On the Failure of Fixed-Point Theorems for Chain-complete Lattices in the Effective Topos

Andrej Bauer

January 15th, 2009

Abstract

In the effective topos there exists a chain-complete distributive lattice with a monotone and progressive endomap which does not have a fixed point. Consequently, the Bourbaki-Witt theorem and Tarski's fixed-point theorem for chain-complete lattices do not have constructive (topos-valid) proofs.

1 Introduction

In this note I show that in the effective topos Eff [2] there is a chain-complete distributive lattice with a monotone and progressive endomap which does *not* have a fixed point. An immediate consequence of this is that several fixed-point theorems for chain-complete posets have no constructive (topos-valid) proofs, cf. Section 5.

The outline of the argument is as follows. In Eff every chain is a discrete object in the sense of [3], hence it has at most countably many global points. Consequently, the poset $\nabla \omega_1$ is chain-complete in the effective topos, even though it is only countably complete in Set. The successor function on $\nabla \omega_1$ is monotone and progressive, and obviously does not have a fixed point.

We work out the details of the above argument carefully in order not to confuse external and internal notions of chain-completeness, discreteness, and countability. For the uninitiated, we have included a brief overview of the effective topos in Appendix A.

2 Preliminary observations

Let $2 = \{0, 1\}$ be the set with two elements. An object $X = (|X|, =_X)$ in Eff is *orthogonal to* $\nabla 2$ when the diagonal map $X \to X^{\nabla 2}$ is an isomorphism.¹ In the

¹Such objects are also called *discrete*, see [3].

internal language of Eff the condition may be expressed by the formula

$$\forall f \in X^{\nabla 2} . \forall p \in \nabla 2 . f(p) = f(1).$$

The object $X^{\nabla 2}$ is described explicitly as the set $|X|^2$ with the equality predicate

$$[(x_0, y_0) =_{X^{\nabla 2}} (x_1, y_1)] = [x_0 =_X x_1] \cap [y_0 =_X y_1]$$

Let us compute exactly how universal quantification over $X^{\nabla 2}$ and $\nabla 2$ works. If $\phi: 2 \times |X| \to \mathcal{P}(\mathbb{N})$ is a strict extensional relation on $\nabla 2 \times X$ then $\forall p \in \nabla 2 \cdot \phi(p, x)$ is represented by the strict extensional relation

$$x \mapsto \phi(0, x) \cap \phi(1, x).$$

If $\phi : |X|^2 \times |Y| \to \mathcal{P}(\mathbb{N})$ is a strict extensional relation on the object $X^{\nabla 2} \times Y$ then $\forall f \in X^{\nabla 2} . \phi(f, y)$ is represented by the strict extensional relation on Ywhich maps $y \in |Y|$ to

$$\bigcap_{x_0,x_1\in |X|}([x_0=_X x_0]\wedge [x_1=_X x_1] \Rightarrow \phi(x_0,y)\cap \phi(x_1,y)).$$

The object $B = (\{0, 1\}, =_B)$ with

$$[x =_B y] = \begin{cases} \{0\} & \text{if } x = y = 0, \\ \{1\} & \text{if } x = y = 1, \\ \emptyset & \text{otherwise,} \end{cases}$$

is isomorphic to 1+1. We call it the object of *Boolean values*. By the *uniformity* principle [5, 3.2.21], the following statement is valid in the internal logic of Eff: for all $\phi \in \mathsf{P}(\nabla 2 \times B)$, if $\forall p \in \nabla 2 \cdot \exists d \in B \cdot \phi(p, d)$ then $\exists d \in B \cdot \forall p \in \nabla 2 \cdot \phi(p, d)$.

Lemma 1 The following statement is valid in the internal logic of Eff: for all $\phi, \psi: \nabla 2 \to \Omega$, if $\forall p \in \nabla 2.(\phi(p) \lor \psi(p))$ then $\forall p \in \nabla 2.\phi(p)$ or $\forall p \in \nabla 2.\psi(p)$.

Proof. We argue internally in Eff. Suppose $\forall p \in \nabla 2.(\phi(p) \lor \psi(p))$ Then

$$\forall p \in \nabla 2 \, \exists d \in 2 \, ((d = 0 \land \phi(p)) \lor (d = 1 \land \psi(p))).$$

By the uniformity principle

$$\exists d \in 2 \, \forall p \in \nabla 2 \, ((d = 0 \land \phi(p)) \lor (d = 1 \land \psi(p))).$$

Consider such a $d \in 2$. If d = 0 then $\forall p \in \nabla 2 \cdot \phi(p)$, and if d = 1 then $\forall p \in \nabla 2 \cdot \psi(p)$.

For an object X and variable D ranging over $\mathsf{P}(X)$, let $\mathsf{orth}_{\nabla 2}(D)$ be the following formula in the internal language of Eff:

$$\forall f \in X^{\nabla 2} . (\forall p \in \nabla 2 . f(p) \in D) \implies (\forall p \in \nabla 2 . f(p) = f(1)).$$

We compute a strict extensional relation O which represents $\operatorname{orth}_{\nabla 2}(-)$ in the case $X = \nabla S$. The underlying set of $\mathsf{P}(\nabla S)$ is $\mathcal{P}(\mathbb{N})^S$, and every $D: S \to \mathcal{P}(\mathbb{N})$ is strict and extensional with respect to ∇S . Thus our strict extensional relation O takes $D: S \to \mathcal{P}(\mathbb{N})$ to

$$O(D) = \bigcap_{x_0, x_1 \in S} D(x_0) \cap D(x_1) \Rightarrow \{ n \in \mathbb{N} \mid x_0 = x_1 \}.$$

This is an inhabited set if, and only if, $x_0 \neq x_1$ implies $D(x_0) \cap D(x_1) = \emptyset$ for all $x_0, x_1 \in S$. Consequently, if $O(D) \neq \emptyset$ then there are at most countably many $x \in S$ for which $D(x) \neq \emptyset$.

In the internal language, define the object of subobjects of X orthogonal to $\nabla 2$ as

$$\mathsf{Orth}_{\nabla 2}(X) = \{ D \in \mathsf{P}(X) \mid \mathsf{orth}_{\nabla 2}(D) \}$$

When $X = \nabla S$, the object $\operatorname{Orth}_{\nabla 2}(\nabla S)$ has the underlying set $\mathcal{P}(\mathbb{N})^S$ and the equality predicate

$$[D =_{\mathsf{Orth}_{\nabla^2}(\nabla S)} E] = (D \Rightarrow E) \land (E \Rightarrow D) \land O(D).$$

For a set S let $\mathcal{P}_{\omega}(S)$ be the family of countable subsets of S.

Lemma 2 Suppose S is a set and let $cl_{\neg\neg} : P(\nabla S) \to \nabla \mathcal{P}(S)$ be the $\neg \neg -closure$ operator. The restriction of $cl_{\neg\neg}$ to $Orth_{\nabla 2}(\nabla S)$ factors through $\nabla \mathcal{P}_{\omega}(S)$:

Proof. In the diagram above j is the inclusion $\mathcal{P}_{\omega}(S) \subseteq \mathcal{P}(S)$. Recall that $\neg \neg$ as a morphism $\Omega \to \nabla 2$ is represented by the functional relation $F : \mathcal{P}(\mathbb{N}) \times 2 \to \mathcal{P}(\mathbb{N})$ defined by $F(P,q) = [f(p) =_{\nabla 2} q]$, where

$$f(p) = \begin{cases} 1 & \text{if } p \neq \emptyset, \\ 0 & \text{if } p = \emptyset. \end{cases}$$

The operator $\mathsf{cl}_{\neg\neg}: \mathsf{P}(\nabla S) \to \nabla \mathcal{P}(S)$ is composition with $\neg \neg$. It is represented by the functional relation $G: \mathcal{P}(\mathbb{N})^S \times \mathcal{P}(S) \to \mathcal{P}(\mathbb{N})$, defined by $G(P,Q) = [g(P) =_{\nabla \mathcal{P}(S)} Q]$ where

$$g(P) = \{ x \in S \mid P(x) \neq \emptyset \}.$$

Notice that, for all $P_1, P_2: S \to \mathcal{P}(\mathbb{N})$, if

$$\models (P_1 \Rightarrow P_2) \land (P_2 \Rightarrow P_1)$$

then $g(P_1) = g(P_2)$ (this is just extensionality of G).

The inclusion $i : \operatorname{Orth}_{\nabla 2}(\nabla S) \to \mathsf{P}(\nabla S)$ is represented by the functional relation $I : \mathcal{P}(\mathbb{N})^S \times \mathcal{P}(\mathbb{N}^S) \to \mathcal{P}(\mathbb{N})$, defined by $I(D, E) = [D =_{\operatorname{Orth}_{\nabla 2}(\nabla S)} E]$. The composition $\mathsf{cl}_{\neg \neg} \circ i$ is represented by the functional relation $K : \mathcal{P}(\mathbb{N})^S \times \mathcal{P}(S) \to \mathcal{P}(\mathbb{N})$ defined by

$$K(D,Q) = O(D) \land [g(D) =_{\nabla \mathcal{P}(S)} Q].$$

Now define $H: \mathcal{P}(\mathbb{N})^S \times \mathcal{P}_{\omega}(S) \to \mathcal{P}(\mathbb{N})$ by

$$H(D,Q) = O(D) \land [g(D) =_{\nabla \mathcal{P}(S)} Q].$$

Recall that $O(D) \neq \emptyset$ implies that there are at most countably many $x \in S$ for which $D(x) \neq \emptyset$. This implies that H is a total relation. It is in fact a functional relation representing a morphism $h : \operatorname{Orth}_{\nabla 2}(\nabla S) \to \nabla \mathcal{P}_{\omega}(S)$. It is easy to verify that h is the required factorization of $\operatorname{cl}_{\neg \neg} \circ i$ through ∇j . \Box

3 Posets and Chains in the Effective Topos

In this section we work in the internal logic of the effective topos. First we recall several standard order-theoretic notions. A poset (L, \leq) is an object L with a relation \leq which is reflexive, transitive, and antisymmetric. A *lattice* (L, \leq, \wedge, \vee) is a poset in which every elements $x, y \in L$ have a greatest lower bound $x \wedge y$, and least upper bound $x \vee y$. Note that a lattice need not have the smallest and the greatest element. A lattice is *distributive* if \wedge and \vee satisfy the distributivity laws $(x \wedge y) \vee z = (x \vee z) \wedge (y \vee z)$ and $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$. An endomap $f: L \to L$ on a poset (L, \leq) is *monotone* when

$$\forall x, y \in L \, (x \le y \implies f(x) \le f(y)) \,,$$

and progressive when $\forall x \in L \, . \, x \leq f(x)$.

For $x \in L$ and $S \in \mathsf{P}(L)$ define $\mathsf{bound}(x, S)$ to be the relation

 $\mathsf{bound}(x,S) \iff \forall \, y \,{\in}\, L\,.\, (y \,{\in}\, S \implies y \,{\leq}\, x)\,.$

We say that $z \in L$ is the *supremum* of $S \in \mathsf{P}(L)$ when

 $\mathsf{bound}(z,S) \land \forall y \in L \,.\, (\mathsf{bound}(y,S) \implies y \leq z) \,.$

Lemma 3 Suppose (L, \leq) is a poset with a $\neg\neg$ -stable order. For all $S \in P(L)$ and $x \in L$, if x is the supremum of $cl_{\neg\neg}S$ then x is the supremum of S.

Proof. If \leq is $\neg\neg$ -stable then

$$\begin{split} \mathsf{bound}(x,\mathsf{cl}_{\neg\neg}S) &\iff \forall \, y \in L \, . \, (\neg \neg (y \in S) \implies y \leq x) \\ &\iff \forall \, y \in L \, . \, (y \in S \implies \neg \neg (y \leq x)) \\ &\iff \forall \, y \in L \, . \, (y \in S \implies y \leq x) \\ &\iff \mathsf{bound}(x,S). \end{split}$$

Because $cl_{\neg \neg}S$ and S have the same upper bounds, if x is the supremum of one of them then it is the supremum of the other as well.

By a *chain* in a poset (L, \leq) we mean $C \in \mathsf{P}(L)$ such that

$$\forall x, y \in L \, (x \in C \land y \in C \implies x \le y \lor y \le x).$$

The *object of chains in* L is defined as

$$\mathsf{Ch}(L) = \{ C \in \mathcal{P}(P) \mid \forall x, y \in L \, (x \in C \land y \in C \implies x \le y \lor y \le x) \}.$$

Proposition 4 Every chain is orthogonal to $\nabla 2$, i.e., $Ch(L) \subseteq Orth_{\nabla 2}(L)$.

Proof. Consider any $C \in Ch(L)$ and $f: \nabla 2 \to L$ such that $\forall p \in \nabla 2. f(p) \in C$. We need to show that f is constant. Because C is a chain we have

 $\forall p, q \in \nabla 2. (f(p) \le f(q) \lor f(q) \le f(p)).$

By a double application of Lemma 1 we obtain

$$(\forall p, q \in \nabla 2. f(p) \le f(q)) \lor (\forall p, q \in \nabla 2. f(q) \le f(p)).$$

Because \leq is antisymmetric, either of these two cases implies f(p) = f(q) for all $p, q \in \nabla 2$, as required.

4 The poset $\nabla \omega_1$

Let (ω_1, \preceq) be the distributive lattice of countable ordinals in Set. This is not a chain-complete poset, but it is complete with respect to countable subsets. More precisely, if $\mathcal{P}_{\omega}(\omega_1)$ is the family of all countable subsets of ω_1 then there is a map sup : $\mathcal{P}_{\omega}(\omega_1) \to \omega_1$ such that sup(S) is the supremum of $S \in \mathcal{P}_{\omega}(\omega_1)$.

The object $\nabla \omega_1$, ordered by $\nabla \preceq$, is a distributive lattice in Eff. One way to see this is to observe that ∇ preserves finite products, therefore it maps models of the equational theory of distributive lattices to models of the same theory. Moreover, observe that ∇ preserves the negative fragment of logic ($\forall, \land, \Longrightarrow$) and that statement "x is the supremum of S" may be written in that fragment. Therefore, the statement

 $\forall S \in \nabla \mathcal{P}_{\omega}(\omega_1)$. " $\nabla \sup(S)$ is the supremum of S"

is valid in the internal language of Eff.

Lemma 5 The poset $\nabla \omega_1$ is chain-complete in Eff.

Proof. We claim that the supremum operator $\mathsf{Ch}(\nabla \omega_1) \to \nabla \omega_1$ is the composition

$$\mathsf{Ch}(\nabla \omega_1) \xrightarrow{\subseteq} \mathsf{Orth}_{\nabla 2}(\nabla \omega_1) \xrightarrow{\mathsf{cl}_{\neg \neg}} \nabla(\mathcal{P}_{\omega}(\omega_1)) \xrightarrow{\nabla \sup} \nabla \omega_1$$

The arrows marked by \subseteq and $cl_{\neg\neg}$ come from Lemmas 4 and 2, respectively.

We argue in the internal language of Eff. Consider any $C \in \mathsf{Ch}(\nabla \omega_1)$. Then $\mathsf{cl}_{\neg \neg C} \in \mathcal{P}_{\omega}(\omega_1)$, therefore $x = (\nabla \sup)(\mathsf{cl}_{\neg \neg C})$ is the supremum of $\mathsf{cl}_{\neg \neg C}$. But since the order on $\nabla \omega_1$ is $\neg \neg$ -stable x is also the supremum of C by Lemma 3. \Box

Corollary 6 In the effective topos, there is a chain-complete poset with a monotone and progressive endomap which does not have a fixed point.

Proof. Consider $\nabla \omega_1$ and the successor map.

5 Consequences

The following theorems *cannot* be proved constructively, i.e., in higher-order intuitionistic logic with Dependent Choice:

- 1. Knaster-Tarski Theorem [4] for chain-complete lattices: a monotone map on a chain-complete lattice has a fixed point.
- 2. Bourbaki-Witt theorem [1, 6]: a progressive map on a chain-complete poset has a fixed point above every point.

References

- Nicolas Bourbaki. Sur le théorème de Zorn. Archiv der Mathematik, 2(6):434–437, November 1949.
- [2] J. Martin E. Hyland. The effective topos. In A.S. Troelstra and D. Van Dalen, editors, *The L.E.J. Brouwer Centenary Symposium*, pages 165–216. North Holland Publishing Company, 1982.
- [3] J. Martin E. Hyland, Edmund P. Robinson, and Giuseppe Rosolini. The discrete objects in the effective topos. *Proceedings of the London Mathematical Society*, 60:1–60, 1990.
- [4] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. *Pacific Journal of Mathematics*, 5(2):285–309, 1955.
- [5] Jaap van Oosten. Realizability: An Introduction to its Categorical Side, volume 152 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2008.

[6] Ernst Witt. Beweisstudien zum Satz von M. Zorn. Mathematische Nachrichten, 4:434–438, 1951.

A The Effective Topos

We rely on [5] as a reference on the effective topos and give only a quick overview of the basic constructions here.

A.1 Definition of the effective topos

Recall that a *non-standard* predicate on a set X is a map $P: X \to \mathcal{P}(\mathbb{N})$, where we think of P(x) as the set of realizers (Gödel codes of programs) which witness the fact that x has the property P. The non-standard predicates on X form a Heyting prealgebra $\mathcal{P}(\mathbb{N})^X$ with the partial order

$$P \leq Q \iff \exists n \in \mathbb{N} \, . \, \forall x \in X \, . \, \forall m \in P(x) \, . \, \varphi_n(m) \downarrow \land \varphi_n(m) \in Q(x),$$

where φ_n is the *n*-th partial recursive function and $\varphi_n(m) \downarrow$ means that $\varphi_n(m)$ is defined. In words, P entails Q if there is a program that translates realizers for P(x) to realizers for Q(x), uniformly in x. Predicates P and Q are *equivalent*, written $P \equiv Q$, when $P \leq Q$ and $Q \leq P$. If we quotient $\mathcal{P}(\mathbb{N})^X$ by \equiv we obtain an honest Heyting algebra, but we do not do that.

Let $\langle -, - \rangle$ be a computable pairing function on the natural numbers \mathbb{N} , e.g., $\langle m, n \rangle = 2^m (2n+1)$. The Heyting prealgebra structure of $\mathcal{P}(\mathbb{N})^X$ is as follows:

$$T(x) = \mathbb{N}$$

$$\perp (x) = \emptyset$$

$$(P \land Q)(x) = \{ \langle m, n \rangle \mid m \in P(x) \land n \in Q(x) \}$$

$$(P \lor Q)(x) = \{ \langle 0, n \rangle \mid n \in P(x) \} \cup \{ \langle 1, n \rangle \mid n \in Q(x) \}$$

$$(P \Rightarrow Q)(x) = \{ n \in \mathbb{N} \mid \forall m \in P(x) . \varphi_n(m) \downarrow \land \varphi_n(m) \in Q(x) \}.$$

$$(1)$$

We say that a non-standard predicate P is valid if $\top \leq P$, in which case we write $\models P$. The condition $\top \leq P$ is equivalent to requiring that $\bigcap_{x \in X} P(x)$ contains at least one number. Often a non-standard predicate is given as a map $x \mapsto \phi(x)$ where ϕ is an expression with a free variable x. In this case we abuse notation and write $\models \phi(x)$ instead of $\models \lambda x : X \cdot \phi(x)$. In other words, free variables are to be implicitly abstracted over.

An object $X = (|X|, =_X)$ in the effective topos is a set |X| with a nonstandard equality predicate $=_X : |X| \times |X| \to \mathcal{P}(\mathbb{N})$, which is required to be symmetric and transitive (where we write $[x =_X y]$ instead of $x =_X y$ for better readability):

$$\models [x =_X y] \Rightarrow [y =_X x],$$
 (symmetric)
$$\models [x =_X y] \land [y =_X z] \Rightarrow [x =_X z].$$
 (transitive)

Usually we write $\mathsf{E}_X(x)$ for $[x =_X x]$. Think of E_X as an "existence predicate", and $\mathsf{E}_X(x)$ as the set of realizers which witness the fact that x exists.

In the effective topos a morphism $F : X \to Y$ is represented by a nonstandard functional relation $F : X \times Y \to \mathcal{P}(\mathbb{N})$. More precisely, we require that

$$\models F(x,y) \Rightarrow \mathsf{E}_X(x) \land \mathsf{E}_Y(y) \tag{strict}$$

$$\models [x =_X x'] \land F(x, y) \land [y =_Y y'] \Rightarrow F(x', y')$$
(extensional)
$$\models F(x, y) \land F(x, y') \Rightarrow [y =_X y']$$
(single-valued)

$$\models \mathsf{E}_X(x) \Rightarrow \bigcup_{y \in Y} \mathsf{E}_Y(y) \land F(x, y). \tag{total}$$

Two such functional relations F, F' represent the same morphism when $F \leq F'$ and $F' \leq F$ in the Heyting prealgebra $\mathcal{P}(\mathbb{N})^{X \times Y}$. Composition of $F: X \to Y$ and $G: Y \to Z$ is the functional relation $G \circ F$ given by

$$(G \circ F)(x, z) = \bigcup_{y \in Y} F(x, y) \land G(y, z).$$

The identity morphism $I: X \to X$ is the relation $I(x, y) = [x =_X y]$.

A.2 Interpretation of first-order logic in Eff

The effective topos supports an interpretation of intuitionistic first-order logic, which we outline in this section.

Each subobject of an object X is represented by a strict extensional predicate, which is a non-standard predicate $P: X \to \mathcal{P}(\mathbb{N})$ that satisfies:

$$= P(x) \Rightarrow \mathsf{E}_X(x),$$
 (strict)

$$\models P(x) \land [x =_X x'] \Rightarrow P(x').$$
 (extensional)

Such a predicate represents the subobject determined by the mono $I: Y \to X$ where |Y| = |X|, $[x =_Y y] = [x =_X y] \land P(x)$, and $I(x, y) = P(x) \land [x =_X y]$. Strict predicates represent the same subobject precisely when they are equivalent as elements of the Heyting prealgebra $\mathcal{P}(\mathbb{N})^X$.

The interpretation of first-order logic with equality in Eff may be expressed in terms of strict extensional predicates and non-standard equality predicates. Suppose ϕ is a formula with a free variable x ranging over an object X.² The interpretation of ϕ is the subobject of X represented by the non-standard predicate $[\![\phi]\!]: |X| \to \mathcal{P}(\mathbb{N})$, defined inductively on the structure of ϕ as follows. The propositional part in the topos is interpreted by the Heyting prealgebra

²In the general case ϕ may contain free variables x_1, \ldots, x_n ranging over objects X_1, \ldots, X_n , respectively. In this case ϕ is interpreted as a subobject of $X_1 \times X_n$. It is easy to work out the details once you have seen the case of a single variable.

structure of non-standard predicates, cf. (1):

$$\begin{bmatrix} \top \end{bmatrix} = \top$$
$$\begin{bmatrix} \bot \end{bmatrix} = \bot$$
$$\begin{bmatrix} \theta \land \psi \end{bmatrix} = \begin{bmatrix} \theta \end{bmatrix} \land \begin{bmatrix} \psi \end{bmatrix}$$
$$\begin{bmatrix} \theta \lor \psi \end{bmatrix} = \begin{bmatrix} \theta \end{bmatrix} \lor \begin{bmatrix} \psi \end{bmatrix}$$
$$\begin{bmatrix} \theta \lor \psi \end{bmatrix} = \begin{bmatrix} \theta \end{bmatrix} \lor \begin{bmatrix} \psi \end{bmatrix}$$
$$\begin{bmatrix} \theta \Rightarrow \psi \end{bmatrix} = \begin{bmatrix} \theta \end{bmatrix} \Rightarrow \begin{bmatrix} \psi \end{bmatrix}.$$

Suppose ψ is a formula with free variables x of type X and y of type Y, and let $P = \llbracket \psi \rrbracket : |X| \times |Y| \to \mathcal{P}(\mathbb{N})$ be its interpretation. Then the interpretation of the quantifiers is:

$$\begin{split} & \llbracket \exists \, x \in X \, . \, \psi \rrbracket(v) = \bigcup_{u \in |X|} \mathsf{E}_X(u) \wedge P(u, v), \\ & \llbracket \forall \, x \in X \, . \, \psi \rrbracket(v) = \bigcap_{u \in |X|} \mathsf{E}_X(u) \Rightarrow P(u, v). \end{split}$$

Suppose $f, g: X \to Y$ are morphisms represented by functional relations $F, G: X \times Y \to \mathcal{P}(\mathbb{N})$. The atomic formula f(x) = g(x), where x is a variable of type X, is interpreted as the subobject of X represented by the non-standard predicate $\llbracket f(x) = g(x) \rrbracket : |X| \to \mathcal{P}(\mathbb{N})$, defined by

$$\llbracket f(x) = g(x) \rrbracket(u) = \bigcup_{v \in |Y|} (F(u,v) \land G(u,v)).$$

If other atomic predicates appear in a formula, their interpretation must be given in terms of corresponding strict extensional predicates.

This concludes the interpretation of first-order logic. The interpretation is sound for intuitionistic reasoning.

Lastly, let us give a description of powerobjects in the effective topos. If X is an object then the *powerobject* $\mathsf{P}(X)$ is the set $\mathcal{P}(\mathbb{N})^{|X|}$ with non-standard equality predicate

$$\begin{split} [P =_{\mathsf{P}(X)} Q] &= (P \Rightarrow Q) \land (Q \Rightarrow P) \land \\ & \left(\bigcap_{x \in |X|} P(x) \Rightarrow \mathsf{E}_X(x)\right) \land \left(\bigcap_{x,y \in |X|} P(x) \land [x =_X y] \Rightarrow P(y)\right). \end{split}$$

The complicated part in the second line says that P is strict and extensional. If x and y are variables of type X and $\mathsf{P}(X)$, respectively, then the atomic predicate $x \in y$ is represented by the strict extensional predicate $E : |X| \times \mathcal{P}(\mathbb{N})^{|X|} \to \mathcal{P}(\mathbb{N})$ defined by $E(u, P) = \mathsf{E}_X(u) \land \mathsf{E}_{\mathsf{P}(X)}(P) \land P(u)$.

A.3 The functor $\nabla : \mathsf{Set} \to \mathsf{Eff}$

The topos of sets Set is (equivalent to) the topos of sheaves for the $\neg\neg$ -topology on Eff. The direct image part of the inclusion Set \rightarrow Eff is the functor ∇ : Set \rightarrow Eff which maps a set S to the object $\nabla S = (S, =_{\nabla S})$ where

$$[x =_{\nabla S} y] = \{n \in \mathbb{N} \mid x = y\}$$

A map $f:S\to T$ is mapped to the morphism $\nabla f:\nabla S\to \nabla T$ represented by the functional relation

$$(\nabla f)(x,y) = \{n \in \mathbb{N} \mid y = f(x)\}.$$

The inverse image part is the global sections functor Γ : Eff \rightarrow Set, defined as $\Gamma(X) = \mathsf{Eff}(1, X)$.