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Suppose we have a well-founded poset (X,<) and a category C; how can we
construct functors from X to C by well-founded recursion?

Recall that a poset (X,<) is well-founded if for every subset Y ⊆ X we have:
if for every x ∈ X, the statement {y ∈ X | y < x} ⊆ Y implies x ∈ Y , then
Y = X.

Well-founded posets admit the following well-known principle of definition by
well-founded recursion: if Y is a set and F is a function from the power-set of
Y to Y , then there is a unique function G : X → Y such that for every x ∈ X
the equality

G(x) = F ({G(y) | y < x})

holds.

In order to generalize this to functors from (X,<) (regarded as a category)
to a category C, we need, for the “induction step”, to be able to extend a
functor defined on {y | y < x} to a functor which is defined on x (and on all
inequalities y < x). That is, we need a cocone for the original functor (for a
functor G : C → D, a cocone for G consists of an objct D of D and a natural
transformation from G to the constant functor with value D; D is called the
vertex of the cocone).

Suppose G is a functor Y → C where Y is an initial segment (downwards closed
subset) of X. We write G<y for the restriction of G to {z | z < y}.

Proposition 0.1 Let (X,<) be a well-founded poset, C a category, and F a
function which, to every functor from an initial segment of (X,<) to C, assigns
a cocone for that functor.

Then there exists a unique functor G : (X,<)→ C with the property that for
every x ∈ X the following hold:

i) G(x) is the vertex of F (G<x)

ii) For all y < x, the arrow G(y < x) is the component of (the natural
transformation of) F (G<x) at y.
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Condition i) is, of course, only needed to cater for the case that G<x is the
empty functor.

Proof. Let Y ⊆ X consist of those elements y ∈ X such that there is a unique
functor Gy from {x ∈ X |x ≤ y} to C which satisfies i) and ii) for all x ≤ y. Then
clearly, Y is downwards closed and by the uniqueness condition in the definition
of Y , if z ≤ y ∈ Y then Gz is the restriction of Gy to the down-segment of z.

Therefore, if {y ∈ X | y < x} ⊆ Y , then all functors Gy agree pairwise on
their common domain, and therefore amalgamate to a functor G<x defined on
{y ∈ X | y < x}, which satisfies i) and ii) for all y < x. Extend G<x to a functor
Gx defined on {y ∈ X | y ≤ x} by letting Gx(x) be the vertex of F (G<x), and
Gx(y < x) the component of F (G<x) at y. Then obviously, Gx satisfies i) and
ii). Moreover, Gx is unique with this property: if also H would satisfy this
property then by assumption on y < x, the restriction of H to the segment ≤ y
would have to be Gy, and therefore the restriction of H to the segment < x
would be G<x; but then, since H satisfies i) and ii), H = Gx. So x ∈ Y . By
well-founded induction we conclude that Y = X.

Again, all functors Gx agree pairwise on their common domain, so amal-
gamate to a functor G defined on X satisfying i) and ii). If also H is such a
functor, then by the uniqueness of Gx we have that the restriction of H to the
segment ≤ x coincides with Gx for all x; that is, H = G. So G is unique.
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