On the Failure of Fixed-Point Theorems for Chain-complete Lattices in the Effective Topos

Andrej Bauer

January 15th, 2009

Abstract

In the effective topos there exists a chain-complete distributive lattice with a monotone and progressive endomap which does not have a fixed point. Consequently, the Bourbaki-Witt theorem and Tarski's fixed-point theorem for chain-complete lattices do not have constructive (topos-valid) proofs.

1 Introduction

In this note I show that in the effective topos Eff [2] there is a chain-complete distributive lattice with a monotone and progressive endomap which does not have a fixed point. An immediate consequence of this is that several fixed-point theorems for chain-complete posets have no constructive (topos-valid) proofs, cf. Section 5 .

The outline of the argument is as follows. In Eff every chain is a discrete object in the sense of [3], hence it has at most countably many global points. Consequently, the poset $\nabla \omega_{1}$ is chain-complete in the effective topos, even though it is only countably complete in Set. The successor function on $\nabla \omega_{1}$ is monotone and progressive, and obviously does not have a fixed point.

We work out the details of the above argument carefully in order not to confuse external and internal notions of chain-completeness, discreteness, and countability. For the uninitiated, we have included a brief overview of the effective topos in Appendix A.

2 Preliminary observations

Let $2=\{0,1\}$ be the set with two elements. An object $X=\left(|X|,==_{X}\right)$ in Eff is orthogonal to $\nabla 2$ when the diagonal map $X \rightarrow X^{\nabla 2}$ is an isomorphism. ${ }^{1}$ In the

[^0]internal language of Eff the condition may be expressed by the formula
$$
\forall f \in X^{\nabla 2} . \forall p \in \nabla 2 \cdot f(p)=f(1)
$$

The object $X^{\nabla 2}$ is described explicitly as the set $|X|^{2}$ with the equality predicate

$$
\left[\left(x_{0}, y_{0}\right)=_{X \nabla^{2}}\left(x_{1}, y_{1}\right)\right]=\left[\begin{array}{ll}
x_{0}= & x_{1}
\end{array}\right] \cap\left[y_{0}={ }_{X} y_{1}\right] .
$$

Let us compute exactly how universal quantification over $X^{\nabla 2}$ and $\nabla 2$ works. If $\phi: 2 \times|X| \rightarrow \mathcal{P}(\mathbb{N})$ is a strict extensional relation on $\nabla 2 \times X$ then $\forall p \in \nabla 2 . \phi(p, x)$ is represented by the strict extensional relation

$$
x \mapsto \phi(0, x) \cap \phi(1, x) .
$$

If $\phi:|X|^{2} \times|Y| \rightarrow \mathcal{P}(\mathbb{N})$ is a strict extensional relation on the object $X^{\nabla 2} \times Y$ then $\forall f \in X^{\nabla 2} . \phi(f, y)$ is represented by the strict extensional relation on Y which maps $y \in|Y|$ to

$$
\bigcap_{x_{0}, x_{1} \in|X|}\left(\left[x_{0}={ }_{X} x_{0}\right] \wedge\left[x_{1}={ }_{X} x_{1}\right] \Rightarrow \phi\left(x_{0}, y\right) \cap \phi\left(x_{1}, y\right)\right) .
$$

The object $B=\left(\{0,1\},=_{B}\right)$ with

$$
\left[x=_{B} y\right]= \begin{cases}\{0\} & \text { if } x=y=0, \\ \{1\} & \text { if } x=y=1, \\ \emptyset & \text { otherwise },\end{cases}
$$

is isomorphic to $1+1$. We call it the object of Boolean values. By the uniformity principle [5, 3.2.21], the following statement is valid in the internal logic of Eff: for all $\phi \in \mathrm{P}(\nabla 2 \times B)$, if $\forall p \in \nabla 2 . \exists d \in B . \phi(p, d)$ then $\exists d \in B . \forall p \in \nabla 2 . \phi(p, d)$.

Lemma 1 The following statement is valid in the internal logic of Eff: for all $\phi, \psi: \nabla 2 \rightarrow \Omega$, if $\forall p \in \nabla 2 .(\phi(p) \vee \psi(p))$ then $\forall p \in \nabla 2$. $\phi(p)$ or $\forall p \in \nabla 2 . \psi(p)$.
Proof. We argue internally in Eff. Suppose $\forall p \in \nabla 2 .(\phi(p) \vee \psi(p))$ Then

$$
\forall p \in \nabla 2 . \exists d \in 2 .((d=0 \wedge \phi(p)) \vee(d=1 \wedge \psi(p))) .
$$

By the uniformity principle

$$
\exists d \in 2 . \forall p \in \nabla 2 .((d=0 \wedge \phi(p)) \vee(d=1 \wedge \psi(p))) .
$$

Consider such a $d \in 2$. If $d=0$ then $\forall p \in \nabla 2 . \phi(p)$, and if $d=1$ then $\forall p \in \nabla 2 . \psi(p)$.

For an object X and variable D ranging over $\mathrm{P}(X)$, let orth $\nabla_{\nabla 2}(D)$ be the following formula in the internal language of Eff:

$$
\forall f \in X^{\nabla 2} \cdot(\forall p \in \nabla 2 \cdot f(p) \in D) \Longrightarrow(\forall p \in \nabla 2 \cdot f(p)=f(1))
$$

We compute a strict extensional relation O which represents orth $\nabla_{\nabla 2}(-)$ in the case $X=\nabla S$. The underlying set of $\mathrm{P}(\nabla S)$ is $\mathcal{P}(\mathbb{N})^{S}$, and every $D: S \rightarrow \mathcal{P}(\mathbb{N})$ is strict and extensional with respect to ∇S. Thus our strict extensional relation O takes $D: S \rightarrow \mathcal{P}(\mathbb{N})$ to

$$
O(D)=\bigcap_{x_{0}, x_{1} \in S} D\left(x_{0}\right) \cap D\left(x_{1}\right) \Rightarrow\left\{n \in \mathbb{N} \mid x_{0}=x_{1}\right\}
$$

This is an inhabited set if, and only if, $x_{0} \neq x_{1}$ implies $D\left(x_{0}\right) \cap D\left(x_{1}\right)=\emptyset$ for all $x_{0}, x_{1} \in S$. Consequently, if $O(D) \neq \emptyset$ then there are at most countably many $x \in S$ for which $D(x) \neq \emptyset$.

In the internal language, define the object of subobjects of X orthogonal to $\nabla 2$ as

$$
\operatorname{Orth}_{\nabla 2}(X)=\left\{D \in \mathrm{P}(X) \mid \operatorname{orth}_{\nabla 2}(D)\right\}
$$

When $X=\nabla S$, the object $\operatorname{Orth}_{\nabla 2}(\nabla S)$ has the underlying set $\mathcal{P}(\mathbb{N})^{S}$ and the equality predicate

$$
\left[D=\operatorname{orth}_{\nabla 2}(\nabla S) E\right]=(D \Rightarrow E) \wedge(E \Rightarrow D) \wedge O(D)
$$

For a set S let $\mathcal{P}_{\omega}(S)$ be the family of countable subsets of S.
Lemma 2 Suppose S is a set and let $\mathrm{cl}_{\neg \neg}: \mathrm{P}(\nabla S) \rightarrow \nabla \mathcal{P}(S)$ be the $\neg \neg$-closure operator. The restriction of $\mathrm{cl}_{\neg \neg}$ to $\operatorname{Orth}_{\nabla 2}(\nabla S)$ factors through $\nabla \mathcal{P}_{\omega}(S)$:

Proof. In the diagram above j is the inclusion $\mathcal{P}_{\omega}(S) \subseteq \mathcal{P}(S)$. Recall that $\neg \neg$ as a morphism $\Omega \rightarrow \nabla 2$ is represented by the functional relation $F: \mathcal{P}(\mathbb{N}) \times 2 \rightarrow$ $\mathcal{P}(\mathbb{N})$ defined by $F(P, q)=\left[f(p)={ }_{\nabla 2} q\right]$, where

$$
f(p)= \begin{cases}1 & \text { if } p \neq \emptyset \\ 0 & \text { if } p=\emptyset\end{cases}
$$

The operator $\mathrm{cl}_{\neg \neg}: \mathrm{P}(\nabla S) \rightarrow \nabla \mathcal{P}(S)$ is composition with $\neg \neg$. It is represented by the functional relation $G: \mathcal{P}(\mathbb{N})^{S} \times \mathcal{P}(S) \rightarrow \mathcal{P}(\mathbb{N})$, defined by $G(P, Q)=$ $\left[g(P)={ }_{\nabla \mathcal{P}(S)} Q\right]$ where

$$
g(P)=\{x \in S \mid P(x) \neq \emptyset\} .
$$

Notice that, for all $P_{1}, P_{2}: S \rightarrow \mathcal{P}(\mathbb{N})$, if

$$
\models\left(P_{1} \Rightarrow P_{2}\right) \wedge\left(P_{2} \Rightarrow P_{1}\right)
$$

then $g\left(P_{1}\right)=g\left(P_{2}\right)$ (this is just extensionality of G).

The inclusion $i:$ Orth $_{\nabla 2}(\nabla S) \rightarrow \mathrm{P}(\nabla S)$ is represented by the functional relation $I: \mathcal{P}(\mathbb{N})^{S} \times \mathcal{P}\left(\mathbb{N}^{S}\right) \rightarrow \mathcal{P}(\mathbb{N})$, defined by $I(D, E)=\left[D==_{\operatorname{Orth}_{\nabla_{2}}(\nabla S)} E\right]$. The composition $\mathrm{cl}_{\neg \neg} \circ i$ is represented by the functional relation $K: \mathcal{P}(\mathbb{N})^{S} \times$ $\mathcal{P}(S) \rightarrow \mathcal{P}(\mathbb{N})$ defined by

$$
K(D, Q)=O(D) \wedge\left[g(D)=_{\nabla \mathcal{P}(S)} Q\right] .
$$

Now define $H: \mathcal{P}(\mathbb{N})^{S} \times \mathcal{P}_{\omega}(S) \rightarrow \mathcal{P}(\mathbb{N})$ by

$$
H(D, Q)=O(D) \wedge\left[g(D)=_{\nabla \mathcal{P}(S)} Q\right] .
$$

Recall that $O(D) \neq \emptyset$ implies that there are at most countably many $x \in S$ for which $D(x) \neq \emptyset$. This implies that H is a total relation. It is in fact a functional relation representing a morphism $h: \operatorname{Orth}_{\nabla 2}(\nabla S) \rightarrow \nabla \mathcal{P}_{\omega}(S)$. It is easy to verify that h is the required factorization of $\mathrm{cl}_{\neg\urcorner} \circ i$ through ∇j.

3 Posets and Chains in the Effective Topos

In this section we work in the internal logic of the effective topos. First we recall several standard order-theoretic notions. A poset (L, \leq) is an object L with a relation \leq which is reflexive, transitive, and antisymmetric. A lattice (L, \leq, \wedge, \vee) is a poset in which every elements $x, y \in L$ have a greatest lower bound $x \wedge y$, and least upper bound $x \vee y$. Note that a lattice need not have the smallest and the greatest element. A lattice is distributive if \wedge and \vee satisfy the distributivity laws $(x \wedge y) \vee z=(x \vee z) \wedge(y \vee z)$ and $(x \vee y) \wedge z=(x \wedge z) \vee(y \wedge z)$. An endomap $f: L \rightarrow L$ on a poset (L, \leq) is monotone when

$$
\forall x, y \in L .(x \leq y \Longrightarrow f(x) \leq f(y))
$$

and progressive when $\forall x \in L . x \leq f(x)$.
For $x \in L$ and $S \in \mathrm{P}(L)$ define bound (x, S) to be the relation

$$
\operatorname{bound}(x, S) \Longleftrightarrow \forall y \in L .(y \in S \Longrightarrow y \leq x)
$$

We say that $z \in L$ is the supremum of $S \in \mathrm{P}(L)$ when

$$
\operatorname{bound}(z, S) \wedge \forall y \in L .(\operatorname{bound}(y, S) \Longrightarrow y \leq z)
$$

Lemma 3 Suppose (L, \leq) is a poset with $a \neg \neg$-stable order. For all $S \in \mathrm{P}(L)$ and $x \in L$, if x is the supremum of $\mathrm{cl}_{\neg \neg} S$ then x is the supremum of S.

Proof. If \leq is $\neg \neg$-stable then

$$
\begin{aligned}
\operatorname{bound}\left(x, \mathrm{cl}_{\neg \neg S} S\right) & \Longleftrightarrow \forall y \in L \cdot(\neg \neg(y \in S) \Longrightarrow y \leq x) \\
& \Longleftrightarrow \forall y \in L \cdot(y \in S \Longrightarrow \neg \neg(y \leq x)) \\
& \Longleftrightarrow \forall y \in L \cdot(y \in S \Longrightarrow y \leq x) \\
& \Longleftrightarrow \operatorname{bound}(x, S) .
\end{aligned}
$$

Because $\mathrm{cl}_{\neg \neg} S$ and S have the same upper bounds, if x is the supremum of one of them then it is the supremum of the other as well.

By a chain in a poset (L, \leq) we mean $C \in \mathrm{P}(L)$ such that

$$
\forall x, y \in L .(x \in C \wedge y \in C \Longrightarrow x \leq y \vee y \leq x)
$$

The object of chains in L is defined as

$$
\operatorname{Ch}(L)=\{C \in \mathcal{P}(P) \mid \forall x, y \in L .(x \in C \wedge y \in C \Longrightarrow x \leq y \vee y \leq x)\}
$$

Proposition 4 Every chain is orthogonal to $\nabla 2$, i.e., $\mathrm{Ch}(L) \subseteq \operatorname{Orth}_{\nabla 2}(L)$.
Proof. Consider any $C \in \mathrm{Ch}(L)$ and $f: \nabla 2 \rightarrow L$ such that $\forall p \in \nabla 2 . f(p) \in C$. We need to show that f is constant. Because C is a chain we have

$$
\forall p, q \in \nabla 2 .(f(p) \leq f(q) \vee f(q) \leq f(p))
$$

By a double application of Lemma 1 we obtain

$$
(\forall p, q \in \nabla 2 \cdot f(p) \leq f(q)) \vee(\forall p, q \in \nabla 2 \cdot f(q) \leq f(p)) .
$$

Because \leq is antisymmetric, either of these two cases implies $f(p)=f(q)$ for all $p, q \in \nabla 2$, as required.

4 The poset $\nabla \omega_{1}$

Let $\left(\omega_{1}, \preceq\right)$ be the distributive lattice of countable ordinals in Set. This is not a chain-complete poset, but it is complete with respect to countable subsets. More precisely, if $\mathcal{P}_{\omega}\left(\omega_{1}\right)$ is the family of all countable subsets of ω_{1} then there is a map sup : $\mathcal{P}_{\omega}\left(\omega_{1}\right) \rightarrow \omega_{1}$ such that $\sup (S)$ is the supremum of $S \in \mathcal{P}_{\omega}\left(\omega_{1}\right)$.

The object $\nabla \omega_{1}$, ordered by $\nabla \preceq$, is a distributive lattice in Eff. One way to see this is to observe that ∇ preserves finite products, therefore it maps models of the equational theory of distributive lattices to models of the same theory. Moreover, observe that ∇ preserves the negative fragment of logic $(\forall, \wedge, \Longrightarrow)$ and that statement " x is the supremum of S " may be written in that fragment. Therefore, the statement

$$
\forall S \in \nabla \mathcal{P}_{\omega}\left(\omega_{1}\right) \cdot " \nabla \sup (S) \text { is the supremum of } S "
$$

is valid in the internal language of Eff.
Lemma 5 The poset $\nabla \omega_{1}$ is chain-complete in Eff.

Proof. We claim that the supremum operator $\operatorname{Ch}\left(\nabla \omega_{1}\right) \rightarrow \nabla \omega_{1}$ is the composition

The arrows marked by \subseteq and $\mathrm{cl}_{\neg \neg}$ come from Lemmas 4 and 2, respectively.
We argue in the internal language of Eff. Consider any $C \in \operatorname{Ch}\left(\nabla \omega_{1}\right)$. Then $\mathrm{cl}_{\neg \neg} C \in \mathcal{P}_{\omega}\left(\omega_{1}\right)$, therefore $x=(\nabla \sup)\left(\mathrm{cl}_{\neg \neg} C\right)$ is the supremum of $\mathrm{cl}_{\neg \neg} C$. But since the order on $\nabla \omega_{1}$ is $\neg \neg$-stable x is also the supremum of C by Lemma 3 .

Corollary 6 In the effective topos, there is a chain-complete poset with a monotone and progressive endomap which does not have a fixed point.

Proof. Consider $\nabla \omega_{1}$ and the successor map.

5 Consequences

The following theorems cannot be proved constructively, i.e., in higher-order intuitionistic logic with Dependent Choice:

1. Knaster-Tarski Theorem [4] for chain-complete lattices: a monotone map on a chain-complete lattice has a fixed point.
2. Bourbaki-Witt theorem $[1,6]$: a progressive map on a chain-complete poset has a fixed point above every point.

References

[1] Nicolas Bourbaki. Sur le théorème de Zorn. Archiv der Mathematik, 2(6):434-437, November 1949.
[2] J. Martin E. Hyland. The effective topos. In A.S. Troelstra and D. Van Dalen, editors, The L.E.J. Brouwer Centenary Symposium, pages 165-216. North Holland Publishing Company, 1982.
[3] J. Martin E. Hyland, Edmund P. Robinson, and Giuseppe Rosolini. The discrete objects in the effective topos. Proceedings of the London Mathematical Society, 60:1-60, 1990.
[4] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5(2):285-309, 1955.
[5] Jaap van Oosten. Realizability: An Introduction to its Categorical Side, volume 152 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2008.
[6] Ernst Witt. Beweisstudien zum Satz von M. Zorn. Mathematische Nachrichten, 4:434-438, 1951.

A The Effective Topos

We rely on [5] as a reference on the effective topos and give only a quick overview of the basic constructions here.

A. 1 Definition of the effective topos

Recall that a non-standard predicate on a set X is a map $P: X \rightarrow \mathcal{P}(\mathbb{N})$, where we think of $P(x)$ as the set of realizers (Gödel codes of programs) which witness the fact that x has the property P. The non-standard predicates on X form a Heyting prealgebra $\mathcal{P}(\mathbb{N})^{X}$ with the partial order

$$
P \leq Q \Longleftrightarrow \exists n \in \mathbb{N} . \forall x \in X . \forall m \in P(x) \cdot \varphi_{n}(m) \downarrow \wedge \varphi_{n}(m) \in Q(x),
$$

where φ_{n} is the n-th partial recursive function and $\varphi_{n}(m) \downarrow$ means that $\varphi_{n}(m)$ is defined. In words, P entails Q if there is a program that translates realizers for $P(x)$ to realizers for $Q(x)$, uniformly in x. Predicates P and Q are equivalent, written $P \equiv Q$, when $P \leq Q$ and $Q \leq P$. If we quotient $\mathcal{P}(\mathbb{N})^{X}$ by \equiv we obtain an honest Heyting algebra, but we do not do that.

Let $\langle-,-\rangle$ be a computable pairing function on the natural numbers \mathbb{N}, e.g., $\langle m, n\rangle=2^{m}(2 n+1)$. The Heyting prealgebra structure of $\mathcal{P}(\mathbb{N})^{X}$ is as follows:

$$
\begin{align*}
\top(x) & =\mathbb{N} \tag{1}\\
\perp(x) & =\emptyset \\
(P \wedge Q)(x) & =\{\langle m, n\rangle \mid m \in P(x) \wedge n \in Q(x)\} \\
(P \vee Q)(x) & =\{\langle 0, n\rangle \mid n \in P(x)\} \cup\{\langle 1, n\rangle \mid n \in Q(x)\} \\
(P \Rightarrow Q)(x) & =\left\{n \in \mathbb{N} \mid \forall m \in P(x) \cdot \varphi_{n}(m) \downarrow \wedge \varphi_{n}(m) \in Q(x)\right\} .
\end{align*}
$$

We say that a non-standard predicate P is valid if $\top \leq P$, in which case we write $\vDash P$. The condition $\top \leq P$ is equivalent to requiring that $\bigcap_{x \in X} P(x)$ contains at least one number. Often a non-standard predicate is given as a map $x \mapsto \phi(x)$ where ϕ is an expression with a free variable x. In this case we abuse notation and write $\models \phi(x)$ instead of $\models \lambda x: X . \phi(x)$. In other words, free variables are to be implicitly abstracted over.

An object $X=\left(|X|,=_{X}\right)$ in the effective topos is a set $|X|$ with a nonstandard equality predicate $=_{x}:|X| \times|X| \rightarrow \mathcal{P}(\mathbb{N})$, which is required to be symmetric and transitive (where we write $\left[x=_{X} y\right]$ instead of $x=_{x} y$ for better readability):

$$
\begin{aligned}
& \models\left[\begin{array}{ll}
x=x_{X} & y
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
y==_{X} & x
\end{array}\right], \\
& \models\left[\begin{array}{ll}
x==_{X} & y
\end{array}\right] \wedge\left[\begin{array}{ll}
y={ }_{x} & z
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
x==_{X} & z
\end{array}\right] .
\end{aligned}
$$

Usually we write $\mathrm{E}_{X}(x)$ for $\left[x=_{X} x\right]$. Think of E_{X} as an "existence predicate", and $\mathrm{E}_{X}(x)$ as the set of realizers which witness the fact that x exists.

In the effective topos a morphism $F: X \rightarrow Y$ is represented by a nonstandard functional relation $F: X \times Y \rightarrow \mathcal{P}(\mathbb{N})$. More precisely, we require that

$$
\begin{align*}
& \models F(x, y) \Rightarrow \mathrm{E}_{X}(x) \wedge \mathrm{E}_{Y}(y) \tag{strict}\\
& \models\left[x=x_{X} x^{\prime}\right] \wedge F(x, y) \wedge\left[\begin{array}{ll}
y==_{Y} & y^{\prime}
\end{array}\right] \Rightarrow F\left(x^{\prime}, y^{\prime}\right) \tag{extensional}\\
& \models F(x, y) \wedge F\left(x, y^{\prime}\right) \Rightarrow\left[\begin{array}{ll}
y={ }_{X} & y^{\prime}
\end{array}\right] \\
& \models \mathrm{E}_{X}(x) \Rightarrow \bigcup_{y \in Y} \mathrm{E}_{Y}(y) \wedge F(x, y) \tag{total}
\end{align*}
$$

Two such functional relations F, F^{\prime} represent the same morphism when $F \leq F^{\prime}$ and $F^{\prime} \leq F$ in the Heyting prealgebra $\mathcal{P}(\mathbb{N})^{X \times Y}$. Composition of $F: X \rightarrow Y$ and $G: Y \rightarrow Z$ is the functional relation $G \circ F$ given by

$$
(G \circ F)(x, z)=\bigcup_{y \in Y} F(x, y) \wedge G(y, z)
$$

The identity morphism $I: X \rightarrow X$ is the relation $I(x, y)=[x=x y]$.

A. 2 Interpretation of first-order logic in Eff

The effective topos supports an interpretation of intuitionistic first-order logic, which we outline in this section.

Each subobject of an object X is represented by a strict extensional predicate, which is a non-standard predicate $P: X \rightarrow \mathcal{P}(\mathbb{N})$ that satisfies:

$$
\begin{align*}
& \models P(x) \Rightarrow \mathrm{E}_{X}(x) \tag{strict}\\
& \models P(x) \wedge\left[\begin{array}{ll}
x=x_{X} & x^{\prime}
\end{array}\right] \Rightarrow P\left(x^{\prime}\right)
\end{align*}
$$

(extensional)
Such a predicate represents the subobject determined by the mono $I: Y \rightarrow$ X where $|Y|=|X|,\left[\begin{array}{ll}x=_{Y} & y\end{array}\right]=\left[\begin{array}{ll}x==_{X} & y\end{array}\right] \wedge P(x)$, and $I(x, y)=P(x) \wedge$ $[x=x \quad y]$. Strict predicates represent the same subobject precisely when they are equivalent as elements of the Heyting prealgebra $\mathcal{P}(\mathbb{N})^{X}$.

The interpretation of first-order logic with equality in Eff may be expressed in terms of strict extensional predicates and non-standard equality predicates. Suppose ϕ is a formula with a free variable x ranging over an object $X .{ }^{2}$ The interpretation of ϕ is the subobject of X represented by the non-standard predicate $\llbracket \phi \rrbracket:|X| \rightarrow \mathcal{P}(\mathbb{N})$, defined inductively on the structure of ϕ as follows. The propositional part in the topos is interpreted by the Heyting prealgebra

[^1]structure of non-standard predicates, cf. (1):
\[

$$
\begin{aligned}
\llbracket \top \rrbracket & =\top \\
\llbracket \perp \rrbracket & =\perp \\
\llbracket \theta \wedge \psi \rrbracket & =\llbracket \theta \rrbracket \wedge \llbracket \psi \rrbracket \\
\llbracket \theta \vee \psi \rrbracket & =\llbracket \theta \rrbracket \vee \llbracket \psi \rrbracket \\
\llbracket \theta \Rightarrow \psi \rrbracket & =\llbracket \theta \rrbracket \Rightarrow \llbracket \psi \rrbracket .
\end{aligned}
$$
\]

Suppose ψ is a formula with free variables x of type X and y of type Y, and let $P=\llbracket \psi \rrbracket:|X| \times|Y| \rightarrow \mathcal{P}(\mathbb{N})$ be its interpretation. Then the interpretation of the quantifiers is:

$$
\begin{aligned}
& \llbracket \exists x \in X . \psi \rrbracket(v)=\bigcup_{u \in|X|} \mathrm{E}_{X}(u) \wedge P(u, v), \\
& \llbracket \forall x \in X \cdot \psi \rrbracket(v)=\bigcap_{u \in|X|} \mathrm{E}_{X}(u) \Rightarrow P(u, v) .
\end{aligned}
$$

Suppose $f, g: X \rightarrow Y$ are morphisms represented by functional relations F, G : $X \times Y \rightarrow \mathcal{P}(\mathbb{N})$. The atomic formula $f(x)=g(x)$, where x is a variable of type X, is interpreted as the subobject of X represented by the non-standard predicate $\llbracket f(x)=g(x) \rrbracket:|X| \rightarrow \mathcal{P}(\mathbb{N})$, defined by

$$
\llbracket f(x)=g(x) \rrbracket(u)=\bigcup_{v \in|Y|}(F(u, v) \wedge G(u, v))
$$

If other atomic predicates appear in a formula, their interpretation must be given in terms of corresponding strict extensional predicates.

This concludes the interpretation of first-order logic. The interpretation is sound for intuitionistic reasoning.

Lastly, let us give a description of powerobjects in the effective topos. If X is an object then the powerobject $\mathrm{P}(X)$ is the set $\mathcal{P}(\mathbb{N})^{|X|}$ with non-standard equality predicate

$$
\begin{aligned}
& {\left[P={ }_{\mathrm{P}(X)} Q\right]=(P \Rightarrow Q)} \\
& \quad\left(\bigcap_{x \in|X|} P(x) \Rightarrow \mathrm{E}_{X}(x)\right) \wedge\left(\bigcap_{x, y \in|X|} P(x) \wedge\left[x=_{x} y\right] \Rightarrow P(y)\right)
\end{aligned}
$$

The complicated part in the second line says that P is strict and extensional. If x and y are variables of type X and $\mathrm{P}(X)$, respectively, then the atomic predicate $x \in y$ is represented by the strict extensional predicate $E:|X| \times \mathcal{P}(\mathbb{N})^{|X|} \rightarrow$ $\mathcal{P}(\mathbb{N})$ defined by $E(u, P)=\mathrm{E}_{X}(u) \wedge \mathrm{E}_{\mathrm{P}(X)}(P) \wedge P(u)$.

A. 3 The functor $\nabla:$ Set \rightarrow Eff

The topos of sets Set is (equivalent to) the topos of sheaves for the $\neg \neg$-topology on Eff. The direct image part of the inclusion Set \rightarrow Eff is the functor ∇ : Set \rightarrow Eff which maps a set S to the object $\nabla S=\left(S,==_{\nabla S}\right)$ where

$$
[x=\nabla S y]=\{n \in \mathbb{N} \mid x=y\} .
$$

A map $f: S \rightarrow T$ is mapped to the morphism $\nabla f: \nabla S \rightarrow \nabla T$ represented by the functional relation

$$
(\nabla f)(x, y)=\{n \in \mathbb{N} \mid y=f(x)\}
$$

The inverse image part is the global sections functor $\Gamma:$ Eff \rightarrow Set, defined as $\Gamma(X)=\operatorname{Eff}(1, X)$.

[^0]: ${ }^{1}$ Such objects are also called discrete, see [3].

[^1]: ${ }^{2}$ In the general case ϕ may contain free variables x_{1}, \ldots, x_{n} ranging over objects X_{1}, \ldots, X_{n}, respectively. In this case ϕ is interpreted as a subobject of $X_{1} \times X_{n}$. It is easy to work out the details once you have seen the case of a single variable.

