Functions and Relations

additional reading for the course
Mathematics for Al

by Lev Beklemishev

December 10, 2003

1 Specifying sets

‘Set’ and ‘membership in a set’ are basic undefined notions in mathematics.
One can develop all of mathematics on the basis of these two basic notions,
that is, all other objects encountered in mathematics can be defined in terms
of sets. Properties of sets are expressed by the axioms of formal set theory.
We do not study them here, but we want to use set-theoretic notation.

Intuitively, a set is any collection of objects of any kind. We can speak
about the set of students in the room, the set of stars in the universe, the set
of points on the plain, the set of all sets of points on the plain, etc. Objects
are unordered and without repetitions, e.g., {2,3,2,5} is the same set as
{5,3,2}. Sets are called equal, if they have the same elements: X =Y if
and only if, forallz, zr € X &z €Y.

Sets are usually denoted by capital letters such as X,Y, etc. x € X can
be read ‘x is an element of a set X’ or ‘z is a member of X’ or ‘z belongs
to X.

Sets can be specified

e By listing all elements, such as {red, green, blue}. Such sets are neces-
sarily finite.

Sometimes, large finite or even infinite sets can be specified in a sim-
ilar manner by using the “ ... ” notation. Examples: {a,...,z},

{0,...,9}, N={1,2,3,... }.

e Using some standard operations. The simplest operations are U (union),
N (intersection), \ (difference). We assume the properties of these



operations to be known from school. Also recall the so-called Venn
diagrams to graphically represent these operations.

By properties. Given a (previously defined) set A the notation

{reA:p()}

specifies the set of all elements = of A that satisfy a property ¢.

Properties can be described in words or using logical notation. In
axiomatic set theory ¢(z) must be a logical formula. We can write
{z : ¢(z)} if it is clear from the context which set A the elements of x
come from.

Examples: Both {z € N: z is even} and {z € N: 3y = = 2y} specify
the set of even natural numbers.

{z € R:z > 0} specifies the set of positive real numbers.

{z € A: z € B} specifies the intersection A N B.

{z : 2 € A or x € B} specifies the union A U B.

{z € A: z ¢ B} specifies the difference A \ B.

One also uses some standard sets which are supposed to be known: N

(natural numbers), Z (integers), Q (rational numbers), R (real num-
bers), @ (empty set).

Excercise 1 Write in mathematical notation:

1.

2.

The set of all vowel letters.
The set of natural numbers that are squares (of natural numbers).

The set of non-negative integers. (Specify this set in two different
ways.)

The set of even natural numbers smaller than 10. (Specify this set in
two different ways.)

Translate into plain English or Dutch: {x € Q:0 < z < 1}.



2 Pairs and cartesian products

Recall that the set {a,b} consists of just two elements a and b. We call it
an unordered pair, because the order in which the elements are listed is not
essential. We have:

{a,b} ={c,d} <= (a=cand b=d) or (a =d and b= c).
An ordered pair (a,b) consists of a and b in the specified order and thus
(a,b) = (¢,d) <= a=cand b=d. (%)

In formal set theory one defines (a,b) = {{a}, {a,b}}, reducing the concept
of ordered pair to that of an unordered pair. It is easy to check that (x) is
satisfied.

Excercise 2 Prove that this definition works: If {{a}, {a,b}} = {{c}, {c,d}},
then a = c and b=d.

Cartesian product of A and B is defined as
AxB={(a,b):a €A, be B}.
The set A X A X --- X A (n times) is denoted A™.
Example 1 {0,1} x {2,3} = {(0,2),(0,3),(1,2),(1,3)}.

Example 2 R? = R x R is the set of ordered pairs of real numbers. They
can be interpreted as coordinates of the points on the plain. In mathematics
one often simply says that R? is the set of points on the plain.

Example 3 An integer is essentially a pair (e¢,n), where n € N and € €
{+, —}. For example, we think about the number —6 as the pair (—,6). So,
integers can be formally defined by

Z={0}U({+,-} xN).

Excercise 3 Let p(x,y) denote the distance between the points x and y on
the plain. Specify: the set of points on the plain that have equal distance
from the the points (0, 1) and (1,0).

Excercise 4 Write out all elements of the set {0,1} x {0,1, 2}.

Excercise 5 What is the intersection of the following two sets:

{(z,y) eR? :z+y=1}N{(z,y) € R? : 22 4 3y = 2}?



3 Functions

A function f : A — B is a subset f C A x B such that for each z € A
there is ezactly one y € B such that (z,y) € f. One usually writes f(z) =y
instead of (x,y) € f. One usually thinks about a function as a rule assigning
to every = € A a unique y € B. However, we do not need a new basic notion
‘rule’, but explicate it in terms of sets. Synonyms for the word ‘function’
are: mapping or map.

Example 4 The function f : R — R defined by f(x) = 22 is the same thing
as the set of pairs {(z,y) € R? : y = 22}. Notice that this set is also called
the graph of f.

Example 5 For every set A we have the identity function idsa : A — A
such that id4 = {(z,z) : z € A}. In other words, id4(z) = z, for all z € A.

The given definition of function formally reduces the concept of function
to the concept of set. This is somewhat contrary to the common intuition,
because we are used to think about functions intensionally, that is, as laws
specifying y € B for every x € A. Intuitively, functions also have some
dynamic aspect: the change from x to y. The present definition ignores
these aspects. It emphasizes that any thinkable correspondence uniquely
associating y with x defines a function.

The set of all functions f : A — B is denoted B4.

Example 6 {0,1}" is the set of all functions f : N — {0,1}.

3.1 Domain and range

Given a function f : A — B, we say that A is the domain of f. It is denoted
dom(f).

The set {f(z) :z € A} ={y € B: 3z € A f(z) =y}, is called the range
of f. It is denoted rng(f).

In general, if X C A, then the set {f(z) : z € X} is denoted f(X). If
Y C B, then the set {z € A: f(z) € Y} is denoted f~1(Y).

Excercise 6 Verify that for any function f : A — B and X C A one has
X C f7Y(f(X)). Give an example of a function f and a set X C A such

that f~1(f(X)) # X.

Excercise 7 Verify that for any function f : A — B and Y C B one has
fUH ) cy.



3.2 Specifying functions

To specify a function f means to specify A, B and a set of pairs, a subset
of A x B. Functions can be defined in the following ways.

e By formulas. For example, a function f : R2 — R can be defined by
f(z,y) = 22 +y%. If one wants to be quite formal®, this means that f
is the set of pairs of the form ((z,v), 2% + 4?) for 7,y € R.

Notice that rng(f) = {z € R : z > 0}, because every non-negative
number is a square. dom(f) = R2.

e By more complex instructions, such as

{azQ, ifz >0,

T@ =10 itz<o.

Checking that such an instruction correctly defines a function usually
requires a proof of two things: 1) that a value y is associated to every
argument x € A; 2) that only one such value is associated.

e Finite functions can be specified by finite tables of values, for example
a function f : {0,1,2} — {0, 1} can be specified by the following table:

01 2
010
This means that f(0) =0, f(1) =1 and f(2) = 0.

3.3 Composition of functions

Let f: A— Band g: B — C. Composition of f and g is the function
h: A — C defined by h(z) = g(f(z)), for any z € A. We denote h =go f,
so that

(g0 f)(@) = g(f(x)) (1)
Notice that the composition g o f is only defined if rng(f) C dom(g).
Theorem 1 The composition operation o is associative:
folgoh)=(feog)oh,

whenever these expressions are defined.

! which one never does



Proof. Let h: A— B, g: B — C and f:C — D. We have to prove that,
for each = € A,

(folgeh))(z)=((fog)oh)(x).

Consider an arbitrary z € A. By the definition of composition (1) we obtain:

(felgoh))(z) = [f((geh)())
= [lg(h(2)))
= (fog)(h(z))
= ((fog)oh)(z).

Since this holds for all € A, this proves the claim. X

Example 7 (Advanced) Consider the set of all functions from A to A, that
is, A4. Composition operation can be thought of as function from A4 x A% to
A4 Indeed, composition associates with every pair of functions f,g: A — A
a unique function (fog) : A — A. So, composition is a function of functions.

3.4 Injective and surjective functions

A function f: A — B is injective, if for all x,y € A,

z#y= f(z) # f(y)

A function f : A — B is surjective, if rng(f) = B, that is, every element
y € B equals f(z) for some z € A.

Example 8 The function f : R — R defined by f(z) = 2* is injective, but
not surjective. Indeed, 2% > 0 for any z, so 0 ¢ rng(f). On the other hand,
if £ <y, then 2% < 2Y, therefore f is injective.

Example 9 The function f : R — R defined by f(zr) = z? is neither
injective, nor surjective. Indeed, —1 ¢ rng(f) and f(—1) = f(1) = 1 con-
tradicting injectivity.

Excercise 8 What is the set f~1({y}) for f : R = R, f(z) = 22? Consider
separately positive and negative y.

Excercise 9 (Advanced) The same question for the function f : C — C
given by the same formula f(z) = x?. Is this function a) injective, b)

surjective?



A function is bijective if it is both surjective and injective.
Example 10 The function f : R — R given by f(z) = 2z + 3 is bijective.

Example 11 The function f : {z € R : z > 0} — R given by f(z) =
log,(z) is bijective.

Theorem 2 A function f : A — B is bijective if and only if there is a
function g : B — A such that fog=1idp and go f =1idy4.

Such a function is called the inverse of f and denoted f~1.
Proof. We have to prove two statements.

1. If f is bijective, then there is an inverse function g.

2. If f has an inverse, then f is bijective.

Proof of 1. Suppose f is bijective. We have to construct the inverse
function g. Recall that f C A x B is a set of pairs (z,y). Define a subset
g C B x A as follows:

g = {(y,x) : <'Z‘7y> € f}

We have to check that g : B — A is a function and that g is, indeed, the
inverse of f.

Since f is surjective, for each y € B there is an z € A such that f(z) = y.
Then (z,y) € f and (y,z) € g. So, ¢g(y) = x is defined.

Assume (y,z1) € g and (y,z3) € g, then f(z1) =y and f(z2) = y. By
injectivity of f we obtain z; = z5. Hence, the value g(y) is uniquely defined.
So, the subset g is a function.

Excercise 10 Prove that go f =id4 and fog =1idp.

Proof of 2. Assume that g : B — A is an inverse of f. We must prove
that f is surjective and injective.

Injectivity. If f(z1) = y and f(z2) = y, then g(f(z1)) = g(y) = 9(f (= ))
However, g(f(21)) = (g 0 )(z1) = ida(w1) = @1, Similarly, (f(2)) = w2
SO T1 = T9.

Surjectivity. We must show that, for each y € B, there is an z € A such

that f(z) =y. Consider x = g(y). We have: f(z) = f(g(y)) = idp(y) = y.
Hence, z is as required. X



Excercise 11 What is the inverse function to the one defined in Example
117

Excercise 12 Prove that composition of injective functions f : A — B and
g : B — C is injective.

Excercise 13 Prove that, if f : A — B is bijective, then f~! : B — A is
also bijective.

Excercise 14 Describe all injective functions f : {0,1} — {0,1,2} by ta-
bles of values.

Excercise 15 Describe all bijective functions f : {0,1,2} — {0,1,2} by
tables of values.

Excercise 16 Prove that, if f : B — C and g : A — B are bijective
functions, then (fog)~' =g ' o f~! (in that order!).

3.5 Finite sets

A set A is called finite, if there is a bijection f : {1,...,n} — A. The
number n is then called the number of elements of A. It is denoted n(A) or
|Al.

To be sure that n(A) is uniquely defined, one should prove that if there is
a bijection f : {1,... ,n} — A, then there is no bijection f : {1,... ,m} - A
for any other m # n. This will follow from Theorem 4 below.

The following statement is sometimes taken as an axiom. It can be
proved by induction, though.

Theorem 3 (Pigeonhole Principle) There is no injective function
f:A{1,...,n+1} = {1,... ,n}
(From this principle we obtain a corollary.

Theorem 4 Let A and B be finite sets. There is a bijection between A and
B if and only if n(A) = n(B).

Proof. If n(A) = n(B) = n, then there are bijections f : {1,... ,n} - A
and g: {1,... ,n} = B. Then go f~! is a bijection from A to B.

Assume n(A) = k and n(B) = m for some k < m. There are bijections
f:A{l,...,k} > Aand g:{1,...,m} — B. If there is a bijection h : B —
A, then hy = go ho f~! is a bijection from {1,... ,m} to {1,... ,k}. The
restriction of hy to {1,... ,k+ 1} is injective, contradicting the Pigeonhole
Principle. X



3.6 Sequences and real numbers

A function f : N — A is called an (infinite) sequence of elements of A.
One often represents sequences as lists a1, as, as, - .. corresponding to values

f) =a1, f(2) =aq,....

Example 12 We can understand a real number as a pair (m, f), where
m is an integer and f is a sequence of decimal digits. For example, we
consider the number —3,14159... as a pair (-3, f), where f is the sequence
1,4,1,5,9,.. ..

A sequence of digits x1,x2, ... is just a function f : N — {0,...,9}. But
there is a condition that period 9 is forbidden, so there must be infinitely
many n such that f(n) # 9. Let I be the set of all such sequences, formally

I={fc{0,..., 9N : f(n) #9 for infinitely many n}.

Then R can be defined as Z x I.

3.7 Countable and uncountable sets

A set A is called countable, if there is a surjective function f: N — A.

Theorem 5 A is countable if and only if A is finite or there is a bijection
f:N—=> A

Proof. Let f: N — A be surjective. Consider the set

X ={neN: f(n) ¢ {f(1),...,f(n—1)}}.

(We also postulate that 1 € X.)
We claim: f: X — A is bijective.

Indeed, if z,y € X and (say) =z < y, then f(y) & {f(1),--.,f(y — 1)},
whereas f(z) € {f(1),...,f(y — 1)}. So, f(z) # f(y). Therefore f is
injective.

To establish f(X) = A we prove by induction on n that, for all n € N,
f(n) € f(X).

For n = 1 this follows from 1 € X. Assume now f(1),...,f(n) € X.
Either f(n+1) € {f(1),..., f(n)} and then, by the induction hypothesis,
fn+1) € f(X). Or f(n+1) € {f(1),...,f(n)}, and then n+1 € X, so
f(n+1) € f(X), too.

Knowing that f : X — A is bijective we conclude that, if X is finite,
then A is finite.



If X is infinite, then let g(n) be the n-th element in X. Theng: N — X
is bijective, so the composition f o g is a bijection from N to A.

Thus, all infinite countable sets are in a bijective correspondence with

N.
Theorem 6 If A and B are countable, then so is the set A X B.

Proof. Let a1, as,... be an enumeration of A, and by, by, ... an enumeration
of B. We can arrange pairs of elements (ay, b,,) in the following infinite list.

{a1,b1), (a1,b2), (az,b1),{as,b1),...

Having enumerated all pairs (a,,, b,) such that n+m =2 and n+m = 3,
we proceed with those corresponding to n + m = 4, n +m = 5, etc. Let
g(n) denote the n-th pair in this list. Then g : N — A x B is a surjective
function. X

Are all infinite sets countable? Georg Cantor answered this by the fol-
lowing famous theorem.

Theorem 7 (Cantor) The set R is not countable.

Proof. Assume f : N — R is a surjective function. Consider the real number
whose decimal decomposition (an infinite sequence of digits) 0,z1z2... is
defined as follows:

0, if n-th digit of f(n) after the comma is not 0
f—
" 1, otherwise.

Then we see that the number z differs from each number f(n) in the n-th
digit. Therefore, x does not appear in the sequence f, that is, z & rng(f).
So, f cannot be surjective contrary to the hypothesis. X

3.8 Cantor’s Continuum Hypothesis

Cantor formulated the following Continuum Hypothesis: for every subset
A C R, either A is countable, or there is a bijection f: A — R.

This was a famous open problem in mathematics for many years. Finally,
P. Cohen in 1961 proved that this hypothesis cannot be proved on the basis
of the axioms of set theory. Earlier K. Godel proved that this statement
cannot be refuted, either. Thus, we do not really know if it is true or false.
Statements that can neither be proved nor refuted are called independent.

10



4 Binary relations

Binary relation R on a set A is any subset R C A x A. One often writes
xRy instead of (z,y) € R.

Example 13 < is a binary relation on N.

Example 14 R = {(z,y) : = and y are words of the same length} is a bi-
nary relation on the set of English words.

Example 15 R = {(z,y): = and y are bus stops in Utrecht and one can
reach y from x without changing a bus} is a binary relation on the set of
bus stops in Utrecht.

A binary relation R on A is transitive, if for all z,y,z € A,
zRy and yRz = xzRz.
R is symmetric, if for all z,y € A,
zRy = yRx.

R is reflexive, if xRz, for all x € A.
R is an equivalence relation, if it is reflexive, symmetric and transitive.

5 Equivalence relations

Equivalence relations are widely used to construct more complex sets.

Let R be an equivalence relation on A and let a € A. The equivalence
class of a is the subset ar = {x € A : aRx} of A. We have the following
properties:

® a € agR.

o If aRb, then ap = br. Indeed, if bRz, then aRz by transitivity. If
aRzx, then bRa by symmetry and hence bRz by transitivity.

e If not aRb, then ag Nbr = @. Indeed, if z € ar N bg, then aRx and
bRx. Hence x Rb by symmetry and aRb by transitivity, a contradiction.

Thus, we have proved the following theorem.

Theorem 8 An equivalence relation on A defines a partition of A into
non-intersecting subsets (equivalence classes).

11



The set of equivalence classes {agr : a € A} is denoted A/R.

Example 16 A rational number ¢ = " can be considered as a pair (m,n),
where m € Z and n € N. However, some pairs represent the same number
q. Therefore, we define an equivalence relation R on Z x N by

(m1,m1)R{ma,ne) <= ming = nima.

(Verify that R is indeed an equivalence relation!)
Rational numbers ¢ can be identified with the equivalence classes. Thus,
(Z x N)/R is the official definition of the set of rational numbers Q.

Excercise 17 Let S be the set of all words in the alphabet {a,b} of length
3. Let
R = {(u,v) : u,v € S and u,v have equal length}.

Check that R is an equivalence relation on S and describe all equivalence
classes.

Excercise 18 Let f : A — B be a function. Show that

R={(z,y):z,y € Aand f(z) = f(y)}

is an equivalence relation on A.

Excercise 19 Show that in the previous exercise there is a bijection be-
tween A/R and B.

5.1 Orders

A binary relation R is called a (partial) order, if it is transitive, reflexive
and antisymmetric, that is,

zRy and yRx = = = y.

In case R is a partial order and xRy, we say that x is a predecessor of y
and y is a successor of x.

More formally, a partial order is a pair (A, R), where A is a set and R is a
binary relation on A satisfying the above properties. Explanatory example.

Example 17 The relation < is a partial order on N. It is also a partial
order on Z, Q and R. (N, <), (Q, <) and (R, <) are, however, all different
orders.

12



These orders are also linear, that is, they satisfy the condition
xRy or yRx,

for each =,y € A.
Here is an example of a non-linear partial order.

Example 18 The relation C is a partial order on set P(A) of all subsets of
A.

Excercise 20 Give an example demonstrating that the ordering (P(A), C)
is non-linear if n(A) > 1.

Partial orders can be represented by oriented graphs, where edges con-
nect all elements x,y € A satisfying zRy. (One usually omits the edges that
can be inferred from the transitivity.)

Excercise 21 Draw a diagram representing P({0,1,2}) ordered by C.

Excercise 22 Assume that R is a transitive and reflexive relation on A.
Show that the relation R defined by

TRy <= (rRy and yRx)
is an equivalence relation.

Equivalence classes with respect to R are sometimes called ‘clusters’.
They consist of groups elements that are pairwise related to each other by
R. Notice that a binary relation, in which all clusters are one-element sets,
is antisymmetric. In fact, the antisymmetry property simply says that every
cluster is trivial. This is the hint to the following exercise.

Excercise 23 Assume R is as in the previous exercise. Define a binary
relation on A/R by

XQY < Jr e XJyeY zRy.

(Here, X,Y € A/R are R equivalence classes.)
Show that () is a partial order.

A vpartial order R is a tree-like, if it satisfies
zRa and yRa = Ry or yRx.

In other words, R is tree-like, if the set of predecessors of any element is
linearly ordered by R.

13



Example 19 Any linear order is tree-like.

Example 20 Consider the set of all words in the alphabet A ordered by
the relation R such that

Ry <= z is an initial segment of y.

For example, z = abc is an initial segment of abcab.
Then R is tree-like.

Excercise 24 Draw the diagrams of all tree-like orders on {0, 1, 2}.

Now we introduce an important notion of isomorphism. Informally, two
mathematical objects are called isomorphic if they ‘have the same structure’.
For the case of orders we can give the following formal definition.

The orders (A, R;) and (B, Rg) are called isomorphic, if there is a bijec-
tion f : A — B such that, for all z,y € A,

TRy <= f(z)Ra2f(y).

;From the point of view of the order properties, isomorphic orders are es-
sentially the same.

Example 21 The order ({1,2}, <) is isomorphic to ({2,3},<). The iso-
morphism is the function mapping 1 to 2 and 2 to 3.

Example 22 (N, <) is not isomorphic to (Z,<) and ({1 : n € N}, <).
However, (N, <) is isomorphic to ({1 : n € N}, >). What is the isomorphism

function?

Excercise 25 In Exercise 24 draw the diagrams of non-isomorphic tree-like
orders only.
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