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Abstract

We use a way to extend partial combinatory algebras (pcas) by forcing them to represent certain
functions. In the case of Scott’s Graph Model, equality is computable relative to the complement function.
However, the converse is not true. This creates a hierarchy of pcas which relates to similar structures of
extensions on other pcas. We study one such structure on Kleene’s Second Algebra and one on a pca
equivalent but not isomorphic to it. For the recursively enumerable sub-pca of the Graph model, results
differ as we can compute the (partial) complement function using the equality.
c⃝ 2017 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.

0. Introduction

In this paper we study extensions of various partial combinatory algebras; mainly partial
combinatory algebra structures on the power set of the natural numbers and the set of all functions
from natural numbers to natural numbers.

Partial combinatory algebras have been useful in the past for devising realizability interpreta-
tions of intuitionistic formal systems. However, there is another side to them: they can be viewed
as paradigms of computation. It is this view that has been put forward in several publications of
the first author, but it has its origin in the seminal thesis [2] of John Longley. Longley defined
a notion of morphism between partial combinatory algebras which, whilst fundamental in the
study of realizability toposes, also has a clear computational meaning: a morphism A → B is a
way to simulate the computations of A in B.
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In [4], the first author showed how, given a partial combinatory algebra A and an arbitrary
partial endofunction f on A, one can construct, in a universal way, a partial combinatory algebra
A[ f ] in which f is “computable”; the construction is a straightforward generalization of Turing’s
notion of “oracle”. The construction gives a clear meaning to statements like “ f is computable
in g relative to the partial combinatory algebra A”.

This paper is structured as follows. After a section on preliminaries which contains all basic
definitions, in Section 2 we introduce the various extensions we are interested in. We look at
P(N)[C], where P(N) is Scott’s Graph Model and C : P(N) → P(N) is the complement
function. We prove that P(N)[C] is decidable. Then we look at related extensions of K2 (Kleene’s
pca on the set of functions N → N) and a pca (called 2ω) on the set of functions N → {0, 1}.
We characterize the topologies on these pcas which are of interest (interacting nicely with the
applicative structure). We prove that the pcas K2 and 2ω are equivalent, but not isomorphic (to
our knowledge, the first example of this phenomenon in the literature).

In Section 3, Independence results, we prove that (conversely to the result in the previous
section), the complement function is not computable, relative to P(N), in a decision function for
equality; and we have the analogous results for the corresponding extensions of K2 and 2ω. The
methods used also yield a non-existence result for decidable applicative morphisms into P(N),
K2 and 2ω.

In a final section we discuss recursive or r.e. sub-partial combinatory algebras. Also here
we have ‘complement-like’ functions which however, now are strictly partial (as in the RE
submodel of P(N)). The results obtained are different: the partial complement function on RE is
computable in the equality relation.

We believe that our work is a contribution towards the Higher-Order Computability pro-
gramme of Longley and Normann [3].

This paper originates in the second author’s master dissertation [6]. The first author acknowl-
edges with gratitude the hospitality of the mathematics department of the University of Ljubljana,
where he spent a sabbatical stay in the fall of 2016.

1. Preliminaries

A partial applicative structure (pas) is a set A together with a partial application function
A × A → A, which we write a, b ↦→ ab. We write ab↓ to mean that the pair (a, b) is in the
domain of the application function. If we have a more complicated term s, we write s↓ to mean
that, not only, s denotes but also all subterms of s do.

A partial combinatory algebra (pca) is a pas satisfying the following axiom: there are
elements k and s in A such that for all a, b, c ∈ A:

(ka)b = a (in particular, ka↓).
(sa)b↓, and, whenever (ac)(bc)↓, ((sa)b)c↓ and ((sa)b)c = (ac)(bc).

From now on, we economize on brackets, and associate to the left: we write, e.g., sabc for
((sa)b)c and aa1 · · · an for (· · · ((aa1)a2) · · · )an . In a nontrivial pca, the application is never
associative so abc is in general different from a(bc).

A term t composed of elements of A, variables and the application function, represents
a partial function An

→ A (where n is the number of variables in t), and again we write
t(a1, . . . , an)↓ to mean that the tuple (a1, . . . , an) is in the domain of the function.
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Now suppose the term t has variables x1, . . . , xn+1. There is an element ⟨x1 · · · xn+1⟩t with
the following property: for every n + 1-tuple a1, . . . , an+1 from A we have

(⟨x1 · · · xn+1⟩t)a1 · · · an↓

If t(a1, . . . , an+1)↓ then (⟨x1 · · · xn+1⟩t)a1 · · · an+1↓, and both have the same value in A.

For example, we might use ⟨xyz⟩xz(yz) for the element s of A.
A pca contains Booleans T and F, and a definition by cases operator C ∈ A, satisfying for all

a, b ∈ A:

CTab = a and CFab = b.

We usually refer to the term Cxab as

If x then a else b

Note that this gives us the Boolean operations ‘and’ and ‘not’:

and ab = If a then (if b then T else F) else F
not a = If a then F else T.

In every pca, one can code pairs and sequences; we shall use the notations [a, b] and
[a0, . . . , an−1] for codings of the pair (a, b) and the sequence (a0, . . . , an−1) respectively.

Let f : An
→ A be a partial function. We say that f is representable in A if there is

some a f ∈ A such that for every n-tuple a1, . . . , an in the domain of f , we have a f a1 · · · an =

f (a1, . . . , an).
For a pca A and a subset R ⊂ An , we call the set R decidable in A if the function which sends

each coded n-tuple [a1, . . . , an] to T if (a1, . . . , an) ∈ R, and to F otherwise, is representable in
A. The pca A is called decidable if the equality relation is decidable in A.

1.1. Topology

In this paper we shall be interested in pca structures on sets as P(N) or NN, which have several
interesting topologies. We introduce the following terminology for studying the interaction of
these topologies with the pca structure.

A topology on a pca A is repcon if every partial representable function is continuous on
its domain (as subspace of A); a topology is conrep if every partial continuous function is
representable.

Clearly, the discrete and indiscrete topologies are always repcon. We refer to these topologies
as the trivial topologies.

1.2. Applicative morphisms

Let A and B be pcas and γ a total relation from A to B. That is, γ assigns to every a ∈ A a
nonempty subset γ (a) of B.

A partial function f : An
→ A is said to be representable in B with respect to γ , if there is

an element b f ∈ B such that for any n-tuple (a1, . . . , an) in the domain of f we have: whenever
b1 ∈ γ (a1), . . . , bn ∈ γ (an) then b f b1 · · · bn↓ and is an element of γ ( f (a1, . . . , an)). Such a
total relation γ is called an applicative morphism from A to B if the application function of A is
representable in B w.r.t. γ : so there should be an element r ∈ B (the realizer of the applicative
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morphism γ ) such that whenever aa′
↓ in A and b ∈ γ (a), b′

∈ γ (a′), we have rbb′
∈ γ (aa′).

When we view pcas as models of computation, an applicative morphism can be seen as a way to
simulate A-computations in B.

Given two applicative morphisms γ, δ : A → B we say γ ≤ δ if there is some s ∈ B such
that for all a ∈ A and b ∈ γ (a), sb↓ and sb ∈ δ(a).

With composition of relations (which preserves the preorder ≤), and the identity relations, we
have a preorder-enriched category PCA of pcas, applicative morphisms and inequalities.

We single out a subcategory of PCA. An applicative morphism γ : A → B is decidable if
there is an element d ∈ B which satisfies the following: if TA, FA denote the Booleans in A,
then for b ∈ γ (TA), c ∈ γ (FA) we have db = TB, dc = FB (where of course TB and FB are the
Booleans in B).

The theory of applicative morphisms is due to John Longley [2].

1.3. Extensions of pcas by functions

In [4] the following theorem is proved:

Theorem 1.1. For any pca A and partial endofunction f on A, there is a pca A[ f ] with the
same underlying set A, and a decidable applicative morphism ι f : A → A[ f ], which is the
identity relation on A, such that the function f is representable in A[ f ] with respect to ι f , and
moreover, for any decidable applicative morphism γ : A → B such that f is representable in B
with respect to γ , there is a unique factorization of γ as γ = γ f ι f , for a decidable morphism
γ f : A[ f ] → B.

In this paper we shall need a detail in the construction of A[ f ]. The application in A[ f ],
written a, b ↦→ a· f b, is defined as follows:

a· f b = c iff there is a sequence e0, . . . , en−1 of elements of A such that for all i < n,

a[b, f (e0), . . . , f (ei−1)] = [F, ei ]

and a[b, f (e0), . . . , f (en−1)] = [T, c].

2. Variations on Scott’s Graph Model and Kleene’s Second Algebra

Let us agree on the following conventions for the set N of natural numbers: 0 ∈ N; by [·, ·] and
[·, . . . , ·] we denote standard pairing and sequence coding functions; we employ the following
coding of finite subsets of N: p = ek (the natural number k codes the finite set p) if k =

∑
i∈p2i

(so, e0 = ∅, e2n = {n} etc.).
Scott’s Graph Model [5] is the pca structure on P(N) given by the following application:

A ◦ B = {n | ∃m([m, n] ∈ A, em ⊆ B)}.

It is well-known that the functions P(N) → P(N) which are representable in the pca P(N) are
precisely the Scott-continuous functions. The Scott topology on P(N) = {0, 1}

N is the product
topology on the countable product of copies of {0, 1}, where {0, 1} has the Sierpinski topology
(with open sets ∅, {1}, {0, 1}). Concretely, a subset X of P(N) is open if for any A ∈ X there is
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a finite subset p of A such that every superset of p is in X . We use the notation

Up = {A ⊆ N | p ⊆ A}

(for finite p) for basis elements in this topology.
In the terminology of Section 1.1, the Scott topology is both conrep and repcon for Scott’s Graph
Model.

We have the following result about minimal repcon topologies on P(N):

Lemma 2.1. Let T be a nontrivial repcon topology for P(N). Then T either contains the
Scott topology, or the Alexandroff topology (which contains precisely the downward closed sets
w.r.t. ⊆).

Proof. Since T is non-trivial, it contains an open set U which is neither ∅ nor P(N). We
distinguish two cases:
CASE 1: ∅ ̸∈ U . Take C ∈ U , and let p = en be an arbitrary finite subset of N. Let
A = {[n, m] | m ∈ C}. The map A ◦ (−) is continuous for T , so the set {B | A ◦ B ∈ U } is
in T . Now A ◦ B = C if p ⊆ B and ∅ else; because ∅ ̸∈ U by assumption, the set Up is in T .
Since p was arbitrary, T contains the Scott topology.
CASE 2: ∅ ∈ U . Take C ̸∈ U ; let S ⊆ N arbitrary. Let A = {[2n, m] | n ̸∈ S, m ∈ C}. Again,
the map A ◦ (−) is T -continuous, so {B | A ◦ B ∈ U } is in T . Now A ◦ B = ∅ if B ⊆ S and
C otherwise; by assumption on C and U we see that {B | A ◦ B ∈ U } = {B | B ⊆ S}. So T
contains the Alexandroff topology. □

A function which is definitely not Scott-continuous is the complement function C(A) = N − A
on P(N). We shall study P(N)[C], the pca formed as in Section 1.3. According to the theorem
quoted there, we have a decidable applicative morphism ιC : P(N) → P(N)[C] with the stated
universal property.

We have the following corollary of Lemma 2.1, about repcon topologies for P(N)[C]:

Corollary 2.2. The only repcon topologies for P(N)[C] are the trivial ones.

Proof. Suppose T is a non-trivial repcon for P(N)[C]. Since every representable map in P(N)
is also representable in P(N)[C], by Lemma 2.1 T contains either the Scott topology or the
Alexandroff topology. In both cases, there is a nontrivial open set U with either ∅ ∈ U or N ∈ U .
But the complement function is representable too, so {N − A | A ∈ U } is also open; so we
always have a nontrivial open U with ∅ ∈ U . By the proof of 2.1, for any set S, we have that
{B | B ⊆ S} is open. Again applying the continuity of the complement function we find that
{B | (N − B) ⊆ (N − S)} is also open. Hence their intersection is open, but this is {S}; so T is
discrete. We have a contradiction. □

We denote application in P(N)[C] by A, B ↦→ A · B. There are elements r and c in P(N) such
that r realizes the applicative morphism ιC and c represents the function C :

r · A · B = A ◦ B
c · A = N − A.

Lemma 2.3. Let T and F be the Booleans in P(N)[C]. There is an element n of P(N) satisfying
n · ∅ = F and n · {0} = T. Hence, we can take ∅ and {0} for the Booleans in P(N)[C].
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Proof. Let ∗ be the binary operation given by A ∗ B = A ◦ (N − B). Note that in P(N)[C] this
operation is represented by

a = ⟨xy⟩r · x · (c · y).

Let M be the set {[1, [2, x]] | x ∈ T} ∪ {[0, [1, x]] | x ∈ F}.
Then M ◦ ∅ = {[1, x] | x ∈ F} and

M ◦ {0} = {[2, x] | x ∈ T} ∪ {[1, x] | x ∈ F}.

Define n = ⟨x⟩r · (r · M · x) · (c · x) Then

n · A = r · (r · M · A) · (c · A) = r · (M ◦ A) · (N − A)
= (M ◦ A) ◦ (N − A) = (M ◦ A) ∗ A

hence
n · ∅ = (M ◦ ∅) ∗ ∅ = {[1, x] | x ∈ F} ∗ ∅

= {[1, x] | x ∈ F} ◦ N = F

and
n · {0} = (M ◦ {0}) ◦ (N − {0})

= ({[2, x] | x ∈ T} ∪ {[1, x] | x ∈ F}) ◦ (N − {0})
= T. □

Theorem 2.4. The pca P(N)[C] is decidable.

Proof. In view of Lemma 2.3 we need to exhibit an element X of P(N) such that, in P(N)[C],

X · A · B =

{
∅ if A ̸= B
{0} otherwise.

Since the pair (∅, {0}) is a good pair of Booleans in P(N)[C], we have elements and and not in
P(N) representing the indicated boolean operations for these Booleans. Since in P(N), the set
P = {[2x , [2x , 0]] | x ∈ N} has the property that P ◦ A ◦ B = {0 | A ∩ B ̸= ∅}, we also have such
an element in P(N)[C]: an S such that

S · A · B =

{
∅ if A ∩ B = ∅

{0} otherwise.

Now define in P(N)[C] the element

M = ⟨yx⟩(not(S · (c · y) · x))and(not(S · y · (c · x)))

where the element c, again, represents the complement function.
Then M · A · B = {0} iff not(S · (N− A) · B) = {0} and not(S · A · (N− B)) = {0}. That is, iff

B ∩ (N− A) = ∅ and (N− B) ∩ A = ∅; i.e. iff A = B. Moreover. M · A · B = ∅ otherwise. □

We also consider the Cantor topology on P(N), the subspace topology of P(N) when
embedded in the real line as the Cantor set; a basis for this topology is given by the sets

U q
p = {A ⊆ N | p ⊆ A, A ∩ q = ∅}

for disjoint, finite p, q .

Lemma 2.5. The Cantor topology is a conrep topology for P(N)[C].
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Proof. Let F be partial continuous on P(N) for the Cantor topology. Let r and a be as in the
proof of 2.3; so r · A · B = A ◦ B and a · A · B = A ◦ (N − B).

For every n ∈ N the set V n
= {A ∈ dom(F) | n ∈ F(A)} is open in dom(F) by assumption,

hence equal to the intersection of dom(F) with a set of the form⋃
i∈In

U q(i,n)
p(i,n)

for some choice of sequences of finite sets {q(i, n)}i∈In and {p(i, n)}i∈In indexed over some set
In . Consider the set

W = {[a, [b, k]] | k ∈ N, ∃i, j ∈ Ik(p(i, k) = ea, q(i, k) = eb)}

and let Z = ⟨x⟩a · (r · W · x) · x . So Z · A = (W ◦ A) ◦ (N − A).
We claim that Z represents F in P(N)[C]. Suppose A ∈ dom(F). Now

W ◦ A = {m | ∃n(en ⊆ A, [n, m] ∈ W )}
= {[b, k] | ∃a∃i, j ∈ Ik(ea ⊆ A, p(i, k) = ea, q(i, k) = eb)}
= {[b, k] | ∃i, j ∈ Ik(p(i, k) ⊆ A, q(i, k) = eb)}

hence

(W ◦ A) ◦ (N − A) = {m | ∃n(A ∩ en = ∅, [n, m] ∈ W ◦ A)}
= {k | ∃b∃i, j ∈ Ik(A ∩ eb = ∅, p(i, k) ⊆ A, q(i, k) = eb)}
= {k | ∃i, j ∈ Ik(p(i, k) ⊆ A, A ∩ q(i, k) = ∅)}
= {k | A ∈ V k

}

= F(A). □

We wish to compare the pca P(N)[C] to the pca which is often called Kleene’s Second Algebra
K2: the underlying set is the set NN of all functions N → N, where for α, β ∈ NN, the application
αβ is defined if and only if for all n ∈ N there is a k such that α([n, β(0), . . . , β(k − 1)]) > 0,
and if this is the case then

(αβ)(n) = α([n, β(0), . . . , β(k − 1)]) − 1

for the least such k.
For the envisaged comparison, it is useful to first study the topological aspects of the pcas we

have seen so far.
The pca K2 carries a natural topology, the Baire space topology, which is the product topology

on the countable product of copies of N with the discrete topology; basic open sets are of the form
Uσ for a finite sequence σ = (σ0, . . . , σn−1) of natural numbers, where

Uσ = {α ∈ NN
| α(0) = σ0, . . . , α(n − 1) = σn−1}.

We state the following fact, which is well-known, without proof.

Proposition 2.6. The Baire space topology is both conrep and repcon for K2.

As observed by Andrej Bauer in [1], there are applicative morphisms between P(N) and K2 in
both directions. We have an applicative morphism ι : K2 → P(N) (which is actually a single-
valued relation) which sends α ∈ NN to the set of its coded finite initial segments:

ι(α) = {{[α(0), . . . , α(n − 1)] | n ≥ 0}}.
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In the other direction we have an applicative morphism δ : P(N) → K2, where for A ⊆ N, we
have α ∈ δ(A) if and only if

A = {n | ∃i ∈ N(α(i) = n + 1)}.

It is readily calculated (or see [1]) that for the compositions δι and ιδ we have: δι is isomorphic to
the identity on K2, and ιδ ≤ idP(N). So the pair (ι, δ) forms an adjunction ι ⊣ δ in the 2-category
PCA, and δ is up to isomorphism a retraction on ι.

We can extend this adjunction to one involving P(N)[C] and a suitable extension of K2.
Consider the following function S : K2 → K2:

S(α)(n) =

{
n + 1 if n + 1 ̸∈ im(α)

0 otherwise.

Obviously, the map S is not Baire continuous, so ιS : K2 → K2[S] is not an isomorphism.
Another easy observation is that K2[S] is decidable: given α, β ∈ NN, let

F(α, β)(n) =

{
1 if α(n) ̸= β(n)
0 otherwise.

Then F is representable in K2, hence also in K2[S]; now α = β holds iff 1 ̸∈ im(F(α, β)), iff
S(F(α, β))(0) = 1.

Let us now look at the adjoint pair ι ⊣ δ : K2 → P(N). We also have ιC : P(N) → P(N)[C],
and ιS : K2 → K2[S].

Lemma 2.7.

(a) The complement function C is representable in K2[S] with respect to ιS ◦ δ.
(b) The function S is representable in P(N)[C] with respect to ιC ◦ ι.

Proof. (a) We have α ∈ ιS ◦ δ(A) if and only if {n | n + 1 ∈ im(α)} = A. So we
need to find a representable map on K2[S] which sends each such α to some β for which
{n | n + 1 ∈ im(β)} = N − A. But the map S does precisely that, so we are done.
(b) We need to exhibit a representable operation in P(N)[C] which sends the set of initial
segments of α to the set of initial segments of S(α). We use Scott-continuous operations and
the complement function C . Continuously we get from {[α(0), . . . , α(n − 1)] | n ≥ 0} the set

A = {n + 1 | n + 1 ∈ im(α)}

and from A, using C and a continuous operation,

B = C(A ∪ {0}) = {n + 1 | n + 1 ̸∈ im(α)}.

From A and B we get

D = {[0, n + 1] | n + 1 ∈ A} ∪ {[1, n + 1] | n + 1 ∈ B}.

Now if E is the set of all pairs (σ, a) satisfying:

• σ is a coded sequence [σ0, . . . , σn−1] and for all i < n there is a j with [ j, i + 1] ∈ ea , and
whenever [0, i + 1] ∈ ea then σi = 0, and otherwise σi = i + 1

then E ◦ D is the desired set of coded initial segments of S(α). □
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It follows from Lemma 2.7 that we have a commutative diagram

K2

ιS

↓↓

ι
→→ P(N)δ←←

ιC

↓↓
K2[S]

ι∗
→→ P(N)[C]

δ∗←←

where δ∗ is the unique factorization of ιS ◦ δ through P(N)[C] and ι∗ the unique factorization of
ιC ◦ ι through K2[S].

It is a general feature of maps of the form ι f : A → A[ f ] that post-composition with ι f

reflects the preorder on pca morphisms: if γ, δ : A[ f ] → B satisfy γ ◦ ι f ≤ δ ◦ ι f , then γ ≤ δ.
This is because ι f is the identity relation. Therefore, in the diagram above we can conclude that
δ∗ ◦ ι∗ ≃ idK2[S] and ι∗ ◦ δ∗ ≤ idP(N)[C].

Lemma 2.8. The diagram

K2
ι →→

ιS

↓↓

P(N)

ιC

↓↓
K2[S]

ι∗
→→ P(N)[C]

is a pullback diagram in PCA.

Proof. Given a pair (γ : A → P(N), ζ : A → K2[S]) such that ιC ◦ γ = ι∗ ◦ ζ , we have
δ ◦γ : A → K2. We have ι◦ (δ ◦γ ) = (ι◦δ)◦γ ≃ γ and ιS ◦ (δ ◦γ ) ≃ (ιS ◦δ)◦γ ≃ δ∗ ◦ ιC ◦γ =

δ∗ ◦ ι∗ ◦ ζ = ζ ; by inserting some realizers we can obtain actual equality. Uniqueness of the
factorization follows since ιS is mono. □

Lemma 2.8 means that the function S is, relative to the adjoint retraction (ι ⊣ δ : K2 → P(N)),
the restriction to K2 of the complement function.

We have also seen that K2[S] is decidable. So, if for some pca A we define Eq : A → A to
be the function which decides equality:

Eq([α, β]) =

{
TA if α = β

FA otherwise

then Eq in K2 is representable in K2[S].

2.1. A variation on binary maps

We can define a pca on 2ω to which the Cantor topology on P(N) is both conrep and repcon.
We use the usual bijection between 2ω and P(N), where α ∈ 2ω is related to A ⊆ N if for all
n ∈ N : α(n) = 1 ⇔ n ∈ A. We will often move from one description to the other. The definition
of the application for 2ω goes in a similar fashion as K2: for α, β ∈ 2ω:

α · β↓ ⇔ ∀n∃k(α([n, β(0), . . . , β(k − 1)]) = 1).

If α · β↓, then α · β(n) = α([n, β(0), . . . , β(k)]) for k such that

∀i < k : α([n, β(0), . . . , β(i − 1)]) = 0
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α([n, β(0), . . . , β(k − 1)]) = 1.

Just like before, we can define an equality map Eq over 2ω. However, simply adding equality is
not always enough to represent the maps we want. An alternative can be countable equality, a
map Eq∞ that interprets a set as a countable sequence of sets and checks equality pairwise:

Eq∞(A, B) := {n | ∀m : [n, m] ∈ A ⇔ [n, m] ∈ B}.

Theorem 2.9. The identity map from P(N)[C] to 2ω[Eq∞] is an isomorphism.

Lemma 2.10. id : P(N) → 2ω[Eq∞] is a decidable applicative morphism.

Proof. We write the elements of 2ω as subsets of N, just like we do for P(N). So we need to
show that application in P(N), defined as ◦ : (A, B) ↦→ {m | ∃n : [n, m] ∈ A, en ⊂ B}, is
representable in 2ω[Eq∞].

We know that any Cantor continuous map is representable in 2ω. Let I : 2ω
→ 2ω be the

map given by I (A) = {[n, m] | em ⊂ A}. This map is Cantor continuous, hence representable.
We let I I : 2ω

× 2ω
→ 2ω be defined as I I (A, B) = A ∩ I (B), which is also representable

since taking intersection is Cantor continuous. Now let π : 2ω
→ 2ω be the projection

π (A) = {m | ∃n : [n, m] ∈ A}.

∀A, B : π (I I (A, B)) = π ({[n, m] ∈ A | en ⊂ B}) = A ◦ B.

So π ◦ I I is the application from P(N). Note that Eq∞(∅, A) = C(π (A)), where C is the
complement representable in 2ω. So ◦ is representable. □

Since C is representable in 2ω, we know that id : P(N)[C] → 2ω[Eq∞] is a decidable
applicative morphism (by Theorem 1.1). Note that since the Cantor topology is repcon for 2ω, and
conrep for P(N)[C], we immediately know that id : 2ω

→ P(N)[C] is a decidable applicative
morphism.

Lemma 2.11. The map id : 2ω[Eq∞] → P(N)[C] is a decidable applicative morphism.

Proof. We show that Eq∞, as defined in 2ω, can be represented in P(N)[C]. Note that
(A ∩ C(B)) ∪ (C(A) ∩ B) is the set consisting of those elements on which A and B differ.
Taking the projection map π (A) := {n | ∃m : [n, m] ∈ A}, representable in P(N), we see
that π ((A ∩ C(B)) ∪ (C(A) ∩ B)) consists of those n such that there is an m for which A
and B differ on [n, m]. So n is included if and only if n ∈ Eq∞(A, B). Hence Eq∞ =

C(π ((A ∩ C(B)) ∪ (C(A) ∩ B))). □

Hence we have established the identity map as an applicative morphism between P(N)[C] and
2ω[Eq∞] in both directions, so they must be isomorphisms and the two pcas represent the same
maps.

We define a map γ : P(N) → P(2ω) as follows. For A ⊂ N and α ∈ 2ω we have;

α ∈ γ (A) ⇔ ∀n ∈ N : (n ∈ A ⇔ ∃m ∈ N : α([n, m]) = 1).

Proposition 2.12. The map γ is a decidable applicative morphism P(N) → 2ω.
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Proof. Within P(N) we define f : P(N) → P(N) as f ([A, B]) = A ◦ B. Taking the pairing
[A, B] to be defined as [A, B] := (2A) ∪ (2B + 1), we have that

f (A) = {m | ∃n : 2[n, m] ∈ A ∧ ∀k ∈ en : (2k + 1) ∈ A}.

We prove that f is representable with respect to γ . For A ⊂ N and m ∈ N, take A<m
:= {n ∈

A | n < m}. Let r ∈ 2ω be such that for α ∈ γ , rα([n, m]) = 1 if n ∈ f (A<m). Note that such an
r exists, since it only looks at α up to its mth elements and then makes a decision. Now see that⋃

m f (A<m) = A and hence for all n:

∃m : rα([n, m]) = 1 ⇔ ∃m : n ∈ f (A<m) ⇔ n ∈ f (A).

So rα ∈ γ ( f (A)). Decidability follows from the fact that we can have a d ∈ 2ω such that
dα(0) = i if there is an m such that α([i, m]) = 1 and for all j ∈ 2, k ∈ N such that
[ j, k] < [i, m] we have α([i, m]) = 0. This will function as a representation of decidability
of γ . □

We look at the relation between K2 and 2ω. Let ε : K2 → 2ω be the map given by

ε(α)([n, m]) :=

{
1 if α(n) = m
0 else.

Note that applications of both K2 and 2ω look at starting sections of their input to make a
decision on their output. Now, any begin section of α ∈ K2 has a maximum of its elements, hence
all the information of that begin section is stored in a begin section of ϵ(α). More specifically:

Proposition 2.13. The map ε is a decidable applicative morphism K2 → 2ω.

Proof. For α, β ∈ K2, let γ ∈ K2 be their pairing such that γ (2n) := α(n) and γ (2n+1) := β(n).
Take f ∈ ε(γ ). We look at application in K2:

α · β(n) = m ⇔

∃k, u0, u1, . . . , uk−1 : (∀l < k : β(l) = ul ∧ α([n, u0, u1, . . . , ul−1]) = 0)
∧α([n, u0, u1, . . . , uk−1]) = m + 1 ⇔

∃k, u0, . . . , uk−1 : (∀l < k : f [2l + 1, ul]) = 1 ∧ f ([2[n, u0, u1, . . . , ul−1], 0]) = 1
∧ f ([2[n, u0, u1, . . . , uk−1], m + 1]) = 1.

So to represent a map from f to g ∈ ε(α · β) we design r ∈ 2ω such that: ∀n, m, s, k, u0, u1,

. . . , uk−1 we take σ ∈ 2ω the unique code of the sequence of length [2[n, u0, . . . , uk−1], s+1]+2
such that: σ (0) = [n, m], ∀l < k : σ ([2l, ul]) = 1, σ ([2[n, u0, . . . , ul−1], 0]) = 1 and
σ ([2[n, u0, . . . , ul−1], s + 1]) = 1, then r (σ ) = 1 and for all i : r (σ ∗ [i]) = 1 ⇔ s = m.
Take all other values of r to be 0. Then within 2ω, r f ∈ ε. So application of K2 is representable
with respect to ε. Decidability is easy to check. □

Lemma 2.14. The following diagram commutes:

P(N)
γ
→→

δ

↓↓

2ω

K2

ε

↗↗
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Proof. For A ∈ P(N):

ε(δ(A)) =

⋃
{ε(α) | im(α) − {0} = (A + 1)} =

{β | ∀n∃!m, (β([n, m]) = 1) ∩ ∀m(m ∈ A ⇔ ∃n, β([n + 1, m]) = 1)}.

Using transformation t(β)([n, m]) = β([m + 1, n]), we have t(ε(δ(A))) = {β | ∀m > 0, (∃!n :

β([n, m]) = 1) ∧ ∀n(n ∈ A ⇔ ∃m, β([n, m]) = 1)} which is a non-empty subset of γ (A). So
ε ◦ δ ≺ γ , realized by t .

Take p : N → N × N the bijective inverse of [, ]. Let t : 2ω
→ 2ω be the representable map

such that t(α)([n, m]) = 1 ⇔ (α(p(n)) = 1 ∧ p0(n) + 1 = m) ∨ (α(p(n)) = 0). Take α ∈ γ (A).
For a natural number n, either α(p(n)) = 1 or α(p(n)) = 0 and there is exactly one m equal to
p0(n)+1. So ∀n∃!m, t(α)([n, m]) = 1. Secondly, α ∈ γ (A) means that for any n, n ∈ A is true if
and only if there is an m such that α([n, m]) = 1. α([n, m]) = 1 means t(α)([[n, m], m+1]) = 1,
so ∃k, t(α)([k, m + 1]) = 1. If on the contrary, for all m: α([n, m]) = 0 we get that for all
k, t(α)(k, m + 1) = 0 since if t(α)(k, m + 1) = 1, p0(k) = m and α([m, p0(k)]) = α(p(k)) = 1
which is against the assumption. So ∀m(m ∈ A ⇔ ∃n, α([n, m +1]) = 1). We can conclude that
t(α) ∈ ε ◦ δ. So γ ≺ ε ◦ δ. □

A decidable applicative morphism in the other direction can be given by a map ζ : 2ω
→ K2

simply using the inclusion 2 ⊂ N.

Proposition 2.15. The applicative morphisms ε and ζ give an equivalence between 2ω and K2.

Proof. For α ∈ K2 we have ζ (ε(α))([n, m]) = 0 ⇔ α(n) ̸= m, ζ (ε(α))([n, m]) = 1 ⇔ α(n) =

m and ζ (ε(α))([n, m]) < 2. So it is easy to see that the maps α ↦→ ζ (ε(α)) and its inverse (which
is a partial map) are continuous in the Baire topology. This topology is conrep in K2, hence
ζ ◦ ε ∼ idK2 .

Since the map ε ◦ ζ has the same properties with respect to the Cantor topology, we can use
the same argument to conclude that ε ◦ ζ ∼ id2ω . □

Proposition 2.16. There cannot be an isomorphism between 2ω and K2.

Proof. Assume such an isomorphism exists. It must be given by applicative morphisms both
ways such that their compositions are equal to the identity. So it must be given by a bijective
map f : 2ω

→ K2 such that f and f −1 are applicative morphisms. We will prove that this f is
continuous.

Consider the following set, V = K2 − {TK2} and note that it can be written as
⋃

¬(σ⊑TK2 )Uσ

and hence it is open in the Baire topology. Take t the single element such that f (t) = TK2 , then
W := γ −1(V ) = γ −1(K2 − {TK2}) = 2ω

− γ −1(TK2 ) = 2ω
− {t} =

⋃
nUn ↦→(1−t(n)) is open in

the Cantor topology.
Let Uσ be a standard open in the Baire topology. Take gσ : K2 → K2 to be the map:

gσ (α)(n) :=

{
FK2 if α ∈ Uσ

TK2 otherwise.

This function is continuous hence representable in K2 and we have g−1
σ (V ) = Uσ . Because f

gives an isomorphism, f −1 must form an applicative morphism, so there must be a representable
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(hence continuous) map h : 2ω
→ 2ω such that f ◦ h = gσ ◦ f . So f −1(Uσ ) = f −1(g−1

σ (V )) =

h−1( f −1(V )) = h−1(W ) which is open since W is open and h is continuous. So the inverse
image through f of any basic open is open, hence f is continuous.

Now the Cantor topology is compact, so by f we must conclude that the Baire topology is
compact, which is not the case. We have a contradiction. So we cannot have an isomorphism. □

We see that 2ω and K2 are an example of two pcas that are equivalent but not isomorphic.

3. Independence results

We have seen that we get decidability as a side-effect of adding the complement function
to P(N). So in terms of the functions they represent, P(N)[C] is at least as powerful as
P(N)[Eq]. We can ask ourselves whether the two are different. The following result can be
used to investigate the limits of what P(N)[Eq] and other similarly defined pcas can represent.

Proposition 3.1. Given a pca A and a partial map F : A → A whose image is countable. Then
for any partial map f : A → A representable in A[F], there is a countable partition {Vi }i∈N of
dom( f ) such that for all i : f |Vi is representable in A.

Proof. Let the element a ∈ A represent f . So for every b ∈ dom( f ), there is a sequence
c0, . . . , cn−1 in A such that

a[b, F(c0), . . . , F(ci1 )] = [F, ci ] for i < n
a[b, F(c0), . . . , F(cn−1)] = [T, f (b)].

Call the sequence (F(c0), . . . , F(cn−1)) a computation sequence for b. Now it is clear that if
V(F(c0),...,F(cn−1)) is the set of all b with (F(c0), . . . , F(cn−1)) as computation sequence, then
f |V(F(c0),...,F(cn−1)) is representable in A. Now there are, by assumption on F , only countably many
computation sequences, so the sets V(F(c0),...,F(cn−1)) form a countable partition on the domain
of f . □

Since Eq is a function that only gives two values, we can use this result to say something about
the representable maps in A[Eq] for certain pcas A.

Theorem 3.2.

(a) The set P(N) cannot be written as a countable union
⋃

i∈NVi such that the complement
function C is Scott continuous on each Vi .

(b) The function C is, relative to P(N), not computable in any function F : P(N) → P(N)
with countable image.

Proof. Suppose there is a partition {Vn}n∈N of P(N) such that C |Vn is representable in P(N),
hence continuous in the Scott topology.

We will create a sequence of pairs of finite sets {(pi , qi )}i∈N such that for each i :

1. pi ∩ qi = ∅

2. pi ⊂ pi+1 and qi ⊂ qi+1
3. U qi+1

pi+1 ∩ Vi = ∅.

Let p0 = ∅ = q0. Given two finite sets (pi , qi ) such that pi ∩qi = ∅. We construct (pi+1, qi+1)
in three cases. Let n = max(pi ∪ qi ) + 1.
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CASE 1: If U qi
pi ∩ Vi = ∅, we just take pi+1 = pi and qi+1 = qi .

CASE 2: If U qi
pi ∩ Vi ∩ U {n}

̸= ∅, take A ∈ U qi
pi ∩ Vi ∩ Un . Since C |Vi is Scott continuous, there is

a Scott open W such that C−1(Un) ∩ Vi = W ∩ Vi . Since A ∈ U {n}
= C−1(Un) and A ∈ Vi we

have A ∈ W . So there is a finite set r such that A ∈ Ur ⊆ W . Since A ∈ U qi
pi , r ∩qi = ∅. We take

pi+1 = pi ∪ r ∪ {n} and qi+1 = qi . Then conditions 1 and 2 are satisfied. Take A ∈ U qi+1
pi+1 , then

r ⊂ A means A ∈ W and n ∈ A means A ̸∈ U {n}
= C−1(Un), hence A ̸∈ Vi . So U qi+1

pi+1 ∩ Vi = ∅.
CASE 3: U qi

pi ∩ Vi ∩ U {n}
= ∅. Take pi+1 = pi and qi+1 = qi ∪ {n}. Then conditions 1 and 2 are

satisfied, and U qi+1
pi+1 ∩ Vi = U qi

pi ∩ U {n}
∩ Vi = ∅.

With such a sequence, P :=
⋃

i pi has the property that for all n, P ∩ qn = ∅. So for each n:
P ∈ U qn+1

pn+1 hence P ̸∈ Vn . So P is not included in the partition of P(N). We have a contradiction
and conclude that C is not continuous over any countable partition of P(N), and by Proposition
3.1, C is not representable in P(N)[F] for any partial map F with countable image. □

We can conclude that the set of maps representable by P(N)[Eq] is a proper subset of the set of
representable maps over P(N)[C].

We can use a similar argument when talking about K2. The following general result means
that S is never, relative to K2, computable in a function with countable image (such as Eq).

Theorem 3.3.

(a) The set NN cannot be written as a countable union
⋃

i∈NVi such that S is Cantor continuous
on each Vi .

(b) The function S is, relative to K2, not computable in any function F : NN
→ NN with

countable image.

Proof. Suppose (Vi )i∈N is a collection of subsets of NN such that S is continuous on each Vi . We
shall construct an α ∈ NN such that α ̸∈

⋃
i∈NVi .

To this end we construct a sequence of pairs (σi , ρi )i∈N with the following properties: σi is a
finite sequence of numbers, ρi is a finite set of numbers, and the following hold:

(i) im(σi ) ∩ ρi = ∅

(ii) σi is an initial segment of σi+1; ρi ⊆ ρi+1
(iii) writing Uρ

σ = {α ∈ NN
| σ is an initial segment of α, im(α) ∩ ρ = ∅}, we have Uρi+1

σi+1 ∩ Vi

= ∅.

Clearly, given such a sequence, there is an α ∈
⋂

i∈NUρi
σi , and this α cannot be in any Vi .

Now for the construction: let σ0 be the empty sequence; ρ0 = ∅.
Suppose (σi , ρi ) have been constructed. Let m be the first number such that m+1 ̸∈ im(σi∪ρi ).

We consider the set

Z i = Vi ∩ Uρi
σi

∩ {α ∈ NN
| m + 1 ̸∈ im(α)}.

Note that {α ∈ NN
| m + 1 ̸∈ im(α)} = S−1({α ∈ NN

| α(m) = m + 1}). Since {α ∈ NN
| α(m) =

m + 1} is open in the Baire space topology and S is continuous on Vi , we have an open set W
such that

Z i = Vi ∩ Uρi
σi

∩ W.

We distinguish two cases:
CASE 1: Z i ̸= ∅. There must be some extension τ of σi such that Vi ∩ Uτ ∩ Uρi

σi is a nonempty
subset of Z i . Let σi+1 be τ ∗ (m + 1) (m + 1 appended to τ as last element); let ρi+1 = ρi . Then
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(i) and (ii) are satisfied; and if α ∈ Uρi+1
σi+1 then α ∈ Uτ ∩ Uρi

σi , so, since α ̸∈ Z i , we must have
α ̸∈ Vi . So (iii) holds as well.
CASE 2: Z i = ∅. Then for all α ∈ Vi ∩ Uρi

σi we have m + 1 ∈ im(α). Let σi+1 = σi ;
ρi+1 = ρi ∪ {m + 1}. Again, (i) and (ii) are satisfied and for α ∈ Uρi+1

σi+1 we cannot have α ∈ Vi .
This finishes the construction of the sequence (σi , ρi ). There is a common extension of

the σi avoiding the ρi in its image. This extension is not included in the partition. Hence by
contradiction, we conclude part (a) of the theorem. Part (b) is a consequence of part (a) and
Proposition 3.1. □

We see that the recursion theory of K2 is radically different from the ordinary case: the function
S is, for example, not computable in its own graph seen as a characteristic function of ordered
pairs. A similar conclusion holds for P(N).

Given the equivalence between 2ω and K2 in 2.15 and Theorem 3.3, the following theorem
does not come as a surprise.

Theorem 3.4.

(a) The set 2ω cannot be written as a countable union
⋃

i∈NVi such that Eq∞ is Cantor
continuous on each Vi .

(b) The function Eq∞ is, relative to 2ω, not computable in any function F : 2ω
→ 2ω with

countable image.

Proof. We start with some notation. For a sequence σ ∈ 2∗ we write Uσ := {α ∈

2ω
| σ is an initial segment of α} and Un ↦→t := {α ∈ 2ω

| α(n) = t}. These are Cantor open sets.
Take P : 2ω

→ 2ω the projection map where P(α)(n) = 1 ⇔ ∃m : α([n, m]) = 1. Note that
there is a Cantor continuous maps f such that P = Eq∞ ◦ f . So we will prove the theorem for
P instead of Eq∞.

Assume there is a countable partition {Vi }i∈N of 2ω such that for all i , P|Vi is Cantor
continuous. We inductively define a sequence of compatible partial maps N → 2, beginning
with the map f0 that is nowhere defined. For any partial map f , we define

W f := {α ∈ 2ω
| ∀n : f (n)↓ ⇒ α(n) = f (n)}.

So W f0 = 2ω. In each step, from fi we construct an extension fi+1 such that ∀n : fi (n)↓ ⇒

( fi+1(n) = fi (n)) and W fi ∩ Vi = ∅. If such a sequence exist, then there is an extension f ∈ 2ω

of all fi such that f ̸∈ Vi for all i , which is impossible, since the Vi -s form a partition.
Let pn : 2ω

→ 2ω be the nth projection: pn(α)(m) = α([n, m]). During the construction of
the fi -s, we will also prove for each fi that there is a νi with the following property:

∀m ≥ νi : pm(W fi ) = 2ω(⇔ ∀m ≥ νi , ∀k ∈ N : fi ([k, m]) ↑).

In case of f0 we have for all m ∈ N: pm(W f0 ) = pm(2ω) = 2ω. So we can take ν0 = 0.
Assume we have fi and νi such that ∀m ≥ νi : pm(W fi ) = 2ω. If W fi ∩ Vi = ∅, we just take

fi+1 = fi and νi+1 = νi . Now assume W fi ∩ Vi ̸= ∅. Since P|Vi is Cantor continuous, there is a
Cantor open O such that P−1(Uνi ↦→1) ∩ Vi = O ∩ Vi . We distinguish two cases.
CASE 1: W fi ∩ O ̸= ∅, take some α ∈ W fi ∩ O . Since O is a Cantor open, O =

⋃
jUσ j for

certain finite sequences σ j . α ∈ O means there is a j such that σ j is an initial segment of α. Let
the partial map g : N → 2 be the extension of both fi and σ j (g(m) = σ j (m) if m < lh(σ j ), else
g(m) = fi (m)). Here, lh gives the length of the sequence. So α ∈ Wg . Since pνi (W fi ) = 2ω and
σ j is finite, we can find an m such that g([νi , m]) ↑. Let fi+1 be the extension of g defined on
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[n, m] as 1. So W fi+1 = W fi ∩ Uσ j ∩ U[νi ,m]→1. For β ∈ W fi+1 , we have β ∈ O since β ∈ Uσ j

and β ∈ P−1(Uνi ↦→0) since β([νi , m]) = 1. So β ̸∈ Vi . Secondly, since σ j is finite, there are only
finitely many additions to fi , so there must be an n such that ∀m ≥ n : pm(W fi+1 ) = 2ω. Take
νi+1 such an n.
CASE 2: W fi ∩ O = ∅. This means that for any α ∈ W fi ∩ fi , we have P(α)(νi ) = 0, so there
must be an m such that α([νi , m]) = 1. Let fi+1 be the extension of fi where fi+1([νi , m]) = 0
for all m, and everywhere else fi+1(m) = fi (m) (Note that fi was not yet defined on those
[νi , m] because of the νi condition). So, for each β ∈ W fi+1 we have P(β)(νi ) = 1, hence
W fi+1 ∩ Vi = ∅. Note that we can take νi+1 = νi + 1, since we only extended over the [νi , m]-s.

That finishes the construction of the fi . Since they are compatible, there is an f : N → 2
extending all of them. For this f we have for all i ∈ N: { f } ∩ Vi ⊆ W fi ∩ Vi = ∅. So f is
not included in the partition. This is a contradiction. So P is not continuous over a countable
partition of 2ω, so neither is Eq∞. Part (b) follows from 3.1. □

We have seen that adding equality to a pca adds only limited computational power. Could it be
that the pca with Eq added, could still be simulated in the old one? For instance in the case of
P(N), K2 and 2ω?

Proposition 3.5. Let A be a decidable pca with uncountably many elements. Let B be a pca
such that there is a countably based non-trivial topology which is repcon for B. Then there is no
decidable applicative morphism from A to B.

Proof. Let γ : A → B be a decidable applicative morphism, and let T be a non-trivial
countably based topology which is repcon for B. Let {Ui }i∈N be a countable basis of T and
take Γ =

⋃
a∈Aγ (a).

Let U be a non-trivial open in T . Take x ∈ U and y ∈ B − U . By definition of the Booleans,
there is a representable map sending TB to x and FB to y. Since T is repcon for B there must be
an open V such that TB ∈ V and FB ̸∈ V .

Take an element x ∈ A and denote dx : A → A the map dx (a) := Eq(x, a) which is
representable in A because of decidability. Since γ is a decidable applicative morphism, we can
construct a partial map rx : B → B such that:

∀a ∈ A, b ∈ γ (a) : rx (b) :=

{
TB if a = x
FB otherwise.

Note that for y ∈ A with y ̸= x we have rx (γ (y)) = {FB} so γ (x) ∩ γ (y) = ∅. So {γ (y)}y∈A
forms a partition of Γ .

Now, since T is repcon for B, there must be an open U such that U ∩ dom(rx ) = r−1
x (V ).

We have Γ ⊂ dom(rx ), so U ∩ Γ = r−1
x (V ) ∩ Γ . Take v ∈ γ (x) ̸= ∅, then v ∈ Γ and

rx (v) = TB ∈ V . So r−1
x (V ) ∩ Γ ̸= ∅. Now take b ∈ r−1

x (V ) ∩ Γ . Since b ∈ Γ there is an
a ∈ A such that b ∈ γ (a). Since b ∈ r−1

x (V ) we have rx (b) ̸= FB, so a = x . We get that
∅ ̸= r−1

x (V ) ∩ Γ ⊂ γ (x). Since T has a countable basis and b ∈ U there must be an i ∈ N such
that b ∈ Uix . We can conclude that ∅ ̸= Ui ∩ Γ ⊂ U ∩ Γ = r−1

x (V ) ∩ Γ ⊂ γ (x).
So for any x ∈ A there is an i ∈ N such that ∅ ̸= Ui ∩ Γ ⊂ γ (x). Since for x ̸= y we have

γ (x) ∩ γ (y) = ∅, we must have a distinct i ∈ N for each x ∈ A. But this is in contradiction with
the fact that A is uncountable. We conclude γ cannot exist. □

Now, since the Scott, Baire and Cantor topologies do have countable bases, we get the following
direct consequence.
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Corollary 3.6. There are no decidable applicative morphisms from P(N)[Eq], K2[Eq] and
2ω[Eq] into P(N), K2 and 2ω.

4. Recursive aspects

A sub-pca B of a pca A is a pca defined on a subset of A, inheriting the applicative structure
of A and containing some choice of k and s functioning as the appropriate combinators for both
A and B.

Let RE ⊂ P(N) be the recursively enumerable subsets of N. With the application from P(N),
RE forms a sub-pca of P(N) (see [1]). Note that for any A ∈ RE , we have that its complement
C(A) is in RE , precisely if it is recursive. So in RE , C is a partial map defined on the subset
Rec ⊂ RE of recursive sets. By the same proof of decidability of P(N)[C] we can see that
Eq|Rec is representable in RE[C].

Now consider the following set: Uni = {[n, m] | φn(m)↓}, containing the pairs n and m such
that the nth Turing machine halts with input m. Since we have a universal Turing machine, this
set is recursively enumerable. It also contains all RE sets, meaning for any A ∈ RE , there is an
n such that Unin := {m ∈ N | [n, m] ∈ Uni} = A. This allows us to enumerate all RE sets and
search through them.

Lemma 4.1. C is representable in RE[Eq].

Proof. We define Eq as a map on a single argument Eq ′, so Eq ′([A, B]) = Eq(A, B). For A
and B, we have that B = C(A) if and only if A ∪ B = N and A ∩ B = ∅. To combine the
two into a single check, we can write a function representable in RE defined as I c(A, B) :=

[[A ∪ B, A ∩ B], [N, ∅]]. Then Eq ′(I c(A, B)) = T ⇔ (B = C(A)). Now we want an algorithm
that checks this for all Unin , a Z ∈ RE such that for all n and U0 = {0}, . . . , Un−1 = {0} we
have Z [A, U0, . . . , Un−1] = [F, I c(A, Unin)] and Z [A, U0, . . . , Un−1, {1}] = [T, Unin]. Then
Z A = Unin such that Unin = C(A) (if it exists). But such a Z ∈ RE can simply be given by

Z := ⟨x⟩if (lh(x) = 0) then Uni0 else
if (lst x) then [T, I c(fst x, Unilh(x))] else [F, Unilh(x)]

where fst and lst respectively give the first and the last element of a sequence, and lh gives the
length of a sequence. □

Note that this algorithm does not halt if A does not have a complement (is not in Rec), which is
fine since C is not defined there. Secondly, note that we cannot do this trick using Eq|Rec, since
by ranging over all RE sets, we also need to check equality for non-Rec sets.

We take R ⊂ 2ω to be the subset of recursive 0 − 1 sequences. Similarly to the recursive
sub-pca of K2 in [1], we can see R as a sub-pca of 2ω. The usual bijection b : 2ω

→ P(N) also
gives a bijection in = b|R : R → Rec where Rec ⊂ RE . So we have a way to relate R to RE .

Lemma 4.2. The injective function in : R → RE forms a decidable applicative morphism from
R[Eq] to RE[C]

Proof. Take (−)′ : RE[C] → RE[C] to be the representable map X ↦→ (2X ) ∪ (2C(X )). We
want to represent application ·R of R ⊂ 2ω in RE[C], by factoring it through the map (−)′. So
we want to represent a map which for each A and B sends (A′, B ′) to A·Rec B in RE ⊂ P(N).
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We do that by taking Z ∈ P(N) to be the set containing elements of the form [v, [n, m]] such
that ∃u0, u1, . . . , ul+1:

em := {2i | ui = 1} ∪ {2i + 1 | ui = 0}

ev := {2[n, u0, . . . , uk], 2[n, u0, . . . , uk+1]} ∪ {2[n, u0, . . . , ul−1] | l ≤ k}.

Note that because of the finiteness of the em and ep and the computability of the enumeration of
finite sets e(−), we can computably check whether [v, [n, m]] has this property, hence Z ∈ RE .
Now note that if A·R B↓, (A·R B)(n) = 1 precisely when n ∈ Z A′ B ′. So in that case
Z A′ B ′

= A·R B. We can conclude that in : R → RE[C] is an applicative morphism realized by
⟨AB⟩Z [A, C(A)][B, C(B)]. Since Eq|Rec is realized in RE[C], we have that the equality Eq
in R is representable with respect to in. So in : R[Eq] → RE[C] is a decidable applicative
morphism. □

We conclude the following.

Corollary 4.3. We have a system of decidable applicative morphisms:

RE[Eq|Rec] id →→ RE[C] id →→ RE[Eq]

R[Eq]

in

↑↑
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