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Abstract

In the effective topos there exists a chain-complete distributive lattice
with a monotone and progressive endomap which does not have a fixed
point. Consequently, the Bourbaki-Witt theorem and Tarski’s fixed-point
theorem for chain-complete lattices do not have constructive (topos-valid)
proofs.

1 Introduction

In this note I show that in the effective topos Eff [2] there is a chain-complete
distributive lattice with a monotone and progressive endomap which does not
have a fixed point. An immediate consequence of this is that several fixed-point
theorems for chain-complete posets have no constructive (topos-valid) proofs,
cf. Section 5.

The outline of the argument is as follows. In Eff every chain is a discrete ob-
ject in the sense of [3], hence it has at most countably many global points. Con-
sequently, the poset ∇ω1 is chain-complete in the effective topos, even though it
is only countably complete in Set. The successor function on ∇ω1 is monotone
and progressive, and obviously does not have a fixed point.

We work out the details of the above argument carefully in order not to
confuse external and internal notions of chain-completeness, discreteness, and
countability. For the uninitiated, we have included a brief overview of the
effective topos in Appendix A.

2 Preliminary observations

Let 2 = {0, 1} be the set with two elements. An object X = (|X|,=X) in Eff is
orthogonal to ∇2 when the diagonal map X → X∇2 is an isomorphism.1 In the

1Such objects are also called discrete, see [3].
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internal language of Eff the condition may be expressed by the formula

∀ f ∈X∇2 .∀ p∈∇2 . f(p) = f(1).

The object X∇2 is described explicitly as the set |X|2 with the equality predicate

[(x0, y0) =X∇2 (x1, y1)] = [x0 =X x1] ∩ [y0 =X y1].

Let us compute exactly how universal quantification over X∇2 and ∇2 works. If
φ : 2×|X| → P(N) is a strict extensional relation on∇2×X then ∀ p∈∇2 . φ(p, x)
is represented by the strict extensional relation

x 7→ φ(0, x) ∩ φ(1, x).

If φ : |X|2 × |Y | → P(N) is a strict extensional relation on the object X∇2 × Y
then ∀ f ∈X∇2 . φ(f, y) is represented by the strict extensional relation on Y
which maps y ∈ |Y | to⋂

x0,x1∈|X|([x0 =X x0] ∧ [x1 =X x1]⇒ φ(x0, y) ∩ φ(x1, y)).

The object B = ({0, 1},=B) with

[x =B y] =


{0} if x = y = 0,
{1} if x = y = 1,
∅ otherwise,

is isomorphic to 1+1. We call it the object of Boolean values. By the uniformity
principle [5, 3.2.21], the following statement is valid in the internal logic of Eff:
for all φ ∈ P(∇2×B), if ∀ p∈∇2 .∃ d∈B .φ(p, d) then ∃ d∈B .∀ p∈∇2 . φ(p, d).

Lemma 1 The following statement is valid in the internal logic of Eff: for all
φ, ψ : ∇2→ Ω, if ∀ p∈∇2 . (φ(p) ∨ ψ(p)) then ∀ p∈∇2 . φ(p) or ∀ p∈∇2 . ψ(p).

Proof. We argue internally in Eff. Suppose ∀ p∈∇2 . (φ(p) ∨ ψ(p)) Then

∀ p∈∇2 .∃ d∈ 2 . ((d = 0 ∧ φ(p)) ∨ (d = 1 ∧ ψ(p))).

By the uniformity principle

∃ d∈ 2 .∀ p∈∇2 . ((d = 0 ∧ φ(p)) ∨ (d = 1 ∧ ψ(p))).

Consider such a d ∈ 2. If d = 0 then ∀ p∈∇2 . φ(p), and if d = 1 then
∀ p∈∇2 . ψ(p). �

For an object X and variable D ranging over P(X), let orth∇2(D) be the
following formula in the internal language of Eff:

∀ f ∈X∇2 . (∀ p∈∇2 . f(p) ∈ D) =⇒ (∀ p∈∇2 . f(p) = f(1)).
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We compute a strict extensional relation O which represents orth∇2(−) in the
case X = ∇S. The underlying set of P(∇S) is P(N)S , and every D : S → P(N)
is strict and extensional with respect to ∇S. Thus our strict extensional relation
O takes D : S → P(N) to

O(D) =
⋂

x0,x1∈S D(x0) ∩D(x1)⇒{n ∈ N | x0 = x1}.

This is an inhabited set if, and only if, x0 6= x1 implies D(x0) ∩D(x1) = ∅ for
all x0, x1 ∈ S. Consequently, if O(D) 6= ∅ then there are at most countably
many x ∈ S for which D(x) 6= ∅.

In the internal language, define the object of subobjects of X orthogonal to
∇2 as

Orth∇2(X) = {D ∈ P(X) | orth∇2(D)}.

When X = ∇S, the object Orth∇2(∇S) has the underlying set P(N)S and the
equality predicate

[D =Orth∇2(∇S) E] = (D⇒ E) ∧ (E⇒D) ∧O(D).

For a set S let Pω(S) be the family of countable subsets of S.

Lemma 2 Suppose S is a set and let cl¬¬ : P(∇S)→ ∇P(S) be the ¬¬-closure
operator. The restriction of cl¬¬ to Orth∇2(∇S) factors through ∇Pω(S):

Orth∇2(∇S) i //

���
�
�
�

P(∇S)

cl¬¬

��
∇Pω(S)

∇j // ∇P(S)

Proof. In the diagram above j is the inclusion Pω(S) ⊆ P(S). Recall that ¬¬
as a morphism Ω→ ∇2 is represented by the functional relation F : P(N)×2→
P(N) defined by F (P, q) = [f(p) =∇2 q], where

f(p) =

{
1 if p 6= ∅,
0 if p = ∅.

The operator cl¬¬ : P(∇S)→ ∇P(S) is composition with ¬¬. It is represented
by the functional relation G : P(N)S × P(S) → P(N), defined by G(P,Q) =
[g(P ) =∇P(S) Q] where

g(P ) = {x ∈ S | P (x) 6= ∅}.

Notice that, for all P1, P2 : S → P(N), if

|= (P1⇒ P2) ∧ (P2⇒ P1)

then g(P1) = g(P2) (this is just extensionality of G).
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The inclusion i : Orth∇2(∇S) → P(∇S) is represented by the functional
relation I : P(N)S × P(NS) → P(N), defined by I(D,E) = [D =Orth∇2(∇S) E].
The composition cl¬¬ ◦ i is represented by the functional relation K : P(N)S ×
P(S)→ P(N) defined by

K(D,Q) = O(D) ∧ [g(D) =∇P(S) Q].

Now define H : P(N)S × Pω(S)→ P(N) by

H(D,Q) = O(D) ∧ [g(D) =∇P(S) Q].

Recall that O(D) 6= ∅ implies that there are at most countably many x ∈ S
for which D(x) 6= ∅. This implies that H is a total relation. It is in fact a
functional relation representing a morphism h : Orth∇2(∇S) → ∇Pω(S). It is
easy to verify that h is the required factorization of cl¬¬ ◦ i through ∇j. �

3 Posets and Chains in the Effective Topos

In this section we work in the internal logic of the effective topos. First we
recall several standard order-theoretic notions. A poset (L,≤) is an object L
with a relation ≤ which is reflexive, transitive, and antisymmetric. A lattice
(L,≤,∧,∨) is a poset in which every elements x, y ∈ L have a greatest lower
bound x∧y, and least upper bound x∨y. Note that a lattice need not have the
smallest and the greatest element. A lattice is distributive if ∧ and ∨ satisfy the
distributivity laws (x∧y)∨z = (x∨z)∧ (y∨z) and (x∨y)∧z = (x∧z)∨ (y∧z).
An endomap f : L→ L on a poset (L,≤) is monotone when

∀x, y ∈L . (x ≤ y =⇒ f(x) ≤ f(y)) ,

and progressive when ∀x∈L . x ≤ f(x).
For x ∈ L and S ∈ P(L) define bound(x, S) to be the relation

bound(x, S) ⇐⇒ ∀ y ∈L . (y ∈ S =⇒ y ≤ x) .

We say that z ∈ L is the supremum of S ∈ P(L) when

bound(z, S) ∧ ∀ y ∈L . (bound(y, S) =⇒ y ≤ z) .

Lemma 3 Suppose (L,≤) is a poset with a ¬¬-stable order. For all S ∈ P(L)
and x ∈ L, if x is the supremum of cl¬¬S then x is the supremum of S.

Proof. If ≤ is ¬¬-stable then

bound(x, cl¬¬S) ⇐⇒ ∀ y ∈L . (¬¬(y ∈ S) =⇒ y ≤ x)
⇐⇒ ∀ y ∈L . (y ∈ S =⇒ ¬¬(y ≤ x))
⇐⇒ ∀ y ∈L . (y ∈ S =⇒ y ≤ x)
⇐⇒ bound(x, S).
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Because cl¬¬S and S have the same upper bounds, if x is the supremum of one
of them then it is the supremum of the other as well. �

By a chain in a poset (L,≤) we mean C ∈ P(L) such that

∀x, y ∈L . (x ∈ C ∧ y ∈ C =⇒ x ≤ y ∨ y ≤ x) .

The object of chains in L is defined as

Ch(L) = {C ∈ P(P ) | ∀x, y ∈L . (x ∈ C ∧ y ∈ C =⇒ x ≤ y ∨ y ≤ x)}.

Proposition 4 Every chain is orthogonal to ∇2, i.e., Ch(L) ⊆ Orth∇2(L).

Proof. Consider any C ∈ Ch(L) and f : ∇2 → L such that ∀ p∈∇2 . f(p) ∈ C.
We need to show that f is constant. Because C is a chain we have

∀ p, q ∈∇2 . (f(p) ≤ f(q) ∨ f(q) ≤ f(p)) .

By a double application of Lemma 1 we obtain

(∀ p, q ∈∇2 . f(p) ≤ f(q)) ∨ (∀ p, q ∈∇2 . f(q) ≤ f(p)).

Because ≤ is antisymmetric, either of these two cases implies f(p) = f(q) for
all p, q ∈ ∇2, as required. �

4 The poset ∇ω1

Let (ω1,�) be the distributive lattice of countable ordinals in Set. This is not
a chain-complete poset, but it is complete with respect to countable subsets.
More precisely, if Pω(ω1) is the family of all countable subsets of ω1 then there
is a map sup : Pω(ω1)→ ω1 such that sup(S) is the supremum of S ∈ Pω(ω1).

The object ∇ω1, ordered by ∇�, is a distributive lattice in Eff. One way to
see this is to observe that ∇ preserves finite products, therefore it maps models
of the equational theory of distributive lattices to models of the same theory.
Moreover, observe that ∇ preserves the negative fragment of logic (∀, ∧, =⇒ )
and that statement “x is the supremum of S” may be written in that fragment.
Therefore, the statement

∀S ∈∇Pω(ω1) . “∇ sup(S) is the supremum of S”

is valid in the internal language of Eff.

Lemma 5 The poset ∇ω1 is chain-complete in Eff.
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Proof. We claim that the supremum operator Ch(∇ω1)→ ∇ω1 is the composi-
tion

Ch(∇ω1)
⊆ // Orth∇2(∇ω1)

cl¬¬ // ∇(Pω(ω1))
∇ sup // ∇ω1

The arrows marked by ⊆ and cl¬¬ come from Lemmas 4 and 2, respectively.
We argue in the internal language of Eff. Consider any C ∈ Ch(∇ω1). Then

cl¬¬C ∈ Pω(ω1), therefore x = (∇ sup)(cl¬¬C) is the supremum of cl¬¬C. But
since the order on ∇ω1 is ¬¬-stable x is also the supremum of C by Lemma 3.
�

Corollary 6 In the effective topos, there is a chain-complete poset with a mono-
tone and progressive endomap which does not have a fixed point.

Proof. Consider ∇ω1 and the successor map. �

5 Consequences

The following theorems cannot be proved constructively, i.e., in higher-order
intuitionistic logic with Dependent Choice:

1. Knaster-Tarski Theorem [4] for chain-complete lattices: a monotone map
on a chain-complete lattice has a fixed point.

2. Bourbaki-Witt theorem [1, 6]: a progressive map on a chain-complete
poset has a fixed point above every point.
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A The Effective Topos

We rely on [5] as a reference on the effective topos and give only a quick overview
of the basic constructions here.

A.1 Definition of the effective topos

Recall that a non-standard predicate on a set X is a map P : X → P(N), where
we think of P (x) as the set of realizers (Gödel codes of programs) which witness
the fact that x has the property P . The non-standard predicates on X form a
Heyting prealgebra P(N)X with the partial order

P ≤ Q ⇐⇒ ∃n∈N .∀x∈X . ∀m∈P (x) . ϕn(m)↓ ∧ ϕn(m) ∈ Q(x),

where ϕn is the n-th partial recursive function and ϕn(m)↓ means that ϕn(m) is
defined. In words, P entails Q if there is a program that translates realizers for
P (x) to realizers for Q(x), uniformly in x. Predicates P and Q are equivalent,
written P ≡ Q, when P ≤ Q and Q ≤ P . If we quotient P(N)X by ≡ we obtain
an honest Heyting algebra, but we do not do that.

Let 〈−,−〉 be a computable pairing function on the natural numbers N, e.g.,
〈m,n〉 = 2m(2n+ 1). The Heyting prealgebra structure of P(N)X is as follows:

>(x) = N (1)
⊥(x) = ∅

(P ∧Q)(x) = {〈m,n〉 | m ∈ P (x) ∧ n ∈ Q(x)}
(P ∨Q)(x) = {〈0, n〉 | n ∈ P (x)} ∪ {〈1, n〉 | n ∈ Q(x)}

(P ⇒Q)(x) = {n ∈ N | ∀m∈P (x) . ϕn(m)↓ ∧ ϕn(m) ∈ Q(x)}.

We say that a non-standard predicate P is valid if > ≤ P , in which case we
write |= P . The condition > ≤ P is equivalent to requiring that

⋂
x∈X P (x)

contains at least one number. Often a non-standard predicate is given as a
map x 7→ φ(x) where φ is an expression with a free variable x. In this case we
abuse notation and write |= φ(x) instead of |= λx :X .φ(x). In other words, free
variables are to be implicitly abstracted over.

An object X = (|X|,=X) in the effective topos is a set |X| with a non-
standard equality predicate =X : |X| × |X| → P(N), which is required to be
symmetric and transitive (where we write [x =X y] instead of x =X y for better
readability):

|= [x =X y]⇒ [y =X x], (symmetric)
|= [x =X y] ∧ [y =X z]⇒ [x =X z]. (transitive)
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Usually we write EX(x) for [x =X x]. Think of EX as an “existence predicate”,
and EX(x) as the set of realizers which witness the fact that x exists.

In the effective topos a morphism F : X → Y is represented by a non-
standard functional relation F : X × Y → P(N). More precisely, we require
that

|= F (x, y)⇒ EX(x) ∧ EY (y) (strict)
|= [x =X x′] ∧ F (x, y) ∧ [y =Y y′]⇒ F (x′, y′) (extensional)
|= F (x, y) ∧ F (x, y′)⇒ [y =X y′] (single-valued)
|= EX(x)⇒

⋃
y∈Y EY (y) ∧ F (x, y). (total)

Two such functional relations F, F ′ represent the same morphism when F ≤ F ′
and F ′ ≤ F in the Heyting prealgebra P(N)X×Y . Composition of F : X → Y
and G : Y → Z is the functional relation G ◦ F given by

(G ◦ F )(x, z) =
⋃

y∈Y F (x, y) ∧G(y, z).

The identity morphism I : X → X is the relation I(x, y) = [x =X y].

A.2 Interpretation of first-order logic in Eff

The effective topos supports an interpretation of intuitionistic first-order logic,
which we outline in this section.

Each subobject of an objectX is represented by a strict extensional predicate,
which is a non-standard predicate P : X → P(N) that satisfies:

|= P (x)⇒ EX(x), (strict)
|= P (x) ∧ [x =X x′]⇒ P (x′). (extensional)

Such a predicate represents the subobject determined by the mono I : Y →
X where |Y | = |X|, [x =Y y] = [x =X y] ∧ P (x), and I(x, y) = P (x) ∧
[x =X y]. Strict predicates represent the same subobject precisely when they
are equivalent as elements of the Heyting prealgebra P(N)X .

The interpretation of first-order logic with equality in Eff may be expressed
in terms of strict extensional predicates and non-standard equality predicates.
Suppose φ is a formula with a free variable x ranging over an object X.2 The
interpretation of φ is the subobject of X represented by the non-standard pred-
icate [[φ]] : |X| → P(N), defined inductively on the structure of φ as follows.
The propositional part in the topos is interpreted by the Heyting prealgebra

2In the general case φ may contain free variables x1, . . . , xn ranging over objects
X1, . . . , Xn, respectively. In this case φ is interpreted as a subobject of X1 × Xn. It is
easy to work out the details once you have seen the case of a single variable.
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structure of non-standard predicates, cf. (1):

[[>]] = >
[[⊥]] = ⊥

[[θ ∧ ψ]] = [[θ]] ∧ [[ψ]]
[[θ ∨ ψ]] = [[θ]] ∨ [[ψ]]

[[θ⇒ ψ]] = [[θ]]⇒ [[ψ]].

Suppose ψ is a formula with free variables x of type X and y of type Y , and let
P = [[ψ]] : |X| × |Y | → P(N) be its interpretation. Then the interpretation of
the quantifiers is:

[[∃x∈X .ψ]](v) =
⋃

u∈|X| EX(u) ∧ P (u, v),

[[∀x∈X .ψ]](v) =
⋂

u∈|X| EX(u)⇒ P (u, v).

Suppose f, g : X → Y are morphisms represented by functional relations F,G :
X × Y → P(N). The atomic formula f(x) = g(x), where x is a variable of
type X, is interpreted as the subobject of X represented by the non-standard
predicate [[f(x) = g(x)]] : |X| → P(N), defined by

[[f(x) = g(x)]](u) =
⋃

v∈|Y |(F (u, v) ∧G(u, v)).

If other atomic predicates appear in a formula, their interpretation must be
given in terms of corresponding strict extensional predicates.

This concludes the interpretation of first-order logic. The interpretation is
sound for intuitionistic reasoning.

Lastly, let us give a description of powerobjects in the effective topos. If X
is an object then the powerobject P(X) is the set P(N)|X| with non-standard
equality predicate

[P =P(X) Q] = (P ⇒Q) ∧ (Q⇒ P ) ∧(⋂
x∈|X| P (x)⇒ EX(x)

)
∧
(⋂

x,y∈|X| P (x) ∧ [x =X y]⇒ P (y)
)
.

The complicated part in the second line says that P is strict and extensional. If x
and y are variables of type X and P(X), respectively, then the atomic predicate
x ∈ y is represented by the strict extensional predicate E : |X| × P(N)|X| →
P(N) defined by E(u, P ) = EX(u) ∧ EP(X)(P ) ∧ P (u).

A.3 The functor ∇ : Set→ Eff

The topos of sets Set is (equivalent to) the topos of sheaves for the ¬¬-topology
on Eff. The direct image part of the inclusion Set → Eff is the functor ∇ :
Set→ Eff which maps a set S to the object ∇S = (S,=∇S) where

[x =∇S y] = {n ∈ N | x = y}.
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A map f : S → T is mapped to the morphism ∇f : ∇S → ∇T represented by
the functional relation

(∇f)(x, y) = {n ∈ N | y = f(x)} .

The inverse image part is the global sections functor Γ : Eff → Set, defined as
Γ(X) = Eff(1, X).
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