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The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations
of Mathematics. http://homotopytypetheory.org/book, Institute for Advanced Study,
2013, vii + 583 pp.
In the first three months of 2014, there was a debate on the “Foundations ofMathematics”

(fom) mailing list: does Vladimir Voevodsky’s ‘Univalent Foundations’ program constitute
a true foundation of mathematics?
As real debates about real issues tend to be, this one was acrimonious, chaotic, and

confused; it did not reach any conclusion or even consensus about the most basic issues.
What startled me most was the simple realization that trained and respected logicians around
the world do not agree on what exactly a ‘foundation of mathematics’ ought to be.
Sure, most of us think of a formal system with an in-built notion of ‘proof’, so the

boundaries of provability can be explored. The formal system should be plausibly consistent
(we cannot hope for a consistency proof) and allow a representation of (a large part of)
mathematics in it, which representation must be absolutely uncontroversial and natural. To
give an example: ZF(C) satisfies this criterion; second-order PA, often paraded as ‘sufficient
for everyday mathematics’, in my view does not. The representation of higher types over the
real numbers in that system requires cumbersome coding and depends itself on mathematical
facts.
But there is more one can demand of a candidate foundation. The formal system should

have a ‘plausible semantics’, by which I mean an ontology of what it speaks about. This
ontology must be such that, at least after some indoctrination in the initial stages of their
career (experience shows that accepting new things gets harder with age), mathematicians
can believe in the reality of this postulated world. For trained set theorists, the world of ‘sets’
with its ‘cumulative hierarchy’ represents absolute, Platonic reality, which for some reason or
other has the shape of a V.
Furthermore, the ontology should provide a completeness theorem for the underlying

logic of the formal system, so that the claim can be upheld that it not only represents
existing mathematical proofs but is capable of proving anything that can be established by
any mathematical means whatsoever.
So far, we can (I hope) agree. There are other issues: how natural is the representation of

mathematics; how feasible is it; how well can one represent computations; but let’s leave these
aside for now.
Set theory has been criticized for (among many other things) its clumsy-looking repre-

sentation of ordered pairs and for the fact that its language can express things which have
no mathematical meaning, such as “the real number e is an element of the Klein 4-group”.
I believe a lot of this criticism is facetious. Kuratowski’s definition of {{x}, {x, y}} as the
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ordered pair (x, y) simply shows that set theory (which was formulated in the most parsimo-
nious way possible, to make it easier to see what a model would be) can be conservatively
extended with new notation (and axioms) for ordered pairs. In a similar way, any formaliza-
tion of elementary arithmetic requires the introduction of function symbols, which we may
safely do. The quip about nonsensical statements in the language of set theory merely reflects
the fact that a language which is rich enough to express everything sensible, must necessarily
also express meaningless things: a Wittgensteinian language that can rule out all nonsense as
‘not well-formed’, must be very poor.
It is reasonable to expect from a new foundation, based on a new ontology, that it leads

to new mathematics and new concepts. Set theory bore this out from the very start: Cantor
unveiled the beautiful world of ordinal and cardinal numbers; and later, the fields of point-set
topology and measure theory could not have been developed without set theory.
‘O dear’, I hear you mutter, ‘the guy is a lover of set theory! How can he even be tolerant

of an attempt to establish a new foundation?’ Please bear with me, dear reader; I just wanted
to stress that there simply is no denying the (often unreasonable) success of set theory.
Are there other foundations? What about category theory? Can category theory be seen

as an independent, competing foundation of mathematics? Set theorists often claim that the
very definition of categories involves sets and functions and that therefore, category theory
presupposes set theory; but this is not so. The pioneering work of Lawvere and, even more
pregnantly, Street’s ‘Cosmoi of internal categories’, show that one can set up a theory of
categories without other primitive notions than categories. Among these abstract categories
we will have the ‘category of sets’, singled out by its distinctive categorical properties.
And also category theory has given rise to lots of new mathematics. The fantastic, multi-

faceted world of topos theory is now a fully fledged mathematical field, as Johnstone’s
monumental Sketches of an Elephant demonstrates.
Are set theory and category theory competing foundations? Here I must confess that,

multiculturally-minded as I am, an idea of the late topos-theorist Japie Vermeulen appeals to
me very much: foundations are like an atlas for a manifold: no global picture may exist, but
overlapping charts for parts do. And where two foundational ‘charts’ overlap. there of course
they compete; but also, where they overlap, they are essentially equivalent. For set theory
and category theory this is certainly true, because these theories are in a way bi-interpretable.
Clearly, set theory augmented with a few large cardinal assumptions (which any set theorist
worth his salt is willing to adopt) suffices for category theory; conversely, the groundbreaking
work by Joyal and Moerdijk on Algebraic set theory serves as interpretation in the other
direction.
There are fields where the set-theoretic foundation has outlived its usefulness and becomes

artificial, such as modern abstract homotopy theory. A modern homotopy theorist hardly
thinks of a space as a set, with the loose points somehow glued together by another set, the
‘set of open subsets’ (nor did the pioneers of topology, Brouwer and Poincaré). Just as often,
a ‘space’ might be a homotopy type, so that there is no distinction between the circle and the
punctured plane, or the doubly punctured sphere. Or maybe, a ‘space’ is just an object of a
category with a suitable Quillen model structure.
There is a whole area of mathematics where the set-theoretic interpretation is downright

ugly: constructive mathematics. Take constructive analysis. Anyone who has had to work
through one of the existing unpalatable accounts must agree: this is a pitiful mimicking
of the classical theory, an unsavoury hodge-podge of double negations and far too many
ε’s and "’s. Or consider topology: the very definition of composition of paths in a space
requires a nonconstructive case split. One feels especially in constructive mathematics that
the set-theoretic background hampers the development of a smooth theory.
Constructive mathematics should exploit the weaker logic, and the often resulting con-

sistency of eccentric axioms, to formulate new, synthetic theories. Synthetic Differential
Geometry (Kock, Moerdijk-Reyes) and Synthetic Domain theory (Scott, Hyland) are good
examples of what can be done.
Let us get to the book under review. It advocates a development of mathematics inMartin-

Löf’s type theory (MLTT), but MLTT gets a completely new flavour, based on a novel
interpretation of the so-called Identity Types, for any student the most mysterious element
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of the intensional version of MLTT. Although a straightforward semantics for extensional
MLTT was given by Seely (and later made more precise by Hoffmann), the intensional
version remained elusive for a long time (despite work by various people, among others
Moerdijk–Palmgren, Van den Berg, Awodey-Warren). Around the year 2005, a number of
people (as far as I am aware: Moerdijk, Awodey, Warren, Voevodsky; in written form by
Awodey and Warren) formulated the idea that one might interpret MLTT in a category with
a Quillen model structure and the identity type on X as the path object of X . A dependent
type is seen as a morphism (just as, for a set A, an A-indexed family of sets is nothing but
a function B → A), but not just any morphism: it needs to be a fibration (fibrations form a
class of morphisms which is part of the structure of a model category); this is forced on us
by the path-lifting property which is expressed by Martin–Löf’s elimination rule for Identity
types.
Voevodsky’s interest in type theory was sparked by working with the proof assistant COQ.

When he worked out, in a precise way, how one can obtain a model for MLTT with Identity
Types and a ‘universe’ (a ‘type of all types’, of course carefully formulated so as to avoid
paradoxes) in the model category of simplicial sets, he found that this model validates a
further axiom that had not been considered by Martin-Löf or his followers: the univalence
axiom. In fact, in retrospect it seems Martin-Löf did not specify the Identity types fully: it
was hard to put them to real use. The univalence axiom makes for a radical change in this
respect.
It appears now possible to undertake a development of mathematics in MLTT+

Univalence, in a way quite different from earlier work, and this is the subject matter of
the book under review.
The book has been written by a collective of authors, the participants of a ‘special

year’ devoted to Univalent Foundations, which was organized by Awodey, Coquand and
Voevodsky 2012–2013 at the IAS in Princeton. Of course, different participants are respon-
sible for different parts of the text and one expects multiple (and conflicting) definitions,
sudden ruptures in style and so on. But the book has been remarkably well edited and the
various contributions have coalesced into a whole.
The first part (Foundations) deals with the system MLTT itself and with Logic, as MLTT

is both a notation system and a system with an in-built logic: every type can also be seen as a
‘proposition’. The main novelties here are the higher inductive types and the stratification of
the world in n-types for natural numbers n.
In the original set-up of MLTT, a type is specified by introduction and elimination rules.

The introduction rule tells us how to form elements of a type; the elimination rule tells us
what we can do with these elements. So, for the type N of natural numbers the introduction
rule gives us an element 0 and tells us that for any given element x there is an element
x + 1; the elimination rule basically allows definition by recursion. However, taking the
Identity types seriously, it makes a lot of sense to specify types also by saying things about
their Identity types. This gives rise to the higher inductive types. For example, the ‘circle’
is specified by: a point, and a nontrivial path from that point to itself. This is a very nice
synthetic definition. Another great advantage of the higher inductive types is the handling of
quotients (notoriously hard to deal with in traditional MLTT).
The stratification of n-types comes from the fact that the Identity type construction can

be iterated. For elements x, y of a type A we have a type IdA(x, y) of witnesses that x and y
are similar (of course the book says ‘equal’), or, in the new ontology, a type of paths from
x to y. Then, for p, q of type IdA(x, y) we have IdIdA(x,y)(p, q) and so on. A type P is a
proposition (in the book: ‘mere proposition’) if any two elements of P are similar (i.e., the
type

∏
x,y:P IdP(x, y) is inhabited); a type S is a set (or a 0-type) if for any elements x, y of

S, IdS(x, y) is a proposition. In general, T is an n + 1-type if for x, y in T we have that
IdT (x, y) is an n-type. We see, the world of sets is there, but there is much more.
The second part of the book (Mathematics) has 4 chapters: Homotopy Theory, Category

Theory, Set Theory, and Analysis. It is very nice to see a lot of elementary homotopy theory
coming out of the type theory, almost ”for free”; and in a similarly pleasant way we obtain
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quite a bit of∞-category theory, culminating in the nontrivialRezk completion. In the chapter
on Set Theory, we see the “cumulative hierarchy” arise as a higher inductive type.
The chapter on Analysis, however, was a let-down for me: a straightforward translation

into type theory of the set-theoretic definition of the real numbers via Dedekind cuts. I had
hoped for something more synthetic.
A genuine drawback of the book (in my view) is the absence of any model theory for

MLTT + Univalence. Although at several places one reads things like ‘this principle is
not part of type theory, but it can be consistently assumed’, one gets no clue as to how
this consistency is proved. More seriously for a new foundation, this deprives the reader of
the opportunity to test his understanding of the ontology (‘spaces’ and ‘paths’) against a
model. Admittedly, a careful treatment of Voevodsky’s model in the category of simplicial
sets might require quite a bit of space, but at least an informal sketch would have been
appreciated.
But in all, the book is a wonderful achievement in a very short time (maybe this explains

the spelling Komolgorov. . . ) and it is extremely useful to get the word to a large audience.

Jaap van Oosten

Department of Mathematics, Utrecht University, P.O.Box 80010, 4508 TA Utrecht,
The Netherlands. j.vanoosten@uu.nl.

Thomas Hales. Dense Sphere Packings: A Blueprint for Formal Proofs. Cambridge
University Press, Cambridge, 2012, xiv + 271 pp.
In 1611, Johannes Kepler asserted that the highest density that can be achieved when

arranging infinitely many congruent spheres in three-dimensional space is attained by the
face-centered cubic packing, in which the spheres are arranged in hexagonal layers much the
way that oranges are stacked at the grocery store. In August 1998, Thomas Hales announced
a proof of Kepler’s conjecture, obtained with his student, Samuel Ferguson. Like the proof of
the four-color theorem, the proof of theKepler conjecture reduced the problem to an extensive
calculation that was then carried out by computer. Specifically, the proof shows that any
counterexample to theKepler conjecture would imply the existence of a finite arrangement of
spheres satisfying certain properties, giving rise, in turn, to a certain combinatorial structure.
Computer code then produced an exhaustive enumeration of the possible combinatorial
structures; to be realized geometrically, any such structure would have to satisfy certain
inequalities. Using branch-and-bound methods, these inequalities were relaxed to linear
ones, atwhich point linear programmingmethodswere used to demonstrate their infeasibility.
In other words, the computations showed that there is no finite arrangement of spheres of
the kind guaranteed by a putative counterexample. The proof thus consisted of a traditional
mathematical argument (250pages at the time) combinedwith a substantial bodyof computer
code used to carry out the calculations.
In 1999, theAnnals ofMathematics assigned a panel of twelve referees the task of reviewing

the proof. After four years, the panel reported that they were “99% certain” that the proof
was correct, but did not have the means to verify the correctness of the accompanying code.
This unsatisfying state of affairs prompted Hales to embark on a project that he named
“Flyspeck,” to develop a computer-checked axiomatic proof.
The emerging field of formal verification uses logic-based computational methods to ensure

the correctness of hardware and software design with respect to specifications, as well as the
correctness of mathematical claims. One approach, known as interactive theorem proving, has
users working with a computational system to construct a detailed deductive proof, starting
from a small foundational system of axioms and rules. Such a formal derivation can even be
checked independently of the system that constructs it. The technology needed to bridge the
gap between such a low-level axiomatic presentation and an ordinary, informal mathematical
proof is nontrivial, but there have already been impressive achievements along these lines.
One such accomplishment is the formalization of the Feit–Thompson Odd Order Theorem
by a team of researchers led by Georges Gonthier, announced in late 2012. (For surveys,
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