Exam Category Theory and Topos Theory
June 18, 2018; 10:00-13:00
With solutions

Exercise 1.Let C be a locally small category. For an object X of C we
define the representable functor Ry : C — Set by

Rx(4) = C(X,A)
(and on arrows by composition)
a) (3 pts) Prove that the functor Rx preserves monomorphisms.

b) (4 pts) Assume that the category C has all small coproducts. Show
that Rx has a left adjoint.

c) (3 pts) Suppose F : C — Set is a functor and p : Ry = F a natural
transformation. Show that p is completely determined by the element

px (idx) of FI(X).
Solution:

a) Suppose f : A — B is mono in C; we have to prove that Rx(f) :
C(X,A) — C(X,B) is injective. So suppose ¢1,g2 : X — A are el-
ements of C(X, A) such that Rx(f)(91) = Rx(f)(g2). That means:
fg1 = fge. Since f is mono, g1 = g2. So indeed, Rx(f) is injective,
that is: mono in Set.

b) For a set B, define Lx(B) to be the coproduct of B many copies of X
in C, i.e. [[pcp X. We have
C(Lx(B),A) ~C(]] X,4) ~ [] €(X, A) ~ Set(B,C(X, A))
beB beB

which isomorphisms are all natural; so this establishes the adjunction.

¢) This is just the Yoneda lemma.

F
Exercise 2. Let C%D be an adjunction, with F 4 G. We assume

furthermore that C and D are regular categories, that the counit ¢ of the
adjunction is split mono, and that the functor G preserves regular epimor-
phisms.



Let G(X)——Y ——= G(X') be a diagram in D, with e regular epi and
m mono. Show that Y is isomorphic to an object in the image of the functor

G.

Solution: The assumption that ¢ is split mono implies (in fact, is equivalent
to) the statement that G is full. To prove this: assume f : G(X) — G(X')
is an arrow in D. Let rx : X — FG(X) be a retraction for ey. Let
f: FG(X) = X be the transpose of f under the adjunction F' 4 G. Note,
that f is equal to the composite

rax) 20 p

G(X") 2 X
We consider the arrow ¢ = fry : X — X’ in C. The transpose of G(g) is
the map
FG FG(f /
Fe(x) % Farax) 2, po(xt S X

which, by naturality of ¢, is equal to the composite f rx€x, which is equal to
f. Since G(g) and f have the same transpose, they are equal. We conclude
that G is full.

Since G is full, choose h : X — X' in C such that G(h) = me. Let,

by regularity of C, X il> 7™ X! be a regular epi-mono factorization of h.
Now G preserves regular epis by assumption and monos because it is a right
adjoint (any limit-preserving functor preserves monos); therefore we have a
regular epi-mono factorization

G(e)

a(x) < oo’y

G(2) G(X")
of G(h) = me. By uniqueness of regular epi-mono factorizations in D, we
have that Y ~ G(Z), as desired.

Exercise 3. Let C be a cartesian closed category and h : A — B an
epimorphism in C. Prove that for every object X of C, the arrow X" :
XB — X4 is mono.

Solution: Suppose a,b: W — X is a parallel pair satisfying X"a = X"b.

To prove: a = b. We look at the following commutative diagram:

axid idy gxh
WxAZEXBxAX S XBx By X

MWX‘%

W x B



from which we learn that the transpose of X"a is the composite
ev(a x idg)(idw x h).
Since the transposes of X"a and X"b are assumed equal, we see that
ev(a x idg)(idw x h) = ev(b x idp)(idw x h)

Now the arrow idy x h is epi, because the functor W x (—), having a right
adjoint, preserves epis. Therefore, we get that ev(a x idg) = ev(b x idp);
that is, the transposes of a and b are equal. It follows that a = b, as was to
be proved.

A slicker proof is available. Given X, let G : C — C be the functor
X, Let G : C°° — C be the opposite functor. Since there are natural
isomorphisms

C(Y,GW)) ~C(Y,XV) ~C(W, X¥) ~ CP(G(Y), W)

we see that G 4 G. Therefore G preserves monos and since h is epi in C
hence mono in C°?, X" = G(h) is mono in C.

Exercise 4. In a poset (P, <), a subset U C P is called downwards closed
if for every x € U and y < = we have y € U. Let D(P) be the set of all
downwards closed subsets of P, ordered by inclusion.

a) (4 pts) Show that the operation D has the structure of a monad on
Pos, with unit np : P — D(P) which sends z € Pto lz ={y € P|y <
x} € D(P), and union as multiplication.

b) (4 pts) Suppose h : D(P) — P is a D-algebra. Show that h is left
adjoint to the unit np : P — D(P), both considered as maps be-
tween posets. Conclude that any poset P has at most one D-algebra
structure.

c) (2 pts + 1 bonus point) Characterize the posets P which have a D-
algebra structure.

Solution:

a) First, we should define D as a functor. On morphisms f : P — @,
define for a downwards closed subset U of P, its image under D(f) as
the downwards closure of {f(x) |z € U}, i.e. the set

{y € Q|for some z € U, y < f(x)}



since simply the pointwise image of U under f fails to be downwards
closed in general. One easily checks that with this definition of D(f),
we have a functor. That D is a monad, is very similar to the proof for
the covariant powerset monad; I skip it here.

b) Suppose h: D(P) — P is a D-algebra. Since h is order-preserving we
see that for z € U € D(P) we have Jx C U, hence x = h({x) < h(U),
soU C |(h(U)). From this we see that h(U) < x implies [ (h(U)) C |z
so U C |z; conversely if U C |z then h(U) < h(lz) = z. We conclude
that h(U) < z if and only if U C |x = np(x); so h is left adjoint to
the unit. We see that up to isomorphism, there can be at most one D-
algebra structure on P. But in a poset, isomorphism means equality.
So there is at most one algebra structure.

¢) By the adjunction shown in part b), we see that U C np(h(U)) =
Lh(U), so h(U) is an upper bound for U, and it is the least upper
bound. Since in a poset, any subset X and its downwards closure
have the same upper bounds, we see that a poset P has a D-algebra
structure if and only if every subset of P has a least upper bound.

Exercise 5. Recall that in any category, an object M is called injective if
every diagram

B
A—f>M

with m mono, can be completed to a commutative diagram

N

AT>M'

Recall also that for objects X and Y, X is called a retract of Y if there is a
diagram y _* .,y _ " . x such that ri = idy.

a) (3 pts) Suppose &£ is a topos with subobject classifier 1 % Q. Show
that 2 is injective.

b) (2 pts) Show that in any cartesian closed category the following holds:
if M is injective, then MX is injective, for any object X.



c) (3 pts) Show that in a topos, every object X admits a mono X — QX.

d) (2 pts) Prove that in a topos, an object is injective if and only if it is
a retract of an object of the form QY.

Solution:

a) Givenamonom: A — Bandamap f: A — Q letn: A — A
represent the subobject of A classified by f. Now mn : A — B is
mono; let g : B — € classify this mono. In the following diagram:

0
i
A4 g

1

A— A —

every square is a pullback. So the whole square is a pullback; hence
the arrow gm classifies n : A’ — A, which by assumption was classified
by f. Therefore f = gm, and € is injective.

b) Given a mono m : A — B and a map f : A — MX, we consider the
transpose f: A x X — M and the mono m x idy : A x X — B x X.
By injectivity of M we obtain an arrow g : B x X — M making the
triangle
BxX

mXide \

Afo—>M

commute. Taking the transpose of this diagram gives a map g : B —
M such that gm = f, and M~ is injective.

¢) Consider the subobject X of X x X via the diagonal embedding. Let
d: X x X — Q classify this; and let {-} : X — QX be the exponential
transpose of d. We claim that this map is mono. To see this, consider

that for an arrow f : Y — X, the composite Y i) X Q QX transposes
to the composite

yx x9N x x4 L0



which classifies the graph of f as subobject of Y x X. Therefore if {-}
coequalizes two maps f and g from Y to X then the graphs of f and
g are equal, hence f = g.

For the “only if” part, suppose M is injective. Considering the mono
{-}: M — QM and the identity M — M we obtain a map r : Q™ — M
which is a retraction for {-}. So M is a retract of Q.

Conversely, first one proves that every retract of an injective object is
injective. Then one applies b) and c¢) to see that every retract of QY
is injective.



