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Abstract

We exhibit a way of “forcing a functional to be an effective operation”
for arbitrary partial combinatory algebras (pcas). This gives a method of
defining new pcas from old ones for some fixed functional, where the new
partial functions can be viewed as computable relative to that functional.
It is shown that this generalizes a notion of computation relative to a
functional as defined by Kleene for the natural numbers.

The construction can be used to study subtoposes of the Effective
Topos. We will do this for a particular functional that forces every arith-
metical set to be decidable.

In this paper we also prove the convenient result that the two def-
initions of a pca that are common in the literature are essentially the
same.

1 Introduction

Effective operations have originally been studied in computability theory, with
as famous results the theorems of Myhill-Shepherdson and Rice-Shapiro. They
have also been studied in relation to computable functionals (e.g. see [3]). For
example, it is known that not every functional that is an effective operation is a
computable functional. In realizability, partial combinatory algebras (pcas) are
used as models for abstract Turing machines. The notion of effective operation
easily extends to pcas. In this paper, we discuss effective operations on arbitrary
partial combinatory algebras, and present a way to force a functional to be an
effective operation: for a (total) functional F : AA → A, where A is a pca, we
construct a pca A[F ] for which F is an effective operation.

In [8], Kleene introduced the notion of a computable functional, and with it
the notion of computability relative to a functional. It turns out that for A =
K1, Kleene’s first model, the functions computable in K1[F ] are precisely the
functions computable relative to F in Kleene’s sense. This yields an alternative
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approach to computation in a type 2 functional that generalizes to arbitrary
pcas. We can use this to study local operators in realizability toposes. The
theory of recursive hierarchies of functionals (e.g. see [4]) can therefore be
applied to study subtoposes of realizability toposes.

As an example, we look at a specific local operator J that is studied in [15].
It turns out that the functions “computable in J” are precisely the functions
computable relative to a certain functional. On the way, we also prove that a
strengthening of our definition of a pca, that we call strict pcas, is (up to iso-
morphism) not a proper strengthening at all. This is posed as an open question
in [2]. The result is convenient, since in the literature there has not been wide
consensus on the definition of pca; several authors have been using strict pcas
by default.

2 Preliminaries

We start by reviewing the definition of a partial combinatory algebra and some
basic constructions.

Definition 2.1. A partial applicative structure on a set A is a partial map
A×A→ A that we denote by

(a, b) 7→ ab.

We write ab ↓ to say that ab is defined, ab = c to say that ab is defined and
has value c. In writing compositions of the application, we adopt the convention
of associating to the left, so:

abcd = (((ab)c)d).

For V = {x0, x1, . . .} an enumerable set of variables, we define the set of
terms by:

Definition 2.2. For all a ∈ A, x ∈ V

1. a is a term

2. x is a term

3. For t, s terms, (ts) is a term.

A term t without free variables is called closed and might denote or not.
This is defined inductively:

1. a denotes and has value a

2. If t denotes and has value a, and s denotes and has value b, and ab = c,
then (ts) denotes and has value c.
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We write t ↓ if t denotes, and t = a if t denotes and has value a. We write t . s
if s ↓ implies that t ↓, and in that case s = t. We write t ' s if t . s and s . t.

We denote a term t with free variables x1, . . . , xn by

t(x1, . . . , xn)

. For a1, . . . , an ∈ A, we can substitute x1, . . . , xn by a1, . . . , an, resulting in a
closed term t(a1, . . . , an).

Definition 2.3. A partial combinatory algebra is a partial applicative structure
A, with elements k, s ∈ A such that for all a, b ∈ A:

1. sab ↓

2. kab = a

3. sabc . ac(bc).

We also say that the applicative structure on A is combinatory complete.

Example 2.4. There are several examples of pcas, [14] treats a lot of them. Here
we just list a few with little explanation:

• The trivial pca, A = {∗} with ∗∗ = ∗.

• Kleene’s first model K1, with underlying set N. Application is given by:

nm ' φn(m)

where φn is the n−th partial function for some model of computation and
coding.

An introduction to partial combinatory algebras and its basic properties can
be found in chapter 1 of [14]. Here we will just quickly present some tools that
we need later on, the proofs can all be found in [14]. For a pca A, an element
a ∈ A defines a partial function A→ A by:

b 7→ ab.

We say that a is an index for this partial function. By abuse of language, we
sometimes say that a is a partial (computable) function.

An important result for pcas is the recursion theorem:

Theorem 2.5 (Recursion Theorem). For every f ∈ A, there exists e such that
for all a ∈ A:

ea . fea.

Also important is the fact that a pca is combinatory complete. This means
that for every term t(x1, . . . , xn) with free variables x1, . . . , xn, there is an ele-
ment 〈x1 · · ·xn〉t ∈ A such that for all a1, . . . , an ∈ A:

(〈x1 · · ·xn〉t)a1 · · · an−1 ↓ (1)

(〈x1 · · ·xn〉t)a1 · · · an−1an . t(a1, . . . , an). (2)
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The notation 〈x1 · · ·xn〉t should remind the reader of λ−abstraction in λ−calculus.
We use a different notation because it is slightly different from λ−abstraction,
but it is applied in the same way.

Besides k and s, we identify (a choice of) other canonical elements of A,
among which:

• Boolean combinators T and F that satisfy for all a, b ∈ A:

Tab = a (3)

Fab = b. (4)

Indeed, one can take T = k.

• Using combinatory completeness and the boolean combinators, we can
define if/else statements: for t, s closed terms:

(〈v〉v(〈x〉t)(〈x〉s)k) b .


t if b = T

s if b = F

unspecified otherwise.

For legibility, we denote a term like v(〈x〉t)(〈x〉s)k by

if v then t else s.

• The pairing combinator p together with projections p0, p1:

p0(pab) = a (5)

p1(pab) = b (6)

• The Curry numerals: each pca contains representables of the natural num-
bers, i.e. for any n ∈ N an element n ∈ A. It is a basic result (for a proof,
see [14]) that, for every k, there is for every k−ary partial recursive func-
tion F : Nk → N an index f ∈ A such that for all (n1, . . . , nk) ∈ domF :

fn1 . . . nk = F (n1, . . . , nk).

When there is chance of confusion, we decorate (choices of) canonical ele-
ments by a subscript to denote the pca to which it belongs, e.g. kA, sA,TA,etc.

We can also code tuples of elements in a computable way. That is, there is
an index t ∈ A such that for all n ∈ N, u0, . . . , un ∈ A we can code a tuple

[u0, . . . , un] := tn+ 1u0 · · ·un ∈ A

such that projection, concatenation of tuples, and a length function (that yields
the length of a tuple as a curry numeral) are all computable. We denote con-
catenation by ∗:

[u0 . . . , ui] ∗ [ui+1, . . . , un] = [u0, . . . , un]
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and for u = [u0, . . . , un], we write u<i+1 for [u0, . . . , ui]. These basic operations
can all be done computably and uniformly in the variables.

There is a notion of morphism between partial combinatory algebras due to
John Longley (see [9]), called applicative morphism. In the following definition,
we adopt the following notation: for a total relation R : X → Y between sets
X and Y , we denote for every x ∈ X by R(x) the set:

{y ∈ Y |xRy}.

For A a pca, a ∈ A and P ⊆ A a subset, we write aP ↓ if for all b ∈ P , ab ↓,
and in that case

aP := {ab | b ∈ P}.
For P,Q ⊆ A, we write PQ ↓ if for all b ∈ P, b′ ∈ Q, bb′ ↓, and in that case

PQ = {bb′ | b ∈ P, b′ ∈ Q}.

Whenever we write compositions of these applications of an element and a sub-
set, or a subset and a subset, we again associate to the left.

Definition 2.6 (Longley). Let A,B be pcas. An applicative morphism γ : A→
B is a total relation from A to B, together with an element r ∈ B such that
whenever a, a′ ∈ A and aa′ ↓, we have:

rγ(a)γ(a′) ↓ and rγ(a)γ(a′) ⊆ γ(aa′).

The element r is said to realize γ.
An applicative morphism γ is decidable if there is d ∈ B such that

dγ(TA) = {TB} (7)

dγ(FA) = {FB}. (8)

We call d a decider for γ.

The composition of two applicative morphisms is defined by composition
of the relations, and one can verify that this is again an applicative morphism.
There is a pre-order on applicative morphisms defined as follows: for γ : A→ B,
δ : A→ B, write γ � δ when there is t ∈ B such that for all a ∈ A:

tγ(a) ⊆ δ(a).

We write γ ' δ if γ � δ and δ � γ, in this case γ and δ are equivalent. One can
show that this pre-order is preserved by composition on both sides. We thus
obtain a pre-order enriched category PCA consisting of partial combinatory
algebras as objects, and applicative morphisms as arrows. The identity arrow
for a pca A is denoted by ιA and given by the identity relation on A.

Note. As remarked in the introduction, definition 2.3 is weaker than the defi-
nition that is used in some other literature (including [14]). However, it will be
a consequence of theorem 5.8 below that the corresponding categories of pcas,
with morphisms as above, are equivalent.
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For a pca A, we define a set PRA by:

PRA = {f : A→ A partial | (∃a ∈ A)(∀b ∈ A)ab . f(b)}.

We also define a function IA1 : PRA → A by:

IA1 (f) = {a ∈ A | (∀b ∈ A)ab . f(b)}.

For γ : A→ B an applicative morphism, we define a set PRγ by:

PRγ : {f : A→ A partial | (∃b ∈ B)(∀a ∈ A)f(a) ↓⇒ bγ(a) ⊆ γ(f(a))}. (9)

Lastly, we also define a function Iγ1 : PRγ → B by:

Iγ1 (f) = {b ∈ B | (∀a ∈ A)f(a) ↓⇒ bγ(a) ⊆ γ(f(a))}.

Observe that PRA = PRιA .
The following result by the second author (see [13] or [14]) tells us that we

can adjoin any partial function f : A → A to a pca A, to obtain a pca A[f ]
in which f has an index. This generalizes the notion of a Turing machine with
oracle from ordinary computability theory to pcas.

Theorem 2.7 ([13]). For A a pca and f : A → A a partial function, there
exists a pca A[f ] defined on the set A such that the identity on A is a decidable
applicative morphism ιf : A→ A[f ], and:

1. f ∈ PRA[f ] = PRιf .

2. Whenever γ : A → B is a decidable applicative morphism such that
f ∈ PRγ , there exists a decidable γf : A[f ] → B such that γf ◦ ιf = γ.
Moreover, if δ : A[f ] → B is a decidable applicative morphism such that
δ ◦ ιf ∼= γ, then δ ∼= γf .

The proof of the above theorem is done by defining an applicative structure
on A using dialogues:

Definition 2.8. Let f : A → A be a partial function, and a, b ∈ A. An
f−dialogue between a and b is an element u = [u0, . . . , un] ∈ A such that for all
i ≤ n:

a([b] ∗ u<i) = pFvi

where f(vi) is defined and f(vi) = ui.
An f−dialogue u between a and b halts if there exists c ∈ A such that

a([b] ∗ u) = pTc.

We write a ·f b ↓ if there is a (necessarily unique) halting f−dialogue u between
a and b, and a ·f b = c if a ·f b ↓ and

a([b] ∗ u) = pTc

where u is a a halting f−dialogue between a and b.
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The applicative structure on A[f ] is then given by (a, b) 7→ a ·f b. For a
full proof of combinatory completeness, see [14] or [13]. Note that these sources
use the strict version of a pca (definition 5.7), but the proofs work without any
modification (alternatively, one can apply theorem 5.8). The following corollary
corresponds to corollary 1.3 in [13]:

Corollary 2.9. Let A be a pca.

1. If f ∈ PRA, then A[f ] and A are isomorphic pcas.

2. If f, g : A→ A are partial functions, then A[f ][g] and A[g][f ] are isomor-
phic.

3. If Kf1 is the pca of partial recursive application with an oracle for f , then

Kf1 is isomorphic to K1[f ].

3 Effective operations

We will now define the set of effective operations on pcas. For any pca A, let
TotA be the subset of PRA consisting of all total functions:

TotA = {f ∈ PRA | f is total }.

Similarly, define for any γ the subset Totγ ⊆ PRγ consisting of all total functions
in PRγ .

Definition 3.1 (Effective Operation). For a pca A, we define the set EA of
effective operations in A by:

EA = {F : AA → A partial | (∃a ∈ A)(∀f ∈ TotA)F (f) defined ⇒ (10)

(aI1(f) ↓ and aIA1 (f) = {F (f)})}. (11)

Define a function IA2 : EA → A by:

IA2 (F ) = {a | (∀f ∈ TotA)(∀b ∈ IA1 (f))(ab . F (f))}

Similarly, for γ : A → B an applicative morphism we define the set Eγ of
effective operations relative to γ by:

Eγ = {F : AA → A partial | (∃b ∈ B)(∀f ∈ Totγ)F (f) defined ⇒ (12)

(bIγ1 (f) ↓ and bIγ1 (f) ⊆ γ(F (f)))}. (13)

Example 3.2. As an example, we look at the following functional E : AA → A,
where A is an arbitrary pca.

E(α) =

{
T if (∃a)α(a) = T

F otherwise.

For A = K1, it is easily seen that the above is not an effective operation (other-
wise the halting problem is decidable). However, the below construction shows
that there are a lot of pcas in which E is an effective operation.
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The statement of the following theorem is very similar to theorem 2.7.

Theorem 3.3. Let A be a pca, and F : AA → A a (partial) functional. Then
there exists a pca A[F ] defined on the set A such that the identity relation on A
is a decidable applicative morphism ιF : A→ A[F ] and:

1. F ∈ EA[F ] = EιF

2. Whenever γ : A → B is a decidable applicative morphism such that
F ∈ Eγ , there exists a unique (up to equivalence) decidable applicative
morphism γF : A[F ]→ B such that γF ◦ιF = γ. Moreover, if δ : A[F ]→ B
is a decidable applicative morphism such that δ ◦ ιF ∼= γ, then δ ∼= γF .

Proof. We will construct A[F ] as A[f ] for

f =
⋃
α

fα,

where {fα}α is a compatible family of partial functions indexed by the ordinals.
We define this family by transfinite induction. For all a, b ∈ A, we let:

• f0 = ∅

• fα+1(a) = b whenever there exists g ∈ TotA[fα] such that a ∈ I
A[fα]
1 (g)

and F (g) = b.

• For λ > 0 a limit ordinal, fλ =
⋃
α<λ fα.

It is not hard to see that this indeed defines a compatible family of partial
functions. So f =

⋃
α fα is a partial function, and we define A[F ] := A[f ]. We

denote the application in A[F ] by ·F .

For part (i), suppose g ∈ TotA[F ], a ∈ I
A[F ]
1 (g), and F (g) is defined. Then

it is not hard to see that there is α such that g ∈ TotA[fα], a ∈ I
A[fα]
1 (g). Then

fα+1(a) = F (g), hence f(a) = F (g). Indeed, F is an effective operation in A[F ].
For part (ii): Suppose γ : A → B is a decidable applicative morphism such

that F ∈ Eγ . Let rF ∈ Iγ2 (F ). Denote the realizer for γ by r. Let d be the
decider for γ. Let c be such that for all x ∈ γ(a), v ∈ γ(u), cxy ∈ γ([a] ∗u). Let
c′ be such that for all y ∈ γ(a), x ∈ γ(u), c′xy ∈ γ(u ∗ [a]). Let q0, q1 be such
that for all x ∈ γ(a), q0x ∈ γ(p0a), q1x ∈ γ(p1a). By the recursion theorem, let
e ∈ B be such that

exv . if dq0(re(cxv)) then q1(re(cxv)) (14)

else ex(c′v(rF (r(q1(re(cxv)))))). (15)

Then one can verify that for v ∈ γ([]), we have for all e ∈ γ(a), x ∈ γ(a′)
such that a ·f a′ ↓:

exv ∈ γ(a ·f a′).

Essential is that if a ∈ IA[F ]
1 (f), then for b ∈ γ(a), rb ∈ Iγ1 (f).

So by the above, 〈xy〉xyv realizes γ as an applicative morphism γF : A[F ]→
B, and the fact that γ = γF ◦ ιF is obvious.

Uniqueness is easy to check.
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Remark 3.4. The construction of A[F ] can be thought of as a construction in
stages: we say that a ·F b ↓ at stage α if a ·fα b ↓. In proofs of statements about
A[F ], we will often use induction on the stage at which a term denotes. The
infinitary nature of computation relative in a functional, as remarked by Kleene
in [8], is reflected by this construction in (transfinitely many) stages.

Example 3.5. We again take a look at the functional E from example 3.2. For
any pca A, E is an effective operation in A[E]. As a consequence, the com-
putable predicates in A[E] are closed under existential quantification: suppose
p ∈ A[E] is a total function in 2 variables, taking values in {T,F}. Then:

Q(n) := (∃m)pnm

is clearly also a recursive predicate in A[E], so it has some index q ∈ A[E].
For A = K1, this produces a familiar (see [8]) result. Namely, it follows

(by taking complements) that every arithmetical subset of N is computable in
K1[E]. We will see below that the total functions in K1[E] are in fact precisely
the hyperarithmetical functions.

Remark 3.6. One may want to define, for functionals F,G : AA → A, a pca
A[F,G] in which F,G are both effective operations. It will not work to define this
as A[F ][G]. However, if one codes any tuple of functionals into one functional
H (e.g. H(g) = pF (g)G(g)), then A[H] will satisfy the required properties and
the analogue of theorem 2.7 for such a tuple holds.

4 Effective Operations and Kleene computabil-
ity

In [8], Kleene developed a recursion theory for functionals, which included a
notion of computability relative to a functional. A short overview of this theory,
as well as comparisons to other notions of higher-type computation can be found
in [10].

In this section we will show that a total function f : N → N is computable
relative to a functional F : NN → N (in Kleene’s sense) if and only if it has
an index in K1[F ]. This result will be almost immediate, since (as we will see)
Kleene’s indexed set of functions computable in F is basically an explicit model
of K1[F ]. Our construction has the advantage of being independent of any
explicit model of K1 and avoids a lot of technicalities. Moreover, there is the
immediate generalization to arbitrary pcas and the connection to realizability.

In his paper, Kleene defined an N-indexed set of functions that may take
tuples of arguments of all finite types. The definition consists of nine inductive
rules, named S1-S9. A function with index e is denoted by {e}. A function
g : N → N is then computable relative to the functional F : NN → N if there is
an index e ∈ N such that for all n ∈ N:

{e}(n, F ) = g(n).
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Instead of defining Kleene’s S1-S9 in full generality, we will just state eight
derived rules that define the indexed set of functions computable relative to
some functional F according to Kleene. The rule S7 is missing since that applies
specifically to type 1 arguments, and we only consider a specific type 2 oracle.

Definition 4.1. Let F : NN → N be a functional. Also fix some primitive
recursive coding of tuples 〈−〉 : N<ω → N. We define an indexed set of partial
functions N<ω → N by the following rules: for all n,m ∈ N:

S1 Successor function: {〈1, 1〉}(n) = n+ 1

S2 Constant function: {〈2, 1,m〉}(n) = m

S3 Projection: for all n1, . . . , nm ∈ N, {〈3,m〉}(n1, . . . , nm) = n1

S4 Composition: For g, h ∈ N, all k, n1, . . . , nk ∈ N:

{〈4, k, g, h〉}(n1, . . . , nk) ' {g}({h}(n1, . . . , nk), n1, . . . , nk).

S5 Primitive recursion: For any g, h ∈ N, if m = 〈5, 2, g, h〉 then for all k:

{m}(0, n) ' {g}(n) (16)

{m}(k + 1, n) ' {h}(k, {m}(k, n), n) (17)

S6 Permutation of arguments: For any g ∈ N, 1 ≤ k < r and n1, . . . , nr ∈ N:

{〈6, r, k, g〉}(n1, . . . , nr) ' {g}(nk+1, n1, . . . , nk, nk+2, . . . , nr).

S8 Application of F : For every h, e ∈ N:

{〈8, 1, h〉}(n) ' F (λk.{h}(k, n))

S9 Index vocation: for all m, k, l, n1, . . . , nk+l ∈ N

{〈9, k, l〉}(m,n1, . . . , nk+l) ' {m}(n1, . . . , nk).

Note. Here, a ' b has the same meaning as before: the right-hand side is defined
if and only if the left-hand side is defined, and when this is the case both sides
are equal.

In what follows, we assume that we have fixed some functional F : NN → N,
and defined the partial map {−}(−) : N× N→ N according to the above.

Theorem 4.2. The partial map {−}(−) : N× N → N defines a partial combi-
natory algebra KF1 .

Proof. Tedious exercise using the clauses in definition 4.1.

The following can be viewed as the type 2 analogue of corollary 2.9(iii).
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Theorem 4.3. There is an isomorphism of pcas K1[F ] ∼= KF1 .

Proof. By Church’s thesis, the identity relation on N is an applicative morphism
γ : K1 → KF1 . It is easy to see that F ∈ Eγ . By theorem 3.3, the identity relation
on N is an applicative morphism γF : K1[F ]→ KF1 .

It is not hard to show that we can define the application in KF1 computably
in K1[F ] using the clauses 4.1 and the recursion theorem when needed. So the
identity relation on N is also an applicative morphism KF1 → K1[F ]. Therefore
K1[F ] ∼= KF1 .

Corollary 4.4. Let E be as in example 3.2 for A = K1. The total functions in
K1[E] are precisely the hyperarithmetical functions.

Proof. This follows from the same fact for KE1 and theorem 4.3, which is theorem
XLVIII in [8].

The above corollary is what we can deduce from Kleene’s original paper
on recursive functionals. However, we can do a little better using the results
of Hinman’s approach in [4]. There, the domains of the N−indexed partial
functions N → N “computable in E” are precisely the Π1

1-sets. Here we can
prove something similar. In the context of pcas and applicative morphisms,
domains of partial recursive functions are not particularly well-behaved (we
have to impose more conditions on morphisms to preserve this structure, see for
example the discussion of dominances in [9]). Theorem 5.8 also exemplifies this
fact. We therefore avoid domains, and show the following instead:

Proposition 4.4.1. The application in K1[E] is Π1
1-complete.

Proof. We show here that the application function is Π1
1, since that does not

follow immediately from Hinman’s results. Let r ∈ N be the uniform index for f
in K1[f ], for any f . Recall that K1[E] = K1[g], where we defined g in stages. I’ll
show that g is Π1

1. Let e be an index such that whenever φ is the characteristic
function of the graph of a partial function f : A→ A, then for all b, x ∈ K1:

eb ·φ x ' b ·f x.

Convince yourself that such e exists; since N is enumerable, we can just “wait”
for values of f to appear in the graph.

Define the following predicate on N× NN:

Φ([b, i], X) =(∀s∃t∀y) :
(
eb ·X s ↓ ∧(eb ·X t = 0 ∨ i = 1) ∧ (eb ·X y 6= 0 ∨ i = 0).

)
(18)

It is not hard to see that Φ is Π1
1 (in fact it is arithmetical) (to work out the

details, one needs to use Kleene’s T−predicate and existential quantification
over dialogues). Let G be the characteristic function of the graph of g. Now I
claim:

G([b, i]) ⇐⇒ (∀X)(∃p, j)(Φ([p, j], X)⇒ X([p, j]))⇒ X([b, i]). (19)
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Proof of claim. First, observe:

Φ([b, i], G)⇔ (∀s)(∃t∀y)eb ·G s ↓ ∧(eb ·G t = 0 ∨ i = 1) ∧ (eb ·G y 6= 0 ∨ i = 0)
(20)

⇔ (∀s)(∃t∀y)b ·g s ↓ ∧(b ·g t = 0 ∨ i = 1) ∧ (b ·g y 6= 0 ∨ i = 0) (21)

⇔ G([b, i]). (22)

This proves the “⇐” direction of (19) (we substitute G for X).
Now assume G([b, i]), that is:

(∀s)(∃t∀y)b ·g s ↓ ∧(b ·g t = 0 ∨ i = 1) ∧ (b ·g y 6= 0 ∨ i = 0).

Suppose we have X such that

(∀p, j) : Φ([p, j], X)⇒ X([p, j]).

We need to prove that X([b, i]). I’ll prove this by showing that

(∀p, j) : G([p, j])⇒ X([p, j]). (23)

This is done by induction on stages (see remark 3.4). Recall that g is constructed
as g =

⋃
α gα. Denote the corresponding graphs by Gα. Then for α = 0,

(∀p, j) : G([p, j])⇒ X([p, j])

clearly holds, since g0 = ∅. If it holds up to α, then:

Gα+1[p, j]⇒ (∀s)(∃t∀y)p ·gα s ↓ ∧(p ·gα t = 0 ∨ j = 1) ∧ (p ·gα y 6= 0 ∨ j = 0)
(24)

⇒ (∀s)(∃t∀y)ep ·X s ↓ ∧(ep ·X t = 0 ∨ j = 1) ∧ (ep ·X y 6= 0 ∨ j = 0)
(25)

⇒ Φ([p, j], X) (26)

⇒ X([p, j]). (27)

For limit ordinals λ, Gλ[p, j] ⇐⇒ Gα[p, j] for some α < λ so that follows
trivially.

Hence we have shown (23), from which X[b, i] follows by assumption.

Since the right-hand side of (19) is Π1
1, we are done.

To see that the application is Π1
1 complete, see [4], section VI.1. There one

can find a proof in which a well-known Π1
1-complete set is reduced to a semi-

recursive set computable from E in Hinman’s sense (i.e. a domain of a partial
recursive function). This proof is easily adopted to a proof of Π1

1-completeness
for our case.
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5 Local Operators

In [15], a notion of realizability is studied that uses a specific local operator J
on the Effective Topos. We will show here that some of the results in that paper
can be derived easily using the functional E from example 3.2 (for A = K1) and
theorem 3.3.

We first give a definition of local operators in realizability toposes on a pca
A, that we assume fixed from now on. The topos-theoretic origin is omitted
here, for more about that we refer to [14] or [12]. We introduce the following
notation: For P,Q ⊆ A subsets, let

P → Q = {a ∈ A | (∀b ∈ P )ab ↓ and ab ∈ Q}

Definition 5.1. A local operator is a function J : P(A) → P(A) such that
there are e1, e2, e3 ∈ N that satisfy:

1. e1 ∈
⋂
P⊆A P → JP

2. e2 ∈
⋂
P⊆A JJP → JP

3. e3 ∈
⋂
P,Q⊆A (P → Q)→ (JP → JQ)

We define a pre-order on local operators as follows: we say J ≤ J ′ whenever
there is e ∈ A such that:

e ∈
⋂
P⊆A

JP → J ′P.

We write J ∼= J ′ if J ≤ J ′ and J ′ ≤ J . There is a least local operator J⊥, given
by the identity: J⊥(P ) = P . There is also a biggest local operator given by
J>(P ) = A.

The lattice of local operators (up to isomorphism) corresponds to the lattice
of subtoposes of the realizability topos on A, denoted RT(A). Some of these
subtoposes are realizability toposes RT(B) themselves, in that case we have
found a geometric inclusion RT(B)→ RT(A).

Definition 5.2 ([5]). An applicative morphism γ : A → B is called computa-
tionally dense if there exists m ∈ B such that

(∀b ∈ B)(∃a ∈ A)(∀a′)bγ(a′) ↓⇒ mγ(aa′) ⊆ bγ(a′).

Geometric inclusions RT(B) → RT(A) correspond precisely to computa-
tionally dense applicative morphisms γ : A → B that satisfy the additional
condition

(in) (∃e)(∀b)(∃a)(eb ∈ γ(a) and mγ(a) = {b})
where m is as in definition 5.2 (this is a consequence of results in [5, 7]). In that
case the corresponding local operator in RT(A) is given by

J(P ) = {a ∈ A |mγ(a) ⊆
⋃
a′∈P

γ(a′)}.

The following corresponds to proposition 2.2 in [13].
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Proposition 5.2.1. For f : A→ A a partial function, the identity relation on A is
a computationally dense applicative morphism ιf : A → A[f ] that satisfies the
condition (in). Therefore, there is a canonical geometric inclusion RT(A[f ])→
RT(A).

By our construction, we obtain for every (partial) functional F : AA → A a
subtopos RT(A[F ])→ RT(A) corresponding to the local operator

JF (P ) = {a ∈ A |m ·F a ∈ P}.

One can check that this indeed defines a local operator according to definition
5.1.

5.1 J-Assemblies

In [6], Martin Hyland showed that for every function f : N→ N, there is a least
local operator that forces f to be computable in the Effective Topos. This yields
an embedding of the Turing degrees into the lattice of local operators. In [11],

Wesley Phoa showed that the corresponding subtopos is equivalent to RT(Kf1 ),
the realizability topos on the pca of recursive application with oracle f . This
result can be generalized to arbitrary pcas and partial functions: for (partial)
functions f : A → A, the least subtopos of RT(A) in which f is realizable is
equivalent to RT(A[f ]). For a proof, see [1].

We will now carry out a similar statement for effective operations. To make
things easier, we will work on a category of assemblies. The consequences for re-
alizability toposes are immediate for anyone familiar with them. In the following
we assume that we have fixed some pca A.

Definition 5.3. Let J be a local operator for A. A J-assembly is a pair (X,E)
where E : X → A is a total relation.

For (X,E), (Y, F ) J-assemblies, a morphism of J−assemblies is a function
f : X → Y together with a t ∈ A such that

t ∈
⋂
x∈X

E(x)→ JF (f(x)).

We say that t tracks f .

One can check that the composition g ◦ f of morphisms of J−assemblies
f : (X,E) → (Y, F ), g : (Y, F ) → (Z,G) is again a morphism of J-assemblies,
so that J−assemblies form a category Ass(A)J . The category Ass(A)J has a lot
of structure: it is regular, cartesian closed and has finite colimits. For (X,E),
(Y, F ) J-assemblies, the exponential (Z,G) := (Y, F )X,E is given by:

Z = {f : X → Y | f is a morphism (X,E)→ (Y, F )} (28)

G(f) = {t ∈ A | t tracks f}. (29)

The assembly A = (A, idA) can be seen as a representation of the pca A in
the category of J-assemblies. The object AA consists of the morphisms A→ A
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in Ass(A)J . For J = J⊥, these are precisely the computable functions in A.
Also, one can check that the arrows

AA → A

in Ass(A)J⊥ are precisely the effective operations in A. We have the following
theorem:

Theorem 5.4. Let F : AA → A be a total functional, and assume that F
defines a morphism

AA → A

in Ass(A)J . Then JF ≤ J .

Proof. We can assume that J preserves inclusions, otherwise we let

J ′P =
⋃
Q⊆P

JP

and show that J ′ ∼= J , which is an easy exercise using definition 5.1.
By computational density, there exists t ∈ A such that for all v, x ∈ A:

m ·F (tvx) . v ·F x.

Since m is independent of F , we also know that if the right side halts at some
stage, the left hand side also halts at that stage.

We pick e1, e2, e3 as in definition 5.1.
Suppose that F : AA → A is tracked by r as morphism of J-assemblies.
Choose m ∈ A (using the recursion theorem) so that:

mxy . if p0(m([x] ∗ y)) (30)

then e1(p1(m([x] ∗ y))) (31)

else e2 (e3(〈z〉mx(y ∗ [z]))r(〈w〉(m(tvw)[]))) (32)

where v = p1(m([x] ∗ y)). (33)

Here [] is the empty sequence. We will prove by induction on the stage at
which m ·F x ↓ that for all x,

mx[] ∈ J{m ·F x}. (34)

Stage 0: in that case m([x]) = pTc for some c. Then

mx[] = e1(p1(m([x] ∗ []))) ∈ J{c}. (35)

Stage λ > 0: Let u = [u0, . . . , un] be the halting dialogue between m and x.
It is easy to see that

mx[u0, . . . , un] ∈ J{m ·F x}.

Now suppose that 0 < i ≤ n+ 1 is such that

m([x] ∗ u<i+1] ∈ J{m ·F x}. (36)

15



We know that:
m([x] ∗ u<i) = pFv

where v is such that at some stage α < λ, for each w, v ·F w ↓. So for each w,
also m ·F (tvw) ↓ at stage α. Let f be the function w 7→ v ·F w. By induction
hypothesis,

m(tvw)[] ∈ J{v ·F w}

for each w, so 〈w〉m(tvw)[] tracks f as morphism of J−assemblies. So

r(〈w〉(m(tvw)l)) ∈ J{F (f)}

and F (f) = ui. By (36), we have:

〈z〉m([x] ∗ u<i ∗ [z]) ∈ {F (f)} → J{m ·F x}

and therefore

e2
(
e3(〈z〉mx(u<i ∗ [z]))r(〈w〉(m(tvw)[]))

)
∈ J{m ·F x}

hence it follows that
m([x] ∗ u<i) ∈ J{m ·F x}. (37)

By reverse induction, it follows that

mx[] ∈ J{m ·F x},

so this finishes the induction step, so we have (34).
Therefore

〈x〉mx[] ∈
⋂
P⊆A

JFP → JP

and we are done.

5.2 Pitts’ local operator

In this section we will take a look at the operator J that is studied in [15].
This operator was introduced by Andrew Pitts in his thesis (example 5.8, [12]).
Denote by ∇(N) the assembly

(N, T ) where T (n) = N for all n.

We can define the following subobject of ∇(N):

(N, R)� ∇(N) where R(n) = {m ∈ N |m ≥ n}.

Pitts’ local operator J is defined as the least local operator in RT(K1) that
forces the above arrow to be an isomorphism of J−assemblies. Explicitly, it is
given by:

J(P ) =
⋂
{Q ⊆ N | {0} ∧ P ⊆ Q and {1} ∧ (

⋃
n∈N

(R(n)→ Q)) ⊆ Q}
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where for R,S ⊆ N:
R ∧ S = {prs | r ∈ R, s ∈ S}.

Write N for the assembly A for A = K1, so

(N, N) where N(n) = {n}.

Recall the functional E from example 3.2. For A = K1, we rather define it as

E(f) =

{
0 if (∃n)f(n)

1 otherwise.

We have the following proposition:

Proposition 5.4.1. There is an index rE ∈ N that tracks E as morphism of
J-assemblies NN → N.

Proof. Pick e3 as in definition 5.1.
By corollary 1.6 of [15], there is a partial recursive function G such that for

all
x0 ∈ J{a0}, . . . , xn−1 ∈ J{an−1},

we have

G(〈x0, . . . , xn−1〉) ∈ J{0} if for some i < n, ai = 0 (38)

G(〈x0, . . . , xn−1〉) ∈ J{1} otherwise (39)

Now let tE be an index in K1 defined by:

tEen ' G(〈e(0), . . . , e(n)〉)

Then whenever e realizes a total function f : N → N, we (∃n)f(n) = 0 if and
only if (∃n)en ∈ J{0}, which holds if and only if there is n such that

tEe ∈ {m |m ≥ n} → J{0}

since otherwise
tEe ∈ {m |m ≥ 0} → J{1}.

By definition of J , we have in the first case that tEe ∈ J{0}, and in the latter
case tEe ∈ J{1}. Now tE tracks E as morphism of J−assemblies NN → N.

The following corollary corresponds to theorem 2.2 in [15].

Corollary 5.5. The morphisms of J-assemblies N → N are precisely the hy-
perarithmetical functions.
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Proof. By theorem 5.4, JE ≤ J . Therefore it is easily seen that every morphism
of JE assemblies N → N is a morphism of J−assemblies. Now it follows that
every hyperarithmetical function is a morphism of J-assemblies by corollary 4.4.

For the converse, observe that every morphism f : N→ N is Π1
1 since:

f(n) = m ⇐⇒ (∀B){p0m} ⊆ B∧{1}∧({e | (∃n)(∀m ≥ n)em ∈ B}) ⊆ B → e(an) ∈ B

where e is a realizer for f as a morphism N → N. Notice that the above
expression is Π1

1. Since f is total, it is also Σ1
1.

Therefore the morphisms of J-assemblies N → N are precisely the hyper-
arithmetical functions.

5.3 J-representable functions

In [15], the morphisms of J-assemblies N → N are called J−representable.
Since for every n,m ∈ N

n 6= m ⇐⇒ J{n} ∩ J{m} = ∅, (40)

the following is well defined:

Definition 5.6. A partial function F : N→ N is J−representable if there exists
e ∈ N such that for all m ∈ N:

φe(n) ∈ J{m} ⇐⇒ F (n) = m.

Here φe denotes the e−th partial computable function from ordinary recursion
theory (or the application in K1).

By defining ψe = F for such e, we obtain an indexed set of partial functions
and a new application

e · n 7→ ψe(n)

on N.

A natural question is whether the application e · n ' ψe(n) is combinatory
complete in the sense of definition 2.3. This turns out to be the case:

Proposition 5.6.1. The application e · n ' ψe(n) defines a pca J1 on N.

Proof. This is an easy exercise on pcas and definition 5.1.

The above proposition would be particularly hard to prove (if not false) if
one uses the strict version of the definition of a pca. In the next section we will
see that we do not have to worry about this.
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5.4 Strict Pcas

As announced in the introduction, several authors use a stronger notion of
combinatory completess, that we shall call strictly combinatory complete:

Definition 5.7. Let A be a partial applicative structure. Then A is called a
strict pca when there are k, s ∈ A such that for all a, b, c ∈ A:

1. sab ↓

2. kab = a

3. sabc ' ac(bc).

We also call the applicative structure on A strictly combinatory complete.

This definition might be preferable in some cases, for example when one
would like that the set of domains of partial computable functions in a pca
A form a dominance in RT(A)(see [9]). However, as mentioned before, these
domains are not part of the structure of a pca in the category PCA.

The following theorem supports this: in the context of applicative mor-
phisms, the notions of a pca and a strict pca are essentially the same.

Theorem 5.8. Every pca is isomorphic to a strict pca.

Proof. Let A be a pca. If A is trivial, then the statement is obvious, so we
assume A non-trivial.

The idea is to define an explicit pca structure A′ on the set A, such a 7→ {a}
is an applicative morphism A′ → A. In this explicit structure, we also make
sure that we can compute the application in A.

To define the new applicative structure on A, we use tuples and Curry nu-
merals from A to ensure that what we define is actually computable in A. We
denote the new application by · : A×A→ A, and the resulting partial applica-
tive structure by A′. The definition is by induction on the following clauses:

1. Constant function: for all a, b,∈ A:

[1] · a = [1, a] (41)

[1, a] · b = a (42)

2. S-combinator: For a, b, c ∈ A:

[2] · [a, b, c] ' a · c · (b · c)

3. Currying of parameters: for all e, a, b, c ∈ A:

[3, e] · a = [3, e, a] (43)

[3, e, a] · b = [3, e, a, b] (44)

[3, e, a, b] · c ' e · [a, b, c] (45)
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4. Application in A:

[4] · a = [4, a] (46)

[4, a] · b ' ab (47)

Since A is non-trivial, the above is well-defined. Strict combinatory com-
pleteness of A is satisfied by taking k′ = [1], s′ = [3, [2]]. It is easy to see that
a 7→ {a} can be realized as applicative morphism A′ → A, and as applicative
morphism A→ A′ it is realized by [4].

Remark 5.9. Note that the proof above is entirely constructive; to define the
application it only uses natural induction and explicit constructions with the
combinators k and s.

Another observation is that if we would define A′ using only the clauses 1-3,
we obtain a strict pca A′, together with an applicative morphism A′ → A given
by a 7→ {a}, that has “forgotten” a lot of the structure of A. We can then
adjoin certain partial functions in A to A′ to get some of them back (such as
the application, so that we obtain A again). In the case of a decidable pca,
for instance, we would lose decidability in this way. So, not only can we adjoin
functions to a pca as an oracle, we are also able to forget (all but some) functions
in a pca.

Finally, we have the following theorem:

Theorem 5.10. The pca J1 is isomorphic to K1[E].

Proof. Let γ : K1 → J1 be the applicative morphism n 7→ {n} (it is easily
verified that this is a decidable applicative morphism).

Now E ∈ Eγ by proposition 5.4.1. Therefore, by theorem 3.3, γ factors
through K1[E], hence we have a decidable applicative morphism γE : K1[E]→
J1, given by the identiy on N.

This morphism also goes the other way: this follows from the fact that the
application in K1[E] is Π1

1-complete (proposition 4.4.1), and the fact that the
application in J1 is Π1

1.

6 Higher types

One may wonder whether theorem 4.3 also holds for computability in higher
type objects (so, type 3 and higher). The answer to that question is positive:
for functionals x1, . . . , xn of certain types, one can define in a similar fashion a
pca

K1[x1, . . . , xn]

that is again isomorphic to the pca of recursive application relative relative
to x1, . . . , xn in Kleene’s sense. The idea is to define K1[x1, . . . , xn] = K1[f ],
where f is defined in stages, simultaneously for x1, . . . , xn, so that the resulting
applicative structure is closed under application of any of the functionals.

20



However, the connection with effective operations does not generalize in this
way. Furthermore, it is not known (at least to me) what an analogue of theorem
5.4 would be for, say, a type 3 functional. This might be interesting to find out.
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