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We study the lattice of local operators in Hyland’s Effective Topos. We show that this lattice
is a free completion under internal sups indexed by the natural numbers object, generated
by what we call basic local operators.
We produce many new local operators and we employ a new concept, sight, in order to
analyze these.
We show that a local operator identified by A.M. Pitts in his thesis, gives a subtopos with
classical arithmetic.
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0. Introduction

A fundamental concept in Topos Theory is the notion of subtopos: a subtopos of a topos E is a full subcategory which is
closed under finite limits in E , and such that the inclusion functor has a left adjoint which preserves finite limits. It then
follows that this subcategory is itself a topos, and its internal logic has a convenient description in terms of the internal
logic of E . Subtoposes of E are in 1–1 correspondence with local operators in E : these are certain endomaps on the subobject
classifier of E .

Whereas local operators/subtoposes of Grothendieck toposes can be neatly described in terms of Grothendieck topologies,
for realizability toposes the study of local operators is not so easy. Yet it is important, since many variations on realizability,
such as modified realizability, extensional realizability and Lifschitz realizability arise as the internal logic of subtoposes of
standard realizability toposes.

Already in his seminal paper [2] where he introduces the effective topos E ff (the mother of all realizability toposes),
Martin Hyland studied local operators and established that there is an order-preserving embedding of the Turing degrees in
the lattice of local operators. Part of the groundwork for this treatment was laid by Andy Pitts in his thesis [13]. Moreover,
Pitts exhibits a local operator which is different from Hyland’s examples; this local operator will be studied also in the
present paper. Wesley Phoa [12] has an alternative description of Hyland’s “relative computability” local operators. Matías
Menni [9] develops some general results on local operators in exact completions (such as E ff ). Finally, the second author
of the present paper identified the local operator which corresponds to Lifschitz’ realizability [19,20]. But as far as we are
aware, this is all.
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The lattice of local operators in E ff is vast and notoriously difficult to study. We seem to lack methods to construct
local operators and tell them apart. The present paper aims to improve on this situation in the following way: it is shown
(Theorem 2.4) that every local operator is the internal join of a family (indexed by a nonempty set of natural numbers) of
local operators induced by a nonempty family of subsets of N (which we call basic local operators). Then, we introduce a
technical tool (sights) by which we can study inequalities between basic local operators. We construct an infinity of new
basic local operators and we have some results about what new functions from natural numbers to natural numbers arise in
the corresponding subtoposes. For many of our finitary examples (finite collections of finite sets) we can show that they do
not create any new number-theoretic functions; for Pitts’ example we can show that it forces all arithmetical functions to be
total. This seems interesting: we have a realizability-like topos which, though far from being Boolean, nonetheless satisfies
true arithmetic (Theorem 6.4). There might be genuine models of nonstandard arithmetic in this topos (by McCarty’s [7],
such cannot exist in E ff : see also [18]). Since Pitts’ local operator is induced by the collection of cofinite subsets of N, this
is reminiscent of Moerdijk and Palmgren’s work on intuitionistic nonstandard models [10,11] obtained by filters.

There are other reasons why one should be interested in the lattice of local operators in E ff . It is a Heyting algebra
in which, as we saw, the Turing degrees embed. It shares this feature with the (dual of the) Medvedev lattice [8], which
enjoys a lot of attention these days. Apart from the work by Sorbi and Terwijn (see, e.g., [15,17,16]) who study the logical
properties of this lattice, there is the program Degree Theory: a New Beginning of Steve Simpson, who argues that degree
theory should be studied within the Medvedev lattice. From his plenary address ‘Mass Problems’ at the Logic Colloquium
meeting in Bern, 2008 [14]: “In the 1980s and 1990s, degree theory fell into disrepute. In my opinion, this decline was due to an
excessive concentration on methodological aspects, to the exclusion of foundationally significant aspects”. Indeed, it is commonplace
in mathematics, in order to study certain structures, to embed them into larger ones with better properties (the passage
from ring elements to ideals in number theory; the passage from elements of a structure to types in model theory). By the
way, the relationship between the Medvedev lattice and the lattice of local operators in E ff seems a worthwhile research
project.

This paper is organized as follows. Section 1 reminds the reader of some generalities about the subobject classifier Ω ,
its set of monotone endomaps and local operators, for as much as is relevant to this paper. Section 2 studies these things
in the effective topos. Section 3 recalls known facts from the (limited) literature on the subject. In Section 4 we introduce
our main innovation: the concept of sights. Section 5, Calculations, then presents our results. Finally, we present a concrete
definition of truth for first-order arithmetic in subtoposes corresponding to local operators, using the language of sights.

0.1. Notation

In this paper, juxtaposition of two terms for numbers: nm will almost always stand for: the result of the n-th partial
recursive function to m. The only exception is in the conditions in statements in Section 5, where ‘2m’ really means 2
times m, and in the proof of 5.3 where dm also means d times m. We hope the reader can put up with this.

We use the Kleene symbol � between two possibly undefined terms. We use 〈−, . . . ,−〉 for coded sequences and (−)i
for the i-th element of a coded sequence. The symbol ∗ between coded sequences means: take the code of the concatenated
sequence; so if a = 〈a0, . . . ,an−1〉 and b = 〈b0, . . . ,bm−1〉 then a ∗b = 〈a0, . . . ,an−1,b0, . . . ,bm−1〉. We use λx.t for a standard
index of a partial recursive function sending x to t .

We employ the logical symbols ∧, → etc. between formulas, but in the context of E ff also between subsets of N, where

A ∧ B = {〈a,b〉 ∣∣a ∈ A, b ∈ B
}

A → B = {e | for all a ∈ A, ea is defined and in B}
For further, unexplained, standard notations regarding the effective topos, we refer to the monograph [21].

1. Subobject classifier, monotone maps and local operators

We shall use the internal language of toposes freely; we refer to one of several available text books on Topos Theory
[5,6,4] for expositions of this topic.

If 1
true−→ Ω is a subobject classifier, elements of Ω will act as propositions (Ω is the power set of a one-element set

{∗}; and the element p of Ω will also denote the proposition “∗ ∈ p”); hence Ω is a model of second-order intuitionistic
propositional logic. When we use an expression from this logic and say that it ‘holds’, or is ‘true’, we have this standard
interpretation in mind.

Top and bottom elements of Ω are denoted by 	 and ⊥, respectively.

Definition 1.1. A local operator is a map j : Ω → Ω such that the following statements are true:

(a) ∀p. p → j(p),
(b) ∀pq. j(p ∧ q) ↔ j(p) ∧ j(q),
(c) ∀p. j( j(p)) → j(p).
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Equivalently, j is a local operator iff the following statements are true:

(i) ∀pq. (p → q) → ( j(p) → j(q)),
(ii) 	 → j(	),

(iii) ∀p. j( j(p)) → j(p).

A monotone map is a map j : Ω → Ω for which (i) holds.

We have a subobject Mon of the exponential ΩΩ , consisting of the monotone maps, and a subobject Loc of Mon,
consisting of the local operators.

We note that Mon is the free suplattice (for suplattices and locales, see [4]) on a poset: the object ΩΩ represents both
the endomaps on Ω and the subobjects of Ω; under this correspondence the monotone functions are the upwards closed
subobjects of Ω . It follows that Mon is the free suplattice on Ωop (recall that the free suplattice on a poset P is the set of
downwards closed subsets of P ). In particular, Mon is an internal locale.

We also observe that since Ω is (internally) complete, Mon is a retract of ΩΩ : the retraction sends g ∈ ΩΩ to the map
p 
→ ∃q. (g(q) ∧ (q � p)).

Also Loc is an internal locale, as we conclude from the following folklore result in Topos Theory:

Proposition 1.2. The inclusion Loc → Mon has a left adjoint L which preserves finite meets.

Proof. Define L( f ) by the second-order propositional expression:

L( f )(p) = ∀q.
[(

(p → q) ∧ (
f (q) → q

)) → q
]

It is easy to deduce that p → r implies L( f )(p) → L( f )(r), so (i) of Definition 1.1 is satisfied; also (ii) holds since L( f )(	)

is valid.
For (iii), we first prove the implication

f
(
L( f )(p)

) → L( f )(p)

as follows: assume f (L( f )(p)), f (r) → r, p → r. Since L( f )(p) implies [((p → r)∧ ( f (r) → r)) → r] and f is assumed to be
in Mon, we have f (r), and hence r by assumption. We conclude that f (L( f )(p)) implies

∀r.
[(

(p → r) ∧ (
f (r) → r

)) → r
]

which is L( f )(p), as desired. Since we know f (L( f )(p)) → L( f )(p) we can instantiate L( f )(p) for q in

∀q.
[((

L( f )(p) → q
) ∧ (

f (q) → q
)) → q

]
which is the formula for L( f )(L( f )(p)), and get L( f )(L( f )(p)) → L( f )(p), as desired. We conclude that L( f ) ∈ Loc.

For j ∈ Loc and f ∈ Mon, the equivalence

f � j ⇔ L( f ) � j

is easy, which establishes the adjunction.
It remains to be seen that L preserves finite meets. It is straightforward that L preserves the top element. For binary

meets, consider that these are given pointwise in Mon. So assume L( f )(p) ∧ L(g)(p); we must prove

∀s.
[((

f (s) ∧ g(s) → s
) ∧ (p → s)

) → s
]

Assuming f (s) ∧ g(s) → s, or equivalently f (s) → (g(s) → s), as well as p → s, L(g)(p) gives f (s) → s. Again using p → s
and L( f ) we get s, as desired. �
2. Monotone maps, local operators and basic local operators in Eff

In E ff , the object Mon of monotone maps Ω → Ω is covered by the assembly M = (M, E) where

M =
{

f : P(N) → P(N)

∣∣∣ ⋂
p,q⊆N

(p → q) → (
f (p) → f (q)

) �= ∅
}

and

E( f ) =
⋂

p,q⊆N
(p → q) → (

f (p) → f (q)
)
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Mon is endowed with a preorder structure: we put

[ f � g] = E( f ) ∧ E(g) ∧
⋂
p⊆N

f (p) → g(p)

The actual object Mon of monotone maps is a quotient of M by the equivalence relation ∼= induced by this preorder.
However, we shall find it more convenient to work with the preorder M than with its quotient.

Remark 2.1. The object (M, E) is a ¬¬-sheaf. Moreover, every f ∈ M is uniformly isomorphic to a function P(N) → P(N)

which preserves inclusions.

Proof. Given f ∈ M , let F ( f ) be the function defined by

F ( f )(p) ≡
⋃
q⊆N

(
(q → p) ∧ f (q)

)

The reader can verify the following statements:

(1) if β is such that βz〈x, y〉w � 〈z(xw), y〉 then β ∈ E(F ( f )) always;
(2) from a ∈ E( f ) we can recursively obtain an element of [ f ∼= F ( f )];
(3) the function F ( f ) preserves inclusions. �

We also have an internal preorder Lo, a sub-assembly of M which covers the object Loc of local operators:

Lo = ({
f : P(N) → P(N)

∣∣ E1( f ) ∧ E2( f ) ∧ E3( f ) �= ∅}
, E

)
where

E1( f ) =
⋂

p,q⊆N

[
(p → q) → (

f (p) → f (q)
)]

E2( f ) = f (N)

E3( f ) =
⋂
p⊆N

[
f
(

f (p)
) → f (p)

]
E( f ) = E1( f ) ∧ E2( f ) ∧ E3( f )

and Lo inherits the preorder from M .
The reflection map L : Mon → Loc lifts to a map L : M → Lo, given by

L( f )(p) =
⋂
q⊆N

(
(p → q) ∧ (

f (q) → q
)) → q

Then Lo as internal preorder is equivalent to the preorder (M,�L) where f �L g iff f � L(g).
The following form of the map L is essentially due to A. Pitts [13, 5.6]:

Proposition 2.2. The map L : M → Lo is isomorphic (as maps of preorders) to the map

L′( f )(p) =
⋂{

q ⊆ N
∣∣ {0} ∧ p ⊆ q and {1} ∧ f (q) ⊆ q

}
Proof. Given f ∈ M and d ∈ E( f ), we shall produce, recursively in d, elements of [L( f ) � L′( f )] and [L′( f ) � L( f )].

First, for e ∈ L( f )(p) and indices α and β such that αx = 〈0, x〉 and βx = 〈1, x〉, we have: if {0}∧ p ⊆ q and {1}∧ f (q) ⊆ q
then α : p → q and β : f (q) → q hence e〈α,β〉 ∈ q. We conclude that λe.e〈α,β〉 ∈ [L( f ) � L′( f )].

Conversely, from the interpretation in E ff of the true propositional formulas ∀p.p → L( f )(p) and ∀p. f (L( f )(p) →
L( f )(p)) (as we saw in the proof of 1.2) we find elements

a ∈
⋂
p⊆N

[
p → L( f )(p)

]

b ∈
⋂
p⊆N

[
f
(
L( f )(p)

) → L( f )(p)
]

Let d ∈ E( f ). By the recursion theorem, choose an index c such that for all x, y:



Author's personal copy

870 S. Lee, J. van Oosten / Annals of Pure and Applied Logic 164 (2013) 866–883

c〈0, x〉 � ax

c〈1, y〉 � b(dcy)

Let S = {z | cz ∈ L( f )(p)}. Then clearly {0} ∧ p ⊆ S . Moreover we have c : S → L( f )(p) hence λy.dcy : f (S) → f (L( f )(p)).
So if 〈1, y〉 ∈ {1} ∧ f (S) then c〈1, y〉 ∈ L( f )(p). We see therefore, that also {1} ∧ f (S) ⊆ S . By definition of L′( f )(p) we have
L′( f )(p) ⊆ S and thus c : L′( f )(p) → L( f )(p) for all p, whence c ∈ [L′( f ) � L( f )], as desired. �

Let us examine some structure of the preorder M . (M,�) is an internal Heyting prealgebra (a Cartesian closed preorder
with finite joins): finite joins and meets are given pointwise (and the constant maps to ∅ and N are the bottom and top
elements, respectively), and Heyting implication is given by the formula

( f → g)(p) = {〈a,b, c〉 ∣∣ there is an h ∈ M such that a ∈ E(h), b ∈ [
(h ∧ f ) � g

]
and c ∈ h(p)

}
as is easy to verify.

Next, we discuss internal joins. The preorder (M,�) is internally cocomplete. Since any object of E ff is covered by a par-
titioned assembly, it suffices to consider maps into M from partitioned assemblies. So, let (X,π) and (Y ,ρ) be partitioned
assemblies (with π : X → N, ρ : Y → N); let A be a subobject of (X,π) × (Y ,ρ) and q : A → M a map. The internal join
along q, i.e. the map (X,π) → M defined internally by

x 
→
∨

(x,y)∈A

q(x, y)

is represented by the function

H A(x) =
⋃
y∈Y

{〈n, e〉 ∣∣n ∈ [
A(x, y)

]
, e ∈ q(x, y)

}

We now wish to establish a connection between M and a preorder structure on the sheaf ∇(PP(N)), but actually the
theorem we have in mind works only if we restrict to the sub-assembly M∗ of M on those functions f which satisfy⋃

p⊆N f (p) �= ∅, and ∇(P∗P(N)) (writing P∗(X) for the set of nonempty subsets of X ). Note that the condition defining
elements of M∗ is always satisfied by L( f ), so we still have that Lo is equivalent to (M∗,�L).

The reader should note that in E ff , ∇(P(N)) is the object P¬¬(N) of ¬¬-closed subobjects of N , and ∇(P∗P(N)) is
the object of ¬¬-inhabited, ¬¬-closed subobjects of P¬¬(N). Also, the image of M∗ under the projection M → Mon is
{ f : Mon | ¬¬∃p. f (p)}.

For A,B ∈P∗P(N) let

[A� B] = {
k
∣∣∀A ∈A∃B ∈ B(k : B → A)

}
The proof of the following proposition is left to the reader.

Proposition 2.3. Define a function G(−) :P∗P(N) →P(N)P(N) by

GA(p) =
⋃
A∈A

(A → p)

(a) G(−) is a well-defined map: ∇(P∗P(N)) → M∗ and an embedding of preorders (it preserves and reflects the order).
(b) GA is the least f ∈ M∗ such that

⋂
A∈A f (A) is inhabited. That is: there are indices b and c such that for each A ∈ P∗P(N),

f ∈ M∗ and a ∈ E( f ) the following hold:
(i) if x ∈ ⋂

A∈A f (A) then b〈a, x〉 ∈ [GA � f ],
(ii) if y ∈ [GA � f ] then c〈a, y〉 ∈ ⋂

A∈A f (A).
In other words, if π : ∇(P(N)) → Ω is the standard surjection, then the following is internally true in E ff :

∀A : ∇(P∗P(N)
)∀ f : M∗[GA � f ↔ ∀A ∈A.π

(
f (A)

)]
Theorem 2.4. The preorder (M∗,�) is (internally in E ff ) the free completion of (∇(P∗P(N)),�) under joins indexed by nonempty
subsets of N (where, internally, A ⊆ N is ‘nonempty’ iff ¬¬∃n(n ∈ A)).

Proof. First of all we remind the reader that in E ff , by “Shanin’s Principle” every subset of N is the epimorphic image of a
¬¬-closed subset. Therefore, we can restrict ourselves to joins indexed by nonempty ¬¬-closed subsets of N .

Recall that in E ff , the object of nonempty ¬¬-closed subobjects of N is ∇(P∗(N)), with element relation [n ∈ A] ≡ {n |
n ∈ A}.
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For f ∈ M∗ , define A ∈ ∇(P(N)) and θ : A → ∇(P∗P(N)) by

A =
⋃
p⊆N

f (p)

θ(n) = {
q ⊆ N

∣∣n ∈ f (q)
}

The reader can verify that A and θ are well-defined. Now recall from the remark we made at the beginning of this section
that f is isomorphic (in the preorder (M∗,�)) to F ( f ) where

F ( f )(p) =
⋃
q⊆N

(
f (q) ∧ (q → p)

)
From which we derive

F ( f )(p) =
{
〈n, e〉

∣∣∣n ∈ A, e ∈
⋃

q∈θ(n)

(q → p)

}
=

( ∨
n∈A

Gθ(n)

)
(p)

So we see that f is a join of a family of elements of ∇(P∗P(N)), indexed by a nonempty subset of N .
Next, we see that elements of the form GA , A ∈P∗P(N), are inaccessible for joins indexed by nonempty subsets of N . That

is, let A ⊆ N nonempty, h : A → M∗ a map. Then GA �
∨

n∈A hn implies ∃n ∈ A.GA � hn , internally in E ff . This is seen as
follows:

Suppose e ∈ [GA �
∨

n∈A hn], so

e ∈
⋂
p⊆N

[ ⋃
B∈A

(B → p) → {〈n, u〉 ∣∣n ∈ A, u ∈ hn(p)
}]

Since A �= ∅, there is some B ∈A. Let i be an index for the identity function, then instantiating this B for p we get

ei ∈ {〈n, u〉 ∣∣n ∈ A, u ∈ hn(B)
}

This holds for all B ∈A. So we have found an n = (ei)0, satisfying (ei)1 ∈ hn(B) for all B ∈A.
Since h : A → M∗ is a map, from n we find some element an ∈ E(hn).
Now if d : B → p is arbitrary, B ∈A, p ⊆ N, then and : hn(B) → hn(p), hence (and)(ei)1 ∈ hn(p). We see that for all p,

λd.(and)(ei)1 :
( ⋃

B∈A
(B → p)

)
→ hn(p)

which means GA � hn , as desired.
The two properties together imply, constructively, that M∗ is the stated free completion.
Indeed, suppose (P ,�) is an internal preorder in E ff which has joins indexed by nonempty subsets of N , and w :

(∇(P∗P(N)),�) → P is order-preserving. Then we extend w uniquely to a map W : M∗ → P which preserves joins indexed
by nonempty subsets of N: for f ∈ M∗ , express f as

∨
n∈A θ(n). Define W ( f ) = ∨

n∈A w(θ(n)). Use the inaccessibility
property to show that W is well-defined. �

In view of Theorem 2.4 we shall call elements of M∗ of the form GA basic; and we shall call local operators of the form
L(GA) also basic.

3. Known results about local operators in Eff

In this section we collect some results which have appeared in the literature, as far as relevant for this paper.
The top element of Loc, the function constant 	, is the local operator whose category of sheaves is the trivial topos;

hence this local operator will also be called trivial. The least element of Loc, the identity map on Ω , will be denoted id.
As is well known from [2], there is a largest nontrivial local operator. This is the double negation operator ¬¬: the

function sending ∅ to ∅ and everything else to N.

Proposition 3.1 (Hyland–Pitts).

(i) Let j ∈ M. Then L( j) represents the trivial local operator if and only if j(∅) �= ∅.
(ii) Let j ∈ M. Then L( j) represents the ¬¬-operator if and only if any of the following equivalent conditions holds:

(a) j(∅) = ∅ and
⋂

p �=∅ L( j)(p) �= ∅,
(b) j(∅) = ∅ and

⋂
n∈N L( j)({n}) �= ∅,

(c) j(∅) = ∅ and L( j)({0}) ∩ L( j)({1}) �= ∅.
(iii) Let A ∈P∗P(N). Then id < L(GA) if and only if

⋂A= ∅.
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We conclude that the identity, the trivial local operator and the ¬¬-operator are basic: the identity is L(G{{0}}), the
trivial one is L(G{∅}) and ¬¬ is L(G{{0},{1}}) = L(G{p⊆N|p �=∅}).

The following corollary is easy.

Corollary 3.2. Suppose A ∈ P∗P(N) contains two r.e. separable sets, that is: sets A1 and A2 such that for two disjoint recursively
enumerable sets C, D we have A1 ⊆ C, A2 ⊆ D. Then ¬¬ � L(GA).

A different basic local operator was identified by Pitts in [13, 5.8]:

Proposition 3.3 (Pitts). Let A= {{m | m � n} | n ∈ N}. Then L(GA) is strictly between id and ¬¬.

Examples of non-basic local operators are those which force a partial function to be total. Suppose f : N → N is a
function. The ¬¬-closed subobject of N × N in E ff given by {(n, f (n)) | n ∈ N} is a single-valued relation whose domain
D f is a ¬¬-dense subobject of N . The least local operator which forces D f to be the whole of N is L(

∨
n Gρ(n)) where

ρ(n) = {{ f (n)}}. Recall that
∨

n Gρ(n)(p) = {〈n, e〉 | ef (n) ∈ p}.

Theorem 3.4 (Hyland). Denoting this least local operator by j f , we have j f � jg if and only if f is Turing reducible to g.

The following proposition is due to Phoa [12]:

Proposition 3.5 (Phoa). If j is a local operator such that j f � j for each f : N → N, then ¬¬ � j.

In general, if X
m→ Y is a monomorphism in E ff there is (by standard topos theory) a least local operator j with respect to

which m is dense. Let us write this out explicitly for the case that Y is an assembly (since every object of E ff is covered by
an assembly, this covers the general case): let Y = (Y , E) and R : Y →P(N) be such that

⋂
y∈Y (R(y) → E(y)) is nonempty,

representing the subobject m. Then the least local operator for which m is dense is L(
∨

n Gθ(n)) where θ(n) = {R(y) | n ∈
E(y)}.

Another non-basic local operator in E ff is described in [19,20]. Let Tot be the set of indices of total recursive functions.
Consider the assembly A = (A, E) where

A = {〈e, f 〉 ∣∣ e, f ∈ Tot and ∀nm(en = 0 ∨ f m = 0)
}

E
(〈e, f 〉) = {〈e, f 〉}

Let R : A →P(N) send 〈e, f 〉 to the set{〈e, f ,0〉 ∣∣∀n(en = 0)
} ∪ {〈e, f ,1〉 ∣∣∀m( f m = 0)

}
Then R determines a subobject [R] of A and let jL be the least local operator for which this inclusion is dense.

The local operator jL corresponds to the Lifschitz subtopos of E ff . In [20] it is proved that jL is the least local operator for
which the following principle of first-order arithmetic, there called BΣ0

1 −MP is true in the corresponding sheaf subtopos:

∀e
(¬¬∃n

(
n ∈ [e]) → ∃n

(
n ∈ [e]))

where [e] denotes {n � (e)1 | (e)0n↑}. It can be shown that BΣ0
1 −MP is equivalent to the “Lesser Limited Principle of Omni-

science”, which has some standing in generalized computability and constructive analysis (see e.g. [1,3]). Since decidability
of the Halting Problem implies this principle, we conclude that jL � jh , if h is a decision function for the Halting Problem.
In fact we have jL < jh , since the Halting Problem is not decidable in the Lifschitz topos.

4. Sights

In this section we develop some theory of a certain type of well-founded trees, which we call sights, which will enable
us to derive inequalities and non-inequalities between a number of new local operators in E ff . The basic insight is that
elements of L( f )(p) are functions defined by recursion over a well-founded tree (see in particular Definition 4.8 and the
discussion preceding it, and Proposition 4.9).

Let us look again at the operator L′ from Proposition 2.2:

L′( f )(p) =
⋂{

q ⊆ N
∣∣ {0} ∧ p ⊆ q and {1} ∧ f (q) ⊆ q

}
for f ∈ M .

In view of Remark 2.1 we may assume that f preserves inclusions. This enables us to present L′ in the following way:
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Proposition 4.1. For ordinals α � ω1 , define L( f )(p)α as follows:

L( f )(p)0 = {0} ∧ p

L( f )(p)α+1 = L( f )(p)α ∪ ({1} ∧ f
(
L( f )(p)α

))
L( f )(p)λ =

⋃
β<λ

L( f )(p)β for limit λ

Then L′( f )(p) = L( f )(p)ω1 . Of course, since L′( f )(p) is a countable set, there is a countable ordinal α such that L′( f )(p) = L( f )(p)α .

Proposition 4.1 leads us to the following definition.

Definition 4.2. A sight is, inductively,

either a thing called NIL,
or a pair (A, σ ) where A ⊆ N and σ a function on A such that σ(a) is a sight for each a ∈ A.

Let θ be a function B →P∗P(N) for B ⊆ N nonempty. With θ we associate (as in 2.4) the element Gθ of M∗ given by

Gθ (p) = {〈n, e〉 ∣∣n ∈ B, ∃A ∈ θ(n)(e : A → p)
}

So, Gθ = ∨
n∈B Gθ(n) .

Definition 4.3. For θ as above, p ⊆ N and z ∈ N we say that a sight S is (z, θ, p)-dedicated if

either S = NIL and z ∈ {0} ∧ p,
or S = (A, σ ), z = 〈1, 〈n, e〉〉, A ∈ θ(n), and for all a ∈ A, ea is defined and σ(a) is (ea, θ, p)-dedicated.

Proposition 4.4. For θ , z, p as before, we have: z ∈ L′(Gθ )(p) if and only if there is a (z, θ, p)-dedicated sight.

Proof. We use 4.1. First we prove that for each α < ω1, if z ∈ L(Gθ )(p)α then there is a (z, θ, p)-dedicated sight.
For α = 0: if z ∈ L(Gθ )(p)0 = {0} ∧ p, then NIL is (z, θ, p)-dedicated.
For α+1: suppose z ∈ L(Gθ )(p)α+1. By induction hypothesis we may assume z ∈ {1}∧Gθ (L(Gθ )(p)α). Then z = 〈1, 〈n, e〉〉

and for some A ∈ θ(n) we have e : A → L(Gθ )(p)α . By induction hypothesis, for each a ∈ A there is an (ea, θ, p)-dedicated
sight σ(a). Then (A, σ ) is (z, θ, p)-dedicated.

The case of limit ordinals is obvious.
Conversely, suppose that S is a (z, θ, p)-dedicated sight. If S = NIL, then z ∈ {0} ∧ p so z ∈ L(Gθ )(p)0. If S = (A, σ ) then

z = 〈1, 〈n, e〉〉 and for some A ∈ θ(n), σ(a) is (ea, θ, p)-dedicated for each a ∈ A. By induction hypothesis, for each a ∈ A
there is some αa < ω1 such that ea ∈ L(Gθ )(p)αa . Then z ∈ L(Gθ )(p)β where β = (

⋃
a∈A αa) + 1, as is easy to see. �

Corollary 4.5. For A ∈ P∗P(N), B ⊆ N nonempty and θ : B → P∗P(N) we have: GA �L Gθ if and only if there exists a number z
such that for every A ∈A there exists a (z, θ, A)-dedicated sight.

Proof. By 2.3, GA � L′(Gθ ) if and only if
⋂

A∈A L′(Gθ )(A) is nonempty, which, by 4.4, is equivalent to the given state-
ment. �
Corollary 4.6. For B, B ′ ⊆ N nonempty, θ : B → P∗P(N) and ζ : B ′ → P∗P(N) we have: Gζ �L Gθ if and only if there is a partial
recursive function f defined on B ′ , and for every n ∈ B ′ an ( f (n), θ, ζ(n))-dedicated sight.

To any sight S we associate a well-founded tree Tr(S) of coded sequences of natural numbers together with a specified
subset of its set of leaves (which we will call good leaves) as follows:

If S = NIL then Tr(S) = {〈〉} and 〈〉 is a good leaf of S .
If S = (∅,∅) then Tr(S) = {〈〉} and Tr(S) has no good leaf.
If S = (A, σ ) with A �= ∅ then Tr(S) = {〈a〉 ∗ t | a ∈ A, t ∈ Tr(σ (a))} and 〈a〉 ∗ t is a good leaf of Tr(S) if and only if t is a

good leaf of Tr(σ (a)).
We shall often abuse language and talk about the “(good) leaves of a sight S” instead of Tr(S).
We call a sight degenerate if not all its leaves are good.
Given a sight S and s ∈ Tr(S), we write Out(s) (or OutS (s) if we wish to emphasize the sight s lives in) for the set

{a ∈ N | s ∗ 〈a〉 ∈ Tr(S)}.
The following proposition follows by an easy induction on sights.
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Proposition 4.7. If a degenerate sight is (z, θ, p)-dedicated then ∅ ∈ ⋃
n θ(n).

Definition 4.8. Let B ⊆ N nonempty, θ : B →P∗P(N), p ⊆ N. For a number w , we call a sight S (w, θ, p)-supporting if

whenever s is a good leaf of S , ws ∈ {0} ∧ p,
whenever s is not a good leaf of S , ws = 〈1,n〉 with n ∈ B and OutS (s) ∈ θ(n).

Proposition 4.9. There are partial recursive functions F and G such that for each B ⊆ N nonempty, θ : B →P∗P(N), p ⊆ N, sight S
and z ∈ N:

(i) If S is (z, θ, p)-dedicated then F (z) is defined and S is (F (z), θ, p)-supporting.
(ii) If S is (w, θ, p)-supporting then G(w) is defined and S is (G(w), θ, p)-dedicated.

Proof. (i) Note that from the definition of “S is (w, θ, p)-supporting” it follows that if H is a partial recursive function such
that for each a ∈ A, H(a) is defined and the sight σ(a) is (H(a), θ, p)-supporting, and

w = λs.

{ 〈1,n〉 if s = 〈〉
H((s)0)〈(s)1, . . . , (s)lh(s)−1〉 otherwise

then the sight (A, σ ) is (w, θ, p)-supporting: s is a good leaf of (A, σ ) if and only if 〈(s)1, . . . , (s)lh(s)−1〉 is a good leaf of
σ((s)0).

Therefore, using the recursion theorem let F be partial recursive such that

F (z)s �

⎧⎪⎨
⎪⎩

z if z = 〈0, y〉{
〈1,n〉 if s = 〈〉
F (e(s)0)〈(s)1, . . . , (s)lh(s)−1〉 else

}
if z = 〈1, 〈n, e〉〉

The proof is now by induction on S: if S = NIL and S is (z, θ, p)-dedicated then z = 〈0, y〉, y ∈ p, F (z)〈〉 = z and S is
(F (z), θ, p)-supporting. If S = (A, σ ) is (z, θ, p)-dedicated then z = 〈1, 〈n, e〉〉 etc., and for each a ∈ A by induction hypothesis
F (e(s)0) is defined and σ(a) is (F (e(s)0), θ, p)-supporting. By our first remark it now follows that S = (A, σ ) is (F (z), θ, p)-
supporting.

(ii) Here we remark that if A ∈ θ(n) and for each a ∈ A, ea is defined and σ(a) is (ea, θ, p)-dedicated, then (A, σ ) is
(〈1, 〈n, e〉〉, θ, p)-dedicated.

Also, note that if (A, σ ) is (w, θ, p)-supporting then for each a ∈ A, σ(a) is (λs.w(〈a〉∗s), θ, p)-supporting.
Define G , using the recursion theorem, by

G(w) �
{ 〈0, y〉 if w〈〉 = 〈0, y〉

〈1, 〈n, λa.G(λs.w(〈a〉 ∗ s))〉〉 if w〈〉 = 〈1,n〉
Proof, again by induction on S: suppose S is (w, θ, p)-supporting. If S = NIL then w〈〉 = 〈0, y〉, y ∈ p and G(w) = 〈0, y〉, so
S is (G(w), θ, p)-dedicated.

If S = (A, σ ) then w〈〉 = 〈1,n〉 for an n such that A ∈ θ(n). By our remark, for each a ∈ A the sight σ(a)

is (λs.w(〈a〉∗s), θ, p)-supporting hence by induction hypothesis, σ(a) is (G(λs.w(〈a〉∗s)), θ, p)-dedicated. Then if e =
λa.G(λs.w(〈a〉∗s)), (A, σ ) is (〈1, 〈n, e〉〉, θ, p)-dedicated; i.e., (A, σ ) is (G(w), θ, p)-dedicated, as desired. �
Corollary 4.10. For θ : B →P∗P(N), the element L′(Gθ ) of M∗ is, in M∗ , isomorphic to the function which sends p ⊆ N to

{
z ∈ N

∣∣ there is a (z, θ, p)-supporting sight
}

The following corollary shows that the local operators j f from 3.4 are not basic, in fact are not majorizing any nontrivial
basic local operator.

Corollary 4.11. Suppose A ∈P∗P(N) and f : N → N a function. Let j f be the least local operator which forces f to be total, as in 3.4.
Then if GA �L j f , L(GA) is the identity local operator.

Proof. Let ρ f : n 
→ {{ f (n)}} be as just above 3.4, so GA � j f if and only if GA �L ρ f . First, we prove the following

Claim. Given z ∈ N and sights S and T such that both S and T are (z,ρ f ,N)-dedicated, then S = T .
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We prove the Claim by induction on S . If S = NIL then z = 〈0, y〉 for some y. It follows that also T = NIL. If S =
(A, σ ) then z = 〈1, 〈n, e〉〉, A = { f (n)} and σ( f (n)) is (ef (n),ρ f ,N)-dedicated. Similarly, T = ({ f (n)}, τ ) and τ ( f (n)) is
(ef (n),ρ f ,N)-dedicated. By induction hypothesis, σ( f (n)) = τ ( f (n)) whence S = T , as desired. This proves the Claim.

Now suppose GA �L ρ f . By 4.5, there is a number z and, for each A ∈A, a (z,ρ f , A)-dedicated sight S A . By the Claim,
all S A are equal, say S . Since ρ f (n) never contains the empty set, S is non-degenerate and by 4.9, it is (F (z),ρ f , A)-
supporting for each A ∈ A. Take any good leaf d of S . Then F (z)d = 〈0, y〉 with d ∈ ⋂A. By 3.1(iii), L(GA) is the identity
local operator, as claimed. �
Definition 4.12. Suppose A1, . . . ,An ∈ P∗P(N). We say that the Ai have the joint intersection property if for all A1 ∈
A1, . . . , An ∈An , A1 ∩ · · · ∩ An �= ∅.

Similarly, we say that A ∈P∗P(N) has the n-intersection property if for all A1, . . . , An ∈A, A1 ∩ · · · ∩ An �= ∅.
We say that a sight S is on A if, inductively, S = NIL or S = (A, σ ), A ∈ A and for all a ∈ A the sight σ(a) is on A.

This means that for every d ∈ Tr(S) which is not a good leaf, OutS (d) ∈ A. We say that S is on θ : B → P∗P(N) if S is on⋃
n∈B θ(n).

Proposition 4.13. Suppose A1, . . . ,An have the joint intersection property. Then if Si is a sight on Ai for each i, there is a coded
sequence d such that

d ∈ Tr(Si) for each i, and
d is a good leaf of some Si .

Proof. Induction on S1. If S1 = NIL then we can take 〈〉 for d. Similarly, if Si = NIL for some i � 2 we can take 〈〉 for d. So
assume each Si is (Ai, σi). By the joint intersection property, take a ∈ ⋂

i Ai . By the induction hypothesis, there is a d′ such
that d′ ∈ Tr(σi(a)) for each i, and d′ is a good leaf of some σi(a). Then 〈a〉 ∗ d′ satisfies the proposition. �
Corollary 4.14. Suppose A has the n-intersection property. Then for every n-tuple of sights S1, . . . , Sn on A there is a sequence
d ∈ ⋂

i Tr(Si) such that d is a good leaf of at least one Si .

Definition 4.15. For a sight S and a number z, we say that z is r-defined on S if for some θ , S is (z, θ,N)-dedicated.

Proposition 4.16. Suppose S and T are sights and d = 〈d1, . . . ,dn〉 is an element of Tr(S) ∩ Tr(T ). If some z is r-defined on both S
and T and d is a good leaf of S, then d is also a good leaf of T .

Proof. Induction on n. If n = 0 then d = 〈〉, so if d is a good leaf of S , S = NIL. Then z, being r-defined on S , must be 〈0, y〉;
hence, since z is r-defined on T , T = NIL and d is a good leaf of T .

If n > 0 then S = (A, σ ), T = (B, τ ). Then 〈d2, . . . ,dn〉 (which is 〈〉 if n = 1) is a good leaf of σ(d1) and an element of
Tr(τ (d1)); by induction hypothesis 〈d2, . . . ,dn〉 is a good leaf of τ (d1) hence d is a good leaf of T . �
Proposition 4.17. Let A,B ∈P∗P(N) and n � 1 be such that B has the n-intersection property whereas A contains sets A1, . . . , An

satisfying
⋂

i Ai = ∅. Then GA �L GB .

Proof. Suppose GA �L GB and let A1, . . . , An ∈A. By 4.5 there is a number z and for each i a (z,B, Ai)-dedicated sight Si .
Since B has the n-intersection property, by 4.14 there is a coded sequence d ∈ ⋂

i Tr(Si) which is a good leaf of at least
one Si . Since z is r-defined on each Si , 4.16 gives that d is a good leaf of each Si . By 4.9, every Si is (F (z),B, Ai)-supporting,
which means that F (z)d = 〈0, y〉 with y ∈ ⋂

i Ai . This holds for any n-tuple A1, . . . , An ∈ A, so we see that A has the n-
intersection property. �
5. Calculations

We are now ready to investigate some basic local operators.
Let α be a natural number > 1, or ω. With α we associate the set {1, . . . ,α} if α is a natural number, or N if α = ω. For

m � α � ω let

Oα
m = {

X ⊆ α
∣∣ |α − X | = m

}
be the set of ‘co-m-tons’ in α. Via the map G(−) of 2.3 we regard the Oα

m as elements of M∗ (and we write Oα
m instead of

G Oα
m

). Of course, we are really interested in the local operators generated by the Oα
m , and therefore we first get some trivial

cases out of the way: if α = m so Oα
m = {∅}, then L(Oα

m) is the trivial local operator, and if m < α � 2m then Oα
m contains

two disjoint finite sets whence ¬¬ �L Oα
m by 3.2.

Henceforth we concentrate on the case 1 < 2m < α � ω.
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Proposition 5.1. Let 1 < 2m < α � ω. Then Oα
m < Oα

m+1 in M∗ .

Proof. For � we need a k such that for each A ∈ Oα
m there is B ∈ Oα

m+1 with k ∈ B → A; but we can take λx.x for k.
For Oα

m+1 � Oα
m , suppose k is such that for each A ∈ Oα

m+1 there is B ∈ Oα
m with k ∈ B → A. Let γ be the restriction

of the partial function ϕk to α and let C = γ [α] ∩ α. If |C | � m then since 2m + 1 � α we can find an A ∈ Oα
m+1 such

that C ∩ A = ∅, but then clearly there is no B ∈ Oα
m with k ∈ B → A. So pick m + 1 distinct elements v1, . . . , vm+1 ∈ C . By

choice of k there is B ∈ Oα
m such that k : B → (α − {v1, . . . , vm+1}). Then we must have γ [α − B] = {v1, . . . , vm+1} but this

is impossible, since |γ [α − B]| � |α − B| = m. �
Proposition 5.2. Let 1 � m < ω. Then Oω

1
∼=L Oω

m.

Proof. We have Oω
1 � Oω

m in M∗ hence Oω
1 �L Oω

m; this is left to the reader.
For the converse inequality Oω

m �L Oω
1 we have to find (by 4.5 and 4.9) a number z and, for each A ∈ Oω

m , a (z, Oω
1 , A)-

supporting sight. In order to conform to Definition 4.8 we regard Oω
1 as function {0} →P∗P(N) with value Oω

1 .
Given distinct a1, . . . ,am ∈ N define

Ta1,...,am = {〈c1, . . . , cp〉 ∣∣ p � m and for all i � p, ci �= (ai)i
}

and let Sa1,...,am be the unique non-degenerate sight with Tr(Sa1,...,am ) = Ta1,...,am .
Let z be such that for each coded sequence 〈c1, . . . , cp〉,

z〈c1, . . . , cp〉 =
{ 〈1,0〉 if p < m

〈0, 〈c1, . . . , cm〉〉 if p � m

We claim that Sa1,...,am is (z, Oω
1 ,N − {a1, . . . ,am})-supporting.

Note that for each 〈c1, . . . , cp〉 ∈ Tr(Ta1,...,am ) which is not a leaf, we have

Out
(〈c1, . . . , cp〉) = {

cp+1
∣∣ cp+1 �= (ap+1)p+1

}
and this is an element of Oω

1 . In this case, z〈c1, . . . , cp〉 = 〈1,0〉 as required. If 〈c1, . . . , cp〉 ∈ Tr(Ta1,...,am ) is a leaf, then
p = m, so

z〈c1, . . . , cp〉 = 〈
0, 〈c1, . . . , cm〉〉

We need to see that 〈c1, . . . , cp〉 is not an element of {a1, . . . ,am}; but this follows readily from the definition of Ta1,...,am . �
Proposition 5.3. Let 1 � m < α < ω. Then � α

m �, the least integer � α
m , is the least number d for which there are d elements A1, . . . , Ad

of Oα
m with

⋂d
i=1 Ai = ∅.

Proof. For any d � 1 we have: ∀A1, . . . , Ad ∈ Oα
m(

⋂d
i=1 Ai �= ∅) if and only if ∀A1, . . . , Ad ∈ Oα

α−m(
⋃d

i=1 Ai �= α) if and only
if dm < α. �
Proposition 5.4. Let 1 < 2m < α < ω. Suppose � α

m+1 � < � α
m �. Then Oα

m+1 �L Oα
m, so Oα

m <L Oα
m+1 .

Proof. Let d = � α
m+1 �. Then Oα

m+1 contains d sets with empty intersection, whereas Oα
m has the d-intersection property.

The result follows from Proposition 4.17. �
Open problem. We have not been able to determine whether it can happen that Oα

m+1 �L Oα
m in the case that � α

m+1 � =
� α

m �.

The following proposition shows that, in the preorder of basic local operators (i.e., the preorder (P∗P(N),�L)), Oω
1 is

an atom and ¬¬ is a co-atom:

Proposition 5.5.

(i) id <L Oω
1 .

(ii) For every A ∈P∗P(N), either A∼=L id, or A∼=L 	 (the trivial local operator), or Oω
1 �L A�L ¬¬.

Proof. Part (i) follows directly from 3.1(iii).
For (ii): again using 3.1(iii), A∼=L id if and only if

⋂A �= ∅. If
⋂A= ∅ then for each n ∈ N there is an A ∈A with n /∈ A,

hence λx.x ∈ [Oω
1 �A].
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From the same proposition, part (i), it follows that A ∼=L 	 if and only if ∅ ∈ A. If ∅ /∈ A then A � {p ⊆ N | p �= ∅}, so
A�L ¬¬. �
Remark. Note that we do not have in M∗ that if id < f then Oω

1 � f , as 4.11 showed.

Proposition 5.6. Let 1 < 2m < β � α � ω. Then Oα
m � O β

m in M∗ .

Proof. Realized by λx.x. �
Proposition 5.7. Let 1 < 2m < α < ω. Then Oα

m �L Oω
1 , hence Oω

1 <L Oα
m.

Proof. Immediate from 4.17 and 5.5. �
Proposition 5.8. Let 1 < 2m,α < ω. Then Oα

m �L Oα+m
m , hence Oα+m

m <L Oα
m.

Proof. Let d = � α
m �. Then Oα

m contains d sets with empty intersection whereas Oα+m
m has the d-intersection property

(�α+m
m � = d + 1), so the first statement follows from 4.17. The second statement follows from 5.6. �

Open problems. 1. We do not know whether Oα+1
m <L Oα

m .
2. How do, e.g., O 2m+1

m and O 2n+1
n compare?

The following theorem shows that the local operators Oα
m do not create any new functions N → N . Equivalently, they do

not force any subobjects of N to be decidable.

Theorem 5.9. Let D ⊆ N and 1 < 2m < α � ω. Let χD be the characteristic function of D and let ρD(n) = {{χD(n)}} (so L(ρD) is the
least local operator forcing D to be decidable). We have: if ρD �L Oα

m then D is recursive.

Proof. Note that ρD �L Oα
m if and only if there is a total recursive function ζ such that for all n there is a

(ζ(n), Oα
m, {χD(n)})-dedicated sight.

So let ζ be such a function. By the definition of ‘dedicated’ it follows that for all n, ζ(n) is of the form 〈i, x〉 with
i ∈ {0,1}; and if i = 1, then x = 〈n, e〉.

By the recursion theorem, let f be an index such that:

(i) f 〈0, x〉 = x,
(ii) for f 〈1, 〈n, e〉〉, search for the least computation witnessing that there are m + 1 distinct elements a1, . . . ,am+1 ∈ α such

that ea1, . . . , eam+1 are all defined and moreover,

f (ea1) = · · · = f (eam+1)

If this is found, put f 〈1, 〈n, e〉〉 = f (ea1); if not, f 〈1, 〈n, e〉〉 is undefined.

We claim that the index f has the following property:

(S) For every 〈i, x〉 ∈ N and every (〈i, x〉, Oα
m, {χD(n)})-dedicated sight S , f 〈i, x〉 = χD(n).

Note that this implies the statement in the theorem: for all n we have f (ζ(n)) = χD(n), which means that D is recursive.
So it suffices to prove the claim (S), which we do by induction on the sight S . If S = NIL and S is (〈i, x〉, Oα

m, {χD(n)})-
dedicated, then i = 0 and x = χD(n); and f 〈i, x〉 = x = χD(n).

Suppose S = (A, σ ) with A ∈ Oα
m . Then 〈i, x〉 = 〈1, 〈n, e〉〉, ea is defined for all a ∈ A, and σ(a) is (ea, Oα

m, {χD(n)})-
dedicated. By induction hypothesis, for each a ∈ A we have f (ea) = χD(n). There are at least m + 1 elements in A since
2m < α. So the search in part (ii) of the definition of the index f succeeds. And because every subset of α of cardinality
m + 1 intersects A (A ∈ Oα

m), we have f 〈i, x〉 = χD(n).
This proves the claim and finishes the proof of the theorem. �
For our next array of results, we need some more definitions about sights.

Definition 5.10.

(i) Given a sight S , a sector of S is a sight T such that:
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(a) for some subset A of the set of leaves of Tr(S),

Tr(T ) = {
s ∈ Tr(S)

∣∣ s is an initial segment of some t ∈ A
}

(b) s is a good leaf of T if and only if s is a good leaf of S .
(ii) We call a sight S finitary (n-ary, respectively) if Tr(S) is a finitely branching (n-ary branching) tree.

(iii) If z is r-defined on a sight S (see 4.15), we write z[S] for the set{
y
∣∣ for some s ∈ Tr(S), F (z)s = 〈0, y〉}

where F is the function from 4.9. So if S is (z, θ, p)-dedicated, we have z[S] ⊆ p.

We are now going to have a closer look at Pitts’ local operator: the operator induced by {{m | m � n} | n ∈ N} given in 3.3.
It is easy to see that this family of subsets of N is, in (P∗P(N),�), isomorphic to the family F of cofinite subsets of N.

Proposition 5.11. Let 1 < 2m < α < ω. Then F and Oα
m are incomparable w.r.t. the order �L . Moreover, F �L Oω

1 .

Recall that for α = ω we have Oω
m

∼=L Oω
1 �L F by 5.2 and 5.5.

Proof. Suppose F �L Oα
m for 1 < 2m < α � ω. Choose z such that for every cofinite X there is a (z, Oα

m, X)-dedicated sight.
Pick such a sight for X = N, say S . Since every element of Oα

m has at least m + 1 elements, S has an (m + 1)-ary sector S ′ .
Then S ′ is (z, {the m + 1-tons ⊂ α},N)-dedicated, and S ′ is finite by König’s Lemma, so z[S ′] is finite.

Now choose a (z, Oα
m,N − z[S ′])-dedicated sight T . Since:

the sight S ′ is on {the m + 1-tons ⊂ α},
the sight T is on Oα

m ,
{the m + 1-tons ⊂ α} and Oα

m have the joint intersection property

by 4.13 there is a coded sequence d which is an element of Tr(S ′) ∩ Tr(T ) and a good leaf of one of them; but since z is
r-defined on both S ′ and T , by 4.16 d is a good leaf of both of them. But now we get a contradiction: F (z)d ∈ z[S ′] ∩ z[T ] ⊆
z[S ′] ∩ (N − z[S ′]).

For the converse inequality (in the case α < ω) we simply note that
⋂

Oα
m = ∅ and that F has the |Oα

m|-intersection
property. So Oα

m �L F by 4.17. �
We now turn to joins in (M∗,�) and (M∗,�L). Joins in (M∗,�) are easy and follow from the discussion after 2.2 and

Theorem 2.4: given θ, ζ : N → PP(N), the join θ ∨ ζ can be given as the map which sends 2n to θ(n) and 2n + 1 to ζ(n).
Of course, the map L, being a left adjoint, preserves joins. However, for A,B ∈ P∗P∗(N) there is a simpler description of
their join w.r.t. �L , which also makes clear that the join is a basic local operator.

We shall write ∨L for the join w.r.t. �L . Define

A� B = {A ∧ B | A ∈A, B ∈ B}

Proposition 5.12. For A,B ∈P∗P∗(N), the join A∨L B is given by A�B.

Proof. It is easy that A � A � B hence also �L ; and, of course, the same for B. If A,B �L f so A,B � L( f ) we have
a ∈ ⋂

A∈A L( f )(A), b ∈ ⋂
B∈B L( f )(B) which, using that L( f ) is a local operator, gives an element of⋂

A∈A, B∈B
L( f )(A ∧ B)

which means that A�B � L( f ). �
Proposition 5.13. Suppose A1, . . . ,Ak ∈P∗P∗(N) such that each Ai has the ni -intersection property. Then A1 � · · · �Ak has the
m-intersection property if and only if m � min{n1, . . . ,nk}.

Proof. In one direction, use induction on k; in the other, observe that if some Ai does not have the m-intersection property,
then A1 � · · · �Ak cannot have it. �
Proposition 5.14. Let 1 < 2m < α � ω. Then Oα

m ∨L F <L ¬¬.

Proof. It is left to the reader that Oα
m �F � ¬¬. To prove that ¬¬ �L Oα

m �F , observe that ¬¬ = L({{0}, {1}}) and that
Oα

m �F has, by 5.13 the 2-intersection property; so 4.17 can be applied. �
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Proposition 5.15. Let 1 � k ∈ N. Then (
∨

1�m�k)L O 2m+1
m <L ¬¬.

Proof. By 5.13,
⊙

1�m�k O 2m+1
m has the 2-intersection property, so again by 4.17 we have ¬¬ �L

⊙
1�m�k O 2m+1

m . �
Proposition 5.16. Let 1 � k ∈ N. Then (

∨
1�m�k)L �F .

Proof. O 3
1 does not have the 3-intersection property. Apply 5.13 and 4.17. �

Open problem. One might be able to mimic (the proof of) 5.11 to show that

F �L

⊙
1�m�k

O 2m+1
m

We have not been able to carry this out, however.

We conclude with a theorem saying that Pitts’ local operator L(F) forces every arithmetically definable set of numbers
to be decidable. This implies that the subtopos of E ff corresponding to this local operator, although not a Boolean topos,
nevertheless satisfies true arithmetic, as will be proved in 6.4. First a lemma:

Lemma 5.17. Let j be a local operator. Then for every recursive function F , acting on coded sequences, we have a partial recursive
function G (obtained uniformly in F ) such that for each n, each coded sequence σ = 〈σ0, . . . , σn−1〉 and each tuple (a0, . . . ,an−1)

such that ai ∈ j({σi}) for each i, we have

G
(〈a0, . . . ,an−1〉

) ∈ j
({

F (σ )
})

Proof. First we define a partial recursive function H such that for a0 ∈ j({σ0}), . . . ,an−1 ∈ j({σn−1}) we have H(〈a0, . . . ,

an−1〉) ∈ j({σ }). Since F : {σ } → {F (σ )} we have by monotony of j an element of
⋂

σ [ j({σ }) → j({F (σ )})] so if we compose
this with H we have our desired function G .

Since j is a local operator we have elements:

c ∈ j
({〈〉})

β ∈
⋂
p,q

[
j(p) ∧ j(q) → j(p ∧ q)

]
γ ∈

⋂
σ ,a

[
j
({σ } ∧ {a}) → j

({
σ ∗ 〈a〉})]

Define H by recursion on n:

H
(〈〉) = c

H
(〈a0, . . . ,an〉

) = γ
(
β
〈
H

(〈a0, . . . ,an−1〉
)
,an

〉)
The trivial verification is left to the reader. �
Theorem 5.18. Pitts’ local operator, the local operator from 3.3, forces every arithmetical set of natural numbers to be decidable.

Proof. Let χD denote the characteristic function of a set D; to be specific let χD(n) = 0 if n ∈ D , and 1 otherwise. We write
↑n for {m ∈ N | m � n}.

Let g be the function which sends p ⊆ N to
⋃

n[(↑n) → p], so Pitts’ local operator is L(g). Recall that L(g) forces a set
D to be decidable if and only if there is a total recursive function which sends each n to an element of L(g)({χD(n)}). Let
A be the class of sets forced by L(g) to be decidable; then A contains the recursive sets and is closed under complements,
so it suffices to see that A is closed under existential quantification: if A ∈A then also ∃A ∈A, where

∃A = {
x
∣∣∃n

(〈x,n〉 ∈ A
)}

Let F be the function which sends a sequence σ = 〈σ0, . . . , σn−1〉 to 0 if at least for one i, σi = 0, and to 1 otherwise. Let G
be the partial recursive function obtained by Lemma 5.17, with L(g) for j.

Assuming A ∈A let F A ∈ ⋂
n[{n} → L(g)({χA(n)})]. For x and n consider the sequence〈

F A
(〈x,0〉), . . . , F A

(〈x,n〉)〉
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We have F A(〈x, i〉) ∈ L(g)({χA(〈x, i〉)}). By using G we construct a total recursive function H such that for all x,n:

H(x)n ∈ L(g)
({0}) if for some m � n, 〈x,m〉 ∈ A

H(x)n ∈ L(g)
({1}) otherwise

We see that if for some n, 〈x,n〉 ∈ A, then H(x)k ∈ L(g)({0}) for all sufficiently large k; if there is no n with 〈x,n〉 ∈ A then
H(x)k ∈ L(g)({1}) always. We conclude that

H(x) ∈
⋃
m

[
(↑m) → L(g)

({
χ∃A(x)

})]
in other words, H(x) ∈ g(L(g)({χ∃A(x)})).

From the proof of 2.2 we know that there is an element

b ∈
⋂
p⊆N

[
g
(
L(g)(p)

) → L(g)(p)
]

Composing with H(x) we get an element

λx.b
(

H(x)
) ∈

⋂
x

[{x} → L(g)
({

χ∃A(x)
})]

which was what we had to find. �
Remark, added in print. In [22], it is shown that the sets forced to be decidable by Pitts’ local operator, coincide with the
hyperarithmetical (�1

1) sets.

6. θ -Realizability

In this section we give a concrete presentation of a truth definition for first-order arithmetic in the subtopos of E ff
determined by the local operator L(Gθ ), where θ : B → P∗P(N). For background on the theory of triposes, the reader is
referred to [21].

In general, if R X : P (X) → P (X) is a local operator on a tripos P , the subtripos corresponding to R can be presented as
follows: the underlying set of the fibre over a set X is just P (X), and the order is given by the relation �R where φ �R ψ if
and only if φ � R(ψ) in the tripos P . Denoting this tripos by (P ,�R), the inclusion into (P ,�) is given by the map R; its left
adjoint is the identity function. This last map preserves ∧, ∨ and ∃; if we denote implication and universal quantification
in the subtripos by ⇒′ and ∀′ respectively (and those in the original tripos by ⇒, ∀), the relation is as follows:

φ ⇒′ ψ ∼= φ ⇒ R(ψ)

∀′xφ ∼= ∀xR(φ)

We can now give the truth definition in the form of a notion of realizability.
Recall from Definition 4.12 the notion ‘sight S is on θ ’; from Definition 4.15 the notion ‘r-defined’, and from 5.10 the

notation z[S].

Definition 6.1 (θ -realizability). Define a relation between numbers and sentences of arithmetic, pronounced ‘n θ -realizes φ’,
as follows, by induction on φ:

n θ -realizes t = s if and only if the equation t = s is true;
n θ -realizes φ ∧ ψ if and only if n = 〈a,b〉 and a θ -realizes φ and b θ -realizes ψ ;
n θ -realizes φ ∨ ψ if and only if either n = 〈0,m〉 and m θ -realizes φ, or n = 〈1,m〉 and m θ -realizes ψ ;
n θ -realizes φ → ψ if and only if for every m such that m θ -realizes φ, nm is defined and there is a sight S on θ such
that nm is r-defined on S and for every w ∈ (nm)[S], w θ -realizes ψ ;
n θ -realizes ¬φ if and only if no number θ -realizes φ;
n θ -realizes ∃xφ(x) if and only if n = 〈a,b〉 and b θ -realizes φ(a);
n θ -realizes ∀xφ(x) if and only if for all m, nm is defined and there is a sight S on θ such that nm is r-defined on S and
for every w ∈ (nm)[S], w θ -realizes φ(m).

Proposition 6.2. Let θ be such that the local operator L(Gθ ) is nontrivial. Then a sentence of first-order arithmetic is true in the
subtopos of E ff determined by L(Gθ ), if and only if it has a θ -realizer.

Remark 6.3. The nontriviality of L(Gθ ) is equivalent to the equality L(Gθ )(∅) = ∅; this is why the clause for negation in
Definition 6.1 is so much simpler than the one for implication.
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Theorem 6.4. Let j be a local operator in E ff such that j � ¬¬ and j forces every arithmetically definable subset of N to be decidable.
Then the subtopos E ff j of E ff determined by j satisfies true arithmetic.

Proof. Truth of arithmetic in E ff j is given by a realizability as in Definition 6.1, which we call j-realizability in this proof.
We shall not employ sights and simplify the clauses for → and ∀ to:

n j-realizes φ → ψ if and only if for every m such that m j-realizes φ, nm is defined and nm is an element of the set
j({s | s j-realizes ψ}),
n j-realizes ∀xφ(x) if and only if for all m, nm is defined and is an element of the set j({s | s j-realizes φ(m)}).

Since j � ¬¬ we have j(∅) = ∅ and therefore n j-realizes ¬φ if and only if no number j-realizes φ; and n j-realizes
¬¬φ if and only if some number j-realizes φ. As a further simplification, we modify the definition so that for a string of
universal quantifiers we have: n j-realizes ∀x1 · · · ∀xnφ if and only if for all k1, . . . ,kn , nk1 · · ·kn (which we shall abbreviate
as n�k) is defined and an element of j({s | s j-realizes φ(k1, . . . ,kn)}).

Since j is a local operator we can fix numbers α,β,γ , δ such that:

α ∈
⋂

p,q⊆N
(p → q) → ( jp → jq)

β ∈
⋂
p⊆N

p → jp

γ ∈
⋂
p⊆N

j jp → jp

δ ∈
⋂

p,q⊆N
jp ∧ jq → j(p ∧ q)

We shall now prove by simultaneous induction on the structure of an arithmetical formula φ(x1, . . . , xn) the following
statements:

(i) (a) For all k1, . . . ,kn ∈ N: if there is a j-realizer for φ(k1, . . . ,kn) then φ(k1, . . . ,kn) is true in the standard model N in
set;

(b) There is a partial recursive function sφ of n arguments, such that for all k1, . . . ,kn: if φ(k1, . . . ,kn) is true in N then
sφ(k1, . . . ,kn) is defined and an element of j({s | s j-realizes φ(k1, . . . ,kn)}).

(ii) There is a j-realizer for ∀�x(φ(�x) ∨ ¬φ(�x)).

For atomic φ, (i)(a) holds by definition of j-realizability; for (i)(b), let sφ be λx1 · · · xk.β(0). The statement is obvious. State-
ment (ii) is clear since in any topos, basic equations on the NNO are decidable.

Induction step (i)(a) for →: suppose m j-realizes φ(�k) → ψ(�k) and φ(�k) is true in N. By induction hypothesis (i)(b) for φ,
sφ(�k) is defined and in j({s | s j-realizes φ(�k)}). Then

αm
(
sφ(�k)

) ∈ j j
({

s
∣∣ s j-realizes ψ(�k)

})
so since j(∅) = ∅ we see that there exists a j-realizer for ψ(�k); hence by induction hypothesis (i)(a) for ψ , ψ(�k) is true.

Induction step (i)(b) for →: define sφ→ψ by

sφ→ψ(�k) = β
(
λm.sψ(�k)

)
The proof that this works is left to the reader.

Induction step (ii) for → follows by logic from the induction hypotheses for φ and ψ .
Induction step (i)(a) for ∧: follows readily from the induction hypotheses. For (i)(b), define

sφ∧ψ(�k) = δ
(〈

sφ(�k), sψ(�k)
〉)

Again, induction step (ii) follows by logic.
Induction step for ∨: (i)(a) follows easily from the induction hypotheses. For (i)(b), given φ(�k) ∨ ψ(�k) let, by induction

hypothesis (ii) for φ, m be a j-realizer of ∀�x(φ(�x) ∨ ¬φ(�x)), so

m�k ∈ j
({

s
∣∣ s j-realizes φ(�k) ∨ ¬φ(�k)

})
Let a be such that for all �k, y:

a�ky �
{

y if (y)0 = 0

〈1, sψ(�k)〉 if (y)0 �= 0
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Define sφ∨ψ(�k) = α(a�k)(m�k). This satisfies the induction step: assume φ(�k) ∨ ψ(�k) is true. Then whenever y j-realizes
φ(�k) ∨ ¬φ(�k), we have by induction hypothesis on φ and ψ , that a�ky j-realizes φ(�k) ∨ ψ(�k). Therefore α(a�k)(m�k) is an
element of j({s | s j-realizes φ(�k) ∨ ψ(�k)}), as desired.

Induction step (ii) for ∨ again follows by logic.
Induction step for ∀: (i)(a) if m j-realizes ∀xφ(�k, x) then for all n, mn is defined and an element of j({s |

s j-realizes φ(�k,n)}); since j(∅) = ∅, by the induction hypothesis for φ it follows that for all n, φ(�k,n) is true; hence
∀xφ(�k, x) is true.

For (i)(b) define s∀xφ(�k) = β(λy.sφ(�k, y)). Verification is easy.
For (ii) let A be the arithmetical set{�k ∣∣ for all x ∈ N, φ(�k, x) is true

}
By assumption on j, j forces this set to be decidable; let a be such that for all �k, a�k ∈ j({0}) if �k ∈ A, and a�k ∈ j({1})
otherwise. Let b be such that for all �k, v:

b�kv �
{

α(λu.〈0, u〉)(s∀xφ(�k)) if v = 0

α(λu.〈1, u〉)(β(0)) if v �= 0

Then if v = 0 and �k ∈ A, it follows by step (i)(b) just proved, that

b�kv ∈ j
({〈0, s〉 ∣∣ s j-realizes ∀xφ(�k, x)

})
and if v = 1 and �k /∈ A then by step (i)(a) just proved it follows that

b�kv ∈ j
({〈1, s〉 ∣∣ s j-realizes ¬∀xφ(�k, x)

})
So when v ∈ {χA(�k)} (where χA is the characteristic function of A) then

b�kv ∈ j
({

s
∣∣ s j-realizes ∀xφ(�k, x) ∨ ¬∀xφ(�k, x)

})
Therefore, since a�k ∈ j({χA(�k)}) we have

α(b�k)(a�k) ∈ j j
({

s
∣∣ s j-realizes ∀xφ(�k, x) ∨ ¬∀xφ(�k, x)

})
so

γ
(
α(b�k)(a�k)

) ∈ j
({

s
∣∣ s j-realizes ∀xφ(�k, x) ∨ ¬∀xφ(�k, x)

})
and λ�k.γ (α(b�k)(a�k)) is thus a j-realizer for ∀�y(∀xφ(�y, x) ∨ ¬∀xφ(�y, x)).

Induction step for ∃: (i)(a) follows at once from the induction hypothesis. We prove (i)(b) and (ii) simultaneously. Clearly,
from the induction hypotheses on φ it follows that ∃xφ(�k, x) is true if and only it has a j-realizer. So the set A = {�k |
∃xφ(�k, x) has a j-realizer} = {�k | ∃xφ(�k, x) is true} is arithmetical. By hypothesis on j, its characteristic function is forced to
be total by j. Also, by induction hypothesis, the characteristic function of the set {�k, v | φ(�k, v) has a j-realizer} is forced to
be total by j. Since by Hyland’s Theorem 3.4 the set of functions which are forced to be total by j is closed under ‘recursive
in’, the function

f (�k) =
{

0 if for no v, φ(�k, v) has a j-realizer

m + 1 if m is least such that φ(�k,m) has a j-realizer

is forced to be total by j; let a be such that for all �k, a�k ∈ j({ f (�k)}).
If ∃vφ(�k, v) is true hence f (�k) = m + 1 for some m, then by induction hypothesis (i)(b) on φ, δ(〈β(m), sφ(�k,m)〉) is an

element of j({s | s j-realizes ∃vφ(�k, v)}). It follows that

α
(
λn.δ

(〈
β(n − 1), sφ(�k,n − 1)

〉))
(a�k)

is an element of j j({s | s j-realizes ∃vφ(�k, v)}); so if we define s∃vφ(�k) by

γ
[
α

(
λn.δ

(〈
β(n − 1), sφ(�k,n − 1)

〉))
(a�k)

]
then s∃vφ has the required property.

The proof that ∀�y(∃xφ(�y, x) ∨ ¬∃xφ(�y, x)) has a j-realizer, is now straightforward (again, one uses the function f ), and
left to the reader. �
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