h satisfies the Hopf
non-degeneracy conditions, as stated in e.g. [11, 4], then the — relative — equilibrium
z = 0 undergoes a Hopf bifurcation. Here β plays the part of bifurcation parameter and
a — relative — periodic orbit branches off at β = 0.

Let us assume that we are in the supercritical case of the Hopf bifurcation where the
origin z = 0 is attracting for β < 0, while the branching periodic orbit is present for
β > 0 and is attracting as well. For the integrable family X we have to superpose this
planar scenario with the flows on Tn; in this way equilibria become attracting or repelling
invariant n–tori and attracting periodic orbits become attracting invariant (n + 1)–tori.
In the following we study what happens to both the n–tori and the (n+ 1)–tori under a

small non-integrable perturbation of X to X̃ = X + P .

By applying Theorem 2.1 to the present setting we obtain persistent invariant n–tori, using
the Diophantine conditions (7) with γ > 0 and τ > n − 1 and restricting to a bounded
set Γ ⊆ Rn+2 of parameters (ω, α, β). In fact, we use a multi-parameter generalisation
of Theorem 2.1, e.g. the version used in [5] to actually prove Theorem 2.1, and do not
restrict the eigenvalues of Ω(µ) to be bounded away from the imaginary axis, see [1, 2, 4]

for more details. We conclude that for any family X̃ sufficiently close to X a near-identity
C∞–diffeomorphism

Φ : T
n × R

2 × Γ −→ T
n × R

2 × Γ

exists, defined near Tn × {0} × Γ, that conjugates X to X̃ when further restricting to
T
n × {0} × Γγ

τ,γ, under preservation of the normal linear behaviour of the n–tori.

This allows us to consider the perturbed family X̃ in the co-ordinates provided by the
inverse Φ−1. As Φ∗X̃ coincides on Tn × {0} × Γγ

τ,γ with the integrable family X , we

directly conclude that on the Cantor-like set Γγ
τ,γ the pull-back Φ∗X̃ has Tn × {0} as a

quasi-periodic invariant n–torus, attracting for β < 0 and repelling for β > 0. Moreover,
we have the normal form splitting

(Φ∗X̃ −X)ω,α,β = O(z) ∂x + O(z2) ∂z + Qω,α,β(x, z) (15)

as z → 0 with uniform estimates in ω, α, β and x. The Gevrey regular family of vector
fields Q, say in Gevrey class G1+ν with ν > 0, is uniformly flat on Tn × ∆ × Γγ

τ,γ ⊆
Tn × R2 × Γ, where ∆ is a small neighbourhood of the origin in R2 — its Taylor series
completely vanishes — which implies the exponential estimate (18) below. Indeed, for
∆ sufficiently small we can arrange that Q vanishes identically on the Cantor-like set
Tn × ∆ × Γγ

τ,γ, whence by perfectness of Cantor sets we conclude that all derivatives
vanish as well. See [2, 5, 8] for a proof and more details.

For β 6= 0 the invariant n–tori are normally hyperbolic. By Theorem 2.2 we conclude
that the parameter domain where invariant n–tori exist is open inside Γ ∩ {β 6= 0}. This
means that Γγ

τ,γ ∩ {β 6= 0} can be fattened to an open subset of Γ. For parameter values
outside of Γγ

τ,γ the invariant n–tori do not have to be quasi-periodic.
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Theorem 3.1 (Order of contact) Take r0 ∈ N and (ω0, α0) satisfying (7). There are
positive constants A, B and ν such that for all 1 ≤ r ≤ r0 and all µ = (ω, α, β) in the set

{
(ω, α, β) ∈ Γ

∣∣∣∣ p(‖ω − ω0‖+ |α− α0|) <
|β|

(1 + r)

}
, (16)

where
p(d) = A exp(−Bd−

1

ν ) , (17)

the vector field Φ∗X̃ has an invariant r–normally hyperbolic torus.

Proof. Fix a regularity r0. The term Q = Qω,α,β is in Gevrey class G1+ν and depends

continuously on the perturbation Pµ = X̃µ−Xµ. Hence if that perturbation is sufficiently
small, then Q is Cr0–close to 0. As Q is uniformly flat on Tn × ∆ × Γγ

τ,γ, the Taylor
formula implies for m ≥ 0 that

|Q| , |∂Q| ≤
1

m!
|∂m+1Q|dm ≤ mνm‖Q‖G1+νh−mdm

for some h > 0 and d = ‖ω − ω0‖ + |α − α0|. The right hand side is minimised at
logm = −1− log(d/h)/ν, yielding the exponential estimate

|Q| , |∂Q| ≤ q(d) := C1 exp(−C2d
− 1

ν ) (18)

for some positive constants C1 and C2. Fixing β > 0 we obtain

λ = |β| − C3q(d) and λc = C3q(d) ,

with C3 a positive constant, for the bounds λ on the minimal normal expansion and inverse
contraction rate and λc on the maximal internal expansion and inverse contraction rate
of the perturbed system. Since (12) requires

r <
λ

λc
=

|β|

C3q(d)
− 1

then r–normal hyperbolicity is guaranteed if

C3q(d) <
|β|

1 + r
.

Now define p := C3q, A := C1C3, B := C2 and apply Theorem 2.2. �

Remarks.

- Note that for fixed Diophantine (ω0, α0) the set (16) is the union of two open disks —
or blunt cusps — with a boundary that has infinite order of contact with the bifur-
cation hyperplane {β = 0} at (ω, α, β) = (ω0, α0, 0). In particular, the intersection
of the closure of the set (16) with {β = 0} reduces to the set of Diophantine (ω0, α0).
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- The Gevrey regular dependence of Φµ on µ in Theorem 2.1 is what allows to replace
the flat p in [2, 5, 8] by the explicit exponential p in (17); here the high regularity

of the perturbed vector field X̃µ is used.

Given a regularity r ∈ N this yields A,B, ν > 0 such that for all (ω0, α0) satisfying (7),

the disks (16) are contained in the parameter domain with normally hyperbolic Φ∗X̃–
invariant n–tori of class Cr. These tori are attracting for β < 0 and repelling for β > 0.
Note that the disks grow larger as the degree r of differentiability decreases.

This directly concerns the perturbed family X̃ = Φ∗Φ
∗X̃ of vector fields. The union of the

disks is uncountable, leaving open gaps ‘centered’ around the pure resonances (ω, α, 0) ∈ Γ
with 〈k | ω〉 + ℓα = 0 for some 0 6= k ∈ Zn and ℓ ∈ {0,±1,±2}. Almost all of these
resonance gaps can be closed when β 6= 0, as explained below.

For finding invariant (n + 1)–tori one has to develop a Tn+1–symmetric normal form,
related to both the normal form of the Hopf bifurcation of equilibria and the quasi-
periodic normal form (15). This higher order normalisation requires more resonances to be

excluded, so consider for given N ≥ 2 the subset Γ
(N)
τ,γ ⊆ Γ obtained by a further extension

of the Diophantine conditions (7) to all ℓ ∈ Z with |ℓ| ≤ N . The resulting normal form
is a small variation on Theorem 2.1. Indeed, after application of Theorem 2.1 one carries
out a formal normal form procedure pushing the Tn+1–symmetry of the normal linear
part for β = 0 through the formal series in z. For the quasi-periodic Hopf bifurcation we
follow [2, 8] and take N = 7. The invariant (n + 1)–tori can then be found by applying
Theorem 2.2.

Given a regularity r ∈ N this yields A,B, ν > 0 such that if (ω0, α0) ∈ Γ
(7)
τ,γ, then the

‘corresponding disk (16)’ — which lies inside {β > 0} — is contained in the parameter

domain with normally hyperbolic Φ∗X̃–invariant (n + 1)–tori of class Cr. These tori are
attracting, while there are no invariant (n + 1)–tori with β ≤ 0. See [2, 5, 8] for a proof
and more details.

Also for (n+1)–tori gaps are left out, ‘centered’ around the pure resonances (ω, α, 0) ∈ Γ
such that for some 0 6= k ∈ Zn and ℓ ∈ {0,±1, . . . ,±7} one has 〈k | ω〉 + ℓα = 0. The
only difference to the resonance gaps concerning the n–tori, apart from the higher order
|ℓ| ≤ 7 of normal-internal resonances, is that the resonance gaps related to the (n+1)–tori
are situated only in the half plane space β > 0.

In a parameter space Γ ⊆ Rs of dimension s = n+2 the Diophantine conditions determine
a Cantor-like set which is continuous in the β–direction, just as the half lines of constant
frequency ratios in the (ω, α)–direction. The latter half lines allow for a ‘preliminary’
parameter reduction by means of time reparametrisation, see [5]. In order to really speak
of an (ω, α)–direction it is best to use a ‘final’ parameter reduction as performed in [5],
also used to prove Theorem 2.1, which amounts to using the dependence of ω on the
parameter µ to essentially let ω and its derivatives span the internal frequency space Rn;
effectively we then can work with s = 2 and µ = (α, β). For ease of argumentation we
here prefer to achieve µ = (α, β) by simply fixing ω = ω0 Diophantine. Under variation
of β the quasi-periodic Hopf bifurcation of the integrable family X is perturbed to the
following dynamics of X̃ .
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For values of µ = (α, β) with β ≪ 0 fixed all orbits are attracted to an invariant n–torus,
which moreover carries a quasi-periodic flow with Diophantine frequency vector. As β
increases towards 0, low order resonance strips open up — values of α for which the
normally hyperbolic torus no longer survives the perturbation. As β ր 0 the number of
resonance strips increases, but for any fixed β < 0 these result in only finitely many gaps
in the α–line.

Theorem 3.2 (Gaps left open) For given β 6= 0 the number N of low order resonance
gaps can be estimated as

N ≤

(
E + F log

1

|β|

)ν

, (19)

where E, F and ν are positive constants.

Proof. Fix ω and β at ω0 and β0 respectively, where ω0 satisfies the Diophantine condi-
tions (6). The normal frequency α is restricted by (7) and the resulting set

Γτ,γ ∩ {ω = ω0, β = β0} ⊂ R

is closed and nowhere dense, hence its complement consists of infinitely many open in-
tervals. Given a positive distance d > 0, we first estimate the number of those intervals
whose length exceeds d. This then readily yields the estimate of the number of low order
resonance gaps.

Throughout the proof we denote by Ci positive constants that do not depend on d.
Introduce for 0 6= k ∈ Z

n and 0 < |ℓ| ≤ 2 the interval

R(k, ℓ) =

{
α ∈ R

∣∣∣∣ |〈k | ω0〉+ ℓα| <
γ

|k|τ

}

containing the normal frequencies α that violate the extended Diophantine conditions (7)
for (k, ℓ) where, however, we have to take τ > n (next to γ > 0) as ω = ω0 is now fixed.
Since R(k,−ℓ) = R(−k, ℓ), it suffices to consider only ℓ = 1 and ℓ = 2. The length of the
interval R(k, ℓ) is 2γ|k|−τ ; this is larger than d if and only if

|k| ≤ K(d) :=

(
2γ

d

) 1

τ

.

There are at most
N1 ≤ 2(2K(d) + 1)n ≤ C1d

−n

τ (20)

of these intervals.

The total measure m of the intervals R(k, ℓ) for which |k| > K(d) can be estimated as

m ≤
∑

|k|>K(d)
ℓ∈{1,2}

2γ

|k|τ
≤ C2K(d)n−τ ≤ C3d

1−n

τ ,
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where in the second inequality we use our assumption τ > n. Although individually each
interval R(k, ℓ) has length less than d if |k| > K(d), two or more of these intervals may
overlap to form an interval of length at least d. However, the total number N2 of such
intervals is bounded by m/d, yielding

N2 ≤ C3d
−n

τ . (21)

In an interval of length d, the midpoint α is at least at distance d/2 from the extended
Diophantine set Γτ,γ. In order for α to be located in a resonance gap, it has to be in the
complement of the intersection of (16) and {ω = ω0, β = β0}. Thus Theorem 3.1 leads
to the necessary condition

p(d/2) ≥ p(|α− α0|) ≥ C4|β0|

which implies
d−1/ν ≤ C5 + C6 log |β0|

−1 .

Combining this with (20) and (21) yields

N ≤ N1 + N2 ≤ (C7 − C8 log |β0|)
νn/τ ≤ (C7 − C8 log |β0|)

ν

(using again n/τ < 1) and now we take E = C7, F = C8. �

Remarks.

- Keeping track of r in the constants Ci shows that E depends on r logarithmically
and F is independent of r — one could also write (19) as

N ≤

(
D log(1 + r) + F log

1

|β|

)ν

.

- Note that we did not have to restrict α to a compact line segment to ensure finitely
many resonance gaps. Indeed, there is no repetition of low order resonances as for
larger and larger |α| also |k| has to be larger and larger.

- In applications it is rare that the internal frequency vector ω remains fixed when
varying the parameters µ that the system depends upon. Therefore, when achieving
to identify µ = (α, β) the parameter dependence ω = ω(α) becomes important.
We expect that a non-degeneracy condition like (8) on ω(α) and its derivatives
ω′(α), . . . , ω(n−1)(α) at every α–value together with the assumption τ > n2 − n
should suffice to nevertheless obtain the estimate (19) on the number of gaps left
open.

The n–tori perturbed from β = 0 are attracting, but not normally hyperbolic. Here only
tori Tn × {0} with Diophantine frequency vectors persist and there are infinitely many
resonance gaps between the Diophantine α, giving rise to the ‘bubbles’ in the frayed
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✲

✻

α

β

Figure 1: Parameter sets with persistent invariant tori and the subset of persistent quasi-
periodic invariant tori. The latter set is the product of a Cantor set in the α–direction
and the real line in the β–direction: it is nowhere dense. The complement of the former
set (which includes the resonance set on the β–axis) is a set of ignorance, in particular
persistent invariant tori may exist there as well. At the frayed boundary around the β–
axis the figure is self-similar: it repeats itself when zoomed into (outside of a resonance
bubble).

boundary between the parametrisations of attracting and repelling n–tori; see Figure 1.
Repelling n–tori perturbed from Tn × {0} with β > 0 also have resonance strips between
the persistent Diophantine tori with their normally hyperbolic fattening, finitely many
for any fixed β > 0, and those are one by one closed as β increases until none are left as
β ≫ 0 — a process which is the reverse to the one as β increases from β ≪ 0 to β = 0,
again governed by (19).

For β > 0 there are furthermore attracting (n + 1)–tori that are perturbed from the
(n + 1)–tori Tn × S1 of the unperturbed dynamics that have been created in the Hopf
bifurcation. Starting with β ≫ 0 the situation is similar to that of the attracting n–
tori. Where the normal attraction is sufficiently strong all orbits, except for those on the
repelling n–torus, are attracted to the invariant (n + 1)–torus, which moreover for most
values of α — the bifurcation parameter β ≫ 0 is fixed — carries a quasi-periodic flow
with Diophantine frequency vector. As β decreases towards 0, more and more resonance
strips open up, but only finitely many for any fixed β > 0. The precise position of these
resonance strips does not necessarily coincide with those between the repelling n–tori —
they concern different tori with slightly different frequencies. Still, the resonance strips
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between the (n+1)–tori are expected to be larger than the resonance strips between the n–
tori as the set of Diophantine frequencies of the latter is larger than the set of Diophantine
frequencies of the former. The disks corresponding to (16) limit to the frayed boundary
of non-hyperbolic Diophantine n–tori. The number of resonance strips obeys a similar
estimate as (19), but with different values of the constants E and F .

The quasi-periodic Hopf bifurcation is triggered by variation of a single parameter and
it is instructive to have a look at the change of dynamics under variation of a single
parameter µ ∈ Γ ⊆ R. To avoid that the bifurcation itself disappears into a resonance
gap we follow [5] and assume that the bifurcation value µ = µ∗ is an element of Gτ,γ

whence the unperturbed Tn × {0} has Diophantine frequencies and thus persists as an
invariant n–torus Vµ∗ . Furthermore we assume that the path µ 7→ (α(µ), β(µ)) crosses
the frayed boundary transversely — this is achieved through the condition β ′(µ∗) 6= 0; in
fact this inequality could be used for a reparametrisation after which µ = β. Then the
order of contact in (16) ensures that both for the n–tori and for the (n+1)–tori the path
stays outside of the resonance strips whence along the path an attracting n–torus, not
necessarily but ‘often’ with a quasi-periodic flow, becomes repelling, with an attracting
(n+1)–torus, again not necessarily but ‘often’ with a quasi-periodic flow, bifurcating off.
One also speaks of a Hopf–Landau bifurcation [5].

Out of all paths that transversely cross the frayed boundary, only the ones passing through
some µ∗ ∈ Gτ,γ undergo the above Hopf–Landau bifurcation, but since Gτ,γ has large
relative measure this happens with high probability. For a given path that passes the
frayed boundary through a resonance bubble, in the complement of the disks (16), a
further analysis of the dynamics inside that resonance bubble is needed to clarify the fine
details of the bifurcation along that particular path, see [22] and references therein.

We refer to [2, 5, 3, 8] for more details on the quasi-periodic Hopf bifurcation. For a
treatment of torus bifurcations with a single parameter see [7].

3.3 The quasi-periodic centre-saddle bifurcation

In an integrable Hamiltonian system the necessary parameters to control the internal
frequencies of an invariant torus are built-in into the system as tori are parametrised by
the actions conjugate to the toral angles. We restrict to the case n = 2 of invariant 2–tori
in 3 degrees of freedom. Using Kolmogorov’s non-degeneracy condition on the frequency
mapping we may simply use the 2 frequencies as parameters, compare with (14). In
the frequency space R

2 the Diophantine conditions (6) yield one discontinuous direction
transverse to the continuous direction of the half lines, putting us effectively into the
situation of a 1–dimensional parameter µ.

During a centre-saddle bifurcation a centre and a saddle meet under variation of a pa-
rameter at a parabolic equilibrium — with linear part given by a nilpotent matrix (00

a
0),

a 6= 0 — and vanish. In the quasi-periodic version of this bifurcation the equilibria are
replaced by invariant tori and using the parametrisation by the actions conjugate to the
toral angles one can also say that the family of hyperbolic tori has eigenvalues approach-
ing 0 — where the tori become parabolic — and then forming a pair of purely imaginary
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eigenvalues with the tori turning elliptic with normal frequency given by the absolute
value, or the positive imaginary part, of the pair of eigenvalues.

Such a quasi-periodic centre-saddle bifurcation persists a sufficiently small perturbation
from the integrable Hamiltonian system to a non-integrable one, see [12, 13, 4]. Again
Diophantine conditions are needed to achieve this persistence result. The parabolic tori
are defined by the additional equation

det Ω = 0

and thus form a 1–parameter subfamily. Variation of the frequency ratio is needed along
this 1–parameter family of parabolic 2–tori to ensure that the whole family does not
disappear in a resonance gap. Under this requirement the continuous half lines in the set
of Diophantine frequencies are transverse to the 1–dimensional subset of frequencies of
parabolic tori.

On the hyperbolic side the situation is similar to that of the quasi-periodic Hopf bifurca-
tion — next to Theorem 2.1 we can again apply Theorem 2.2 to fill the resonance gaps
between the half lines emanating from the persistent parabolic tori. Sufficiently far away
from the parabolic tori the union of the unperturbed hyperbolic tori forms a normally
hyperbolic invariant manifold that persists the small perturbation away from integrability,
see [10]. Note, however, that the actions conjugate to the toral angles are not external
parameters, but phase space variables to which the non-integrable perturbation assigns
a slow drift. The individual unperturbed 2–tori do not constitute normally hyperbolic
invariant manifolds, it is only their union to which Theorem 2.2 can be applied.

This makes the passage from hyperbolic to parabolic tori less transparant. While Dio-
phantine tori can still be continuated up until the parabolic tori of the same internal
frequency ratio, it is not clear whether again only finitely many ‘low order’ resonance
gaps appear at some small but fixed distance to the parabolic boundary. While the
zig-zag lines obtained in [10] can in principle be constructed as close to this boundary
as desired, the resulting persistence is only achieved for correspondingly small perturba-
tions. Recall that the fine structure seen in the quasi-periodic Hopf bifurcation has been
obtained for a fixed sufficiently small perturbation.

Remarks.

- Restricted to the normally hyperbolic invariant manifold obtained from Theorem 2.2
the flow is again Hamiltonian, see [17]. The dynamics is that of an integrable system
with Lagrangean 2–tori for the unperturbed system and that of a non-integrable 2–
degree-of-freedom system for the perturbed one.

- The dynamics within the gaps that are filled by normal hyperbolicity does not parti-
tion into invariant 2–tori, but consists of (slow) non-integrable Hamiltonian dynam-
ics confined inside an energy shell of the perturbed normally hyperbolic invariant
manifold between two Diophantine 2–tori obtained from Theorem 2.1.

On the elliptic side the situation is even more dramatic. Here no form of hyperbolicity
allows us to fill the resonance gaps. Moreover, the continuous half lines of internal frequen-
cies with the same frequency ratio are broken into a discontinuous Cantor set through the
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extended Diophantine conditions (7) which are needed for bounds away from resonances
between the internal frequencies and the newly born normal frequency of the elliptic tori.

Thus, when following the 2–parameter family of invariant 2–tori involved in a quasi-
periodic centre-saddle bifurcation from hyperbolic to elliptic, a 4–dimensional normally
hyperbolic invariant Cr–manifold, which consists for a measure-theoretically large part
of 1–parameter families of quasi-periodic tori with Diophantine frequency ratios, breaks
up at the frayed parabolic boundary into normally elliptic tori, parametrised by ‘Cantor
dust’ of (Hausdorff) dimension 2.
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[4] H.W. Broer, H. Hanßmann and F.O.O. Wagener, Quasi-Periodic Bifurcation Theory,
the geometry of KAM. Springer, in preparation (2018)

[5] H.W. Broer, G.B. Huitema and M.B. Sevryuk, Quasi-Periodic Motions in Families
of Dynamical Systems: Order amidst Chaos. Lecture Notes in Mathematics 1645,
Springer (1996)

[6] H.W. Broer and F. Takens, Dynamical Systems and Chaos. Epsilon Uitgaven 64
(2009); Applied Mathematical Sciences 172, Springer (2011)

[7] A. Chenciner and G. Iooss, Bifurcations de tores invariants. Archive Rational Me-
chanics Analysis 69 (1979) 109–198

[8] M.C. Ciocci, A. Litvak-Hinenzon and H.W. Broer, Survey on dissipative KAM theory
including quasi-periodic bifurcation theory. In: J. Montaldi and T.S. Raţiu (eds.)
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