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the calculated results. This monograph has
many distinct solutions which can serve as
test case comparisons for validating pack-
aged solutions for high Reynolds number
unseparated flows where free or moving
boundaries are present. A number of appli-
cation areas in civil and marine engineering
readily come to mind.

Several problems are presented where the
liquid domain is partially bounded by im-
permeable walls, as well as by a free surface.
Some interesting problems of this sort have
been omitted from this monograph. One of
these is the author’s well-known analysis of
pouring flows, work done with J. B. Keller,
that is relevant to dripping from a teapot
spout. I recall that this work earned the
somewhat facetious Ig Nobel prize (1999),
which is given for worthy but curious re-
search. The award was presented at Har-
vard University and Jean-Marc, always the
gentleman, graciously accepted it.

I do have a minor criticism of this mono-
graph. The one-page subject index is much
too short. There is, however, a good and
lengthy alphabetical list of references; the
list would be more useful if each reference
were referred to the page(s) in the text
where it is mentioned, so that the list could
then serve as an author index. I believe
that this could be accomplished rather eas-
ily within LATEX.

LEONARD SCHWARTZ

University of Delaware

Distributions: Theory and Applications.
By J. J. Duistermaat and J. A. C. Kolk. Birk-
häuser Boston, Boston, MA, 2010. $74.95.
xvi+445 pp., hardcover. ISBN 978-0-8176-
4672-1.

From early times, people doing PDEs have
been motivated to consider derivatives of
functions that possess little or no smooth-
ness. For example, one might want to treat
functions of the form

(1) u(t, x) = f(t+ x) + g(t− x)

as solutions to the wave equation utt−uxx =
0, even when f and g are quite rough (per-
haps having jump discontinuities). As an-

other example, shock wave solutions to

(2) ut + f(u)x = 0

are considered, when u is piecewise C1 with
a jump across a curve x = γ(t); one imposes
across γ the Rankine–Hugoniot condition
s[u] = [f ], where s = dx/dt, [u] is the jump
of u, and [f ] the jump of f(u) across γ. In
such cases, these functions are interpreted
as weak solutions, satisfying, respectively,

(3)

∫∫
(ϕtt − ϕxx)u dx dt = 0,

∫∫
(−ϕtu− ϕxf(u)) dx dt = 0

for all smooth, compactly supported “test
functions” ϕ.

Making use of functional analysis, which
had developed nicely over the first half of
the 20th century, Schwartz [8, 9] presented
a beautiful and systematic theory of distri-
butions which, among other things, incor-
porates such notions of weak solutions.

A distribution on an open set Ω ⊂ Rn is
defined as a continuous linear functional

(4) u : C∞
0 (Ω) −→ C,

where C∞
0 (Ω) consists of smooth functions

with compact support in Ω. Here, continu-
ity means that u(fj) = ⟨fj , u⟩ → ⟨f, u⟩ if
fj → f in C∞

0 (Ω), i.e., if there exists a com-
pact K ⊂ Ω such that all fj are supported
in K and fj → f , with all derivatives, uni-
formly. For example, if u is continuous, or
more generally merely locally integrable on
Ω, it defines an element of D′(Ω) via
(5)

⟨f, u⟩ =
∫

Ω

f(x)u(x) dx, f ∈ C∞
0 (Ω).

Now one can apply ∂j = ∂/∂xj to any
element of D′(Ω) as follows:

(6) ⟨f, ∂ju⟩ = −⟨∂jf, u⟩.

In the case u ∈ C1(Ω), this becomes

(7) ⟨f, ∂ju⟩ = −
∫

∂f
∂xj

u(x) dx,

which, by integration by parts, agrees with
the classical definition of ∂ju = ∂u/∂xj . To
give an example of the application of (6),
let H(x) = 1 for x > 0, 0 for x < 0. Then

(8) ⟨f, ∂xH⟩ = −
∫ ∞

0

f ′(x) dx = f(0),
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so

(9) ∂xH = δ, where ⟨f, δ⟩ = f(0)

defines δ as the “Dirac delta function.” To
take another example, again for x ∈ R,
(10)

⟨f, ∂x log |x|⟩ = −
∫

f ′(x) log |x| dx

= lim
ε→0

∫ ∞

ε

(f(x)
x

− f(−x)
x

)
dx

=
〈
f,PV

1
x

〉
,

where the last identity defines the dis-
tribution PV(1/x). The key here is to
excise [−ε, ε] from the first integral in
(10), apply ordinary integration by parts
(∂x log |x| = 1/x on R \ 0), and pass to the
limit. A similar line of attack works on

Gn(x) = |x|2−n (n ≥ 3),
(11)

G2(x) = log |x| (n = 2)

on Rn. These functions are harmonic on
Rn \ 0. If we write

(12) ⟨f,∆Gn⟩ =
∫

∆f(x)Gn(x) dx,

excise {x ∈ Rn : |x| ≤ ε}, apply Green’s
theorem, and take ε → 0, we get

∆Gn = Cnδ on Rn,
(13)

Cn = −(n− 2)Area(Sn−1)
(n ̸= 2), C2 = 2π.

The Fourier transform, given by
(14)

Ff(ξ) = f̂(ξ) = (2π)−n/2
∫

f(x)e−ix·ξ dx

for f ∈ L1(Rn), provides a powerful tool for
analyzing PDEs, since it intertwines ∂/∂xj

and multiplication by −iξj . The Fourier in-
version formula states that F∗F = FF∗ =
I , where F∗ is defined as in (14) with e−ix·ξ

replaced by eix·ξ. To prove this, it is con-
venient to have a function space invariant
under the action of F , not L1(Rn), since
F : L1(Rn) → L∞(Rn). Schwartz produced
a beautiful theory of Fourier analysis using
the space
(15)
S(Rn) = {f ∈ C∞(Rn) : pN(f) < ∞ ∀N},

pN (f) = sup
x

(1 + |x|2)N
∑

|α|≤N

|Dαf(x)|.

It is readily verified that F ,F∗ : S(Rn) →
S(Rn). One way to get the inversion for-
mula is to sneak up on it:
(16)

F∗Ff(x) = lim
t↘0

(2π)−n/2
∫

e−t|ξ|2 f̂(ξ)eix·ξ dξ

= lim
t↘0

∫
p(t, x− y)f(y) dy.

To get this last line, replace f̂(ξ) by its
integral definition and switch the order of
integration. One has a classical Gaussian
integral to calculate, and the result is

(17) p(t, x) = (4πt)−n/2e−|x|2/4t.

It is then an easy task to show that∫
p(t, x − y)f(y) dy → f(x) as t ↘ 0 for

each f ∈ S(Rn).
The next step is to extend the Fourier

transform and Fourier inversion formula
from S(Rn) to its dual space S ′(Rn),
the Schwartz space of tempered distribu-
tions, consisting of continuous linear maps
u : S(Rn) → C, where to say u is continu-
ous is to say that there exist N and C such
that

|⟨f, u⟩| ≤ CpN(f) ∀ f ∈ S(Rn),

with pN as in (15). In view of (14), it is
natural to define F : S ′(Rn) → S ′(Rn) by
(18)
⟨f,Fu⟩ = ⟨Ff, u⟩, f ∈ S(Rn), u ∈ S ′(Rn),

and similarly for F∗. Fourier inversion on
S ′(Rn) simply amounts to
(19)
⟨f,F∗Fu⟩ = ⟨F∗f,Fu⟩ = ⟨FF∗f, u⟩ = ⟨f, u⟩.

We have, for example,
(20)

Fδ(ξ) = (2π)−n/2, F1(x) = (2π)n/2δ.

Let us also make note of the behavior
of F and F∗ on L2(Rn) ⊂ S ′(Rn). Since
(f, g)L2 =

∫
fg dx, (14) gives (f,F∗g)L2 =

(Ff, g)L2 for f, g ∈ S(Rn); hence,
(21)

(Ff,Fg)L2 = (f,F∗Fg)L2 = (f, g)L2

for f, g ∈ S(Rn), the last identity by Fourier
inversion on S(Rn). This implies F extends
uniquely to F : L2(Rn) → L2(Rn) as an
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isometry; ditto for F∗, and Fourier inver-
sion extends, so F is unitary, with inverse
F∗, on L2(Rn).

Recalling how F intertwines ∂j and us-
ing multiplication by −iξj , we get an extra
dividend from (16). Namely,
(22)

u(t, x) = (2π)−n/2
∫

e−t|ξ|2 f̂(ξ)eix·ξ dξ

solves the heat equation

(23)
∂u
∂t

= ∆u, u(0, x) = f(x),

so the solution is given by

(24) u(t, x) =

∫
p(t, x− y)f(y) dy,

with p(t, x) as in (17). We can write (24)
as et∆f . In particular, we have the funda-
mental solution

(25) et∆δ(x) = (4πt)−n/2e−|x|2/4t

for t > 0. In fact, Fourier multiplication by

e−t|ξ|2 is well behaved on S(Rn), S ′(Rn),
and L2(Rn), not just for real t > 0, but also
for complex t such that Re t ≥ 0, and we
can pass by analytic continuation from (25)
to the formula
(26)

eit∆δ(x) = (4πit)−n/2e−|x|2/4it, t ∈ R,

for the fundamental solution to the
Schrödinger equation on R × Rn. (Ana-
lytic continuation picks the correct root for
(4πit)−n/2 if n is odd.)

The distributional theory of Fourier se-
ries is also quite useful. Given f ∈ L1(Tn)
(Tn = Rn/(2πZn)), we set
(27)

f̂(k) = (2π)−n
∫

Tn
f(x)e−ik·x dx, k ∈ Zn,

and the Fourier inversion formula reads

(28) f(x) =
∑

k∈Zn

f̂(k)eik·x.

For f ∈ L2, this follows from the fact that
{eik·x : k ∈ Zn} is an orthonormal basis of
L2(Tn, (2π)−ndx); thus F : L2(Tn) → ℓ2

is an isomorphism. We also have isomor-
phisms

F : C∞(Tn) −→ s(Zn),

F : D′(Tn) −→ s′(Zn),

where s(Zn) consists of rapidly decreasing
functions Zn → C and s′(Zn) consists of
polynomially bounded functions Zn → C.
The Fourier inversion formula on D′(Tn) is

u ∈ D′(Tn) ⇒ u =
∑

k

û(k)eik·x,

û(k) = (2π)−n⟨e−ik·x, u⟩.

For example, with n = 1,

(29) δ =
1
2π

∞∑

k=−∞

eikx,

the sum converging in D′(T1).
We illustrate some concepts discussed

above with the following problem. De-
scribe the fundamental solution S(t, x) =
e−it∆δ(x) for x ∈ T1 = R/2πZ. For general
t ∈ R, this is a real mess, but we can get
interesting explicit formulas when t is a ra-
tional multiple of π. We have the Fourier
series representation
(30)

S
(
2π

m
n
, x

)
=

1
2π

∞∑

k=−∞

e2πik2m/neikx.

Setting k = nj+ℓ, we obtain a double sum,
(31)

S
(
2π

m
n
, x

)
=

n−1∑

ℓ=0

e2πiℓ2m/neiℓx
∞∑

j=−∞

einjx.

Now, via (29),

(32)
∞∑

j=−∞
einjx =

2π
n

n−1∑

j=0

δ2πj/n,

where δp is defined by ⟨f, δp⟩ = f(p). Hence
(33)

S
(
2π

m
n
, x

)
=

1
n

n−1∑

j=0

G(m,n, j)δ2πj/n,

where

(34) G(m,n, j) =
n−1∑

ℓ=0

e2πiℓ2m/ne2πiℓj/n.

These coefficients are known as Gauss sums,
and they have number theoretical signifi-
cance.

The formula (33)–(34) is intrinsically in-
teresting. When t = 2πm/n, e−it∆δ ∈
D′(T1) is a finite linear combination of delta
functions supported on {2πj/n : 0 ≤ j ≤
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n− 1}, a set that becomes denser in T1 as
the denominator n increases. The explicit
calculation (34) of the coefficients (33) is
also of interest. Matters become even more
interesting when the following is taken into
account.

There is another way to compute e−it∆δ
on T1; use (26) (with t replaced by −t) and
periodize it. We get

(35) S(t, x) =
∞∑

ν=−∞

e−it∆δ(x− 2πν),

where, on the line,
(36)

e−it∆δ(x) =
1 + i√

2

1√
4πt

e−ix2/4t (t > 0),

so
(37)

S
(
2π

m
n
, x

)
=

1 + i
4π

( n
m

)1/2
e−ix2n/8πm

×
∞∑

ν=−∞

e−πiν2n/2meiνnx/2m.

We can set ν = 2mj + ℓ and convert this
into a double sum over ℓ ∈ {0, . . . , 2m− 1},
j ∈ Z. Again using (32), we get
(38)

S
(
2π

m
n
, x

)
=

1
n

n−1∑

j=0

G̃(m,n, j)δ2πj/n,

parallel to (33), as it must be. However,
and this is quite significant, the calculation
leads to an expression G̃(m,n, j) whose ap-
pearance is different from (34). In its place,
we get
(39)

G̃(m,n, j) =
1 + i
2

( n
m

)1/2
e−πij2/2mn

×
2m−1∑

ℓ=0

e−πiℓ2n/2meπijℓ/m.

It follows that these coefficients of δ2πj/n

must be equal:

(40) G(m,n, j) = G̃(m,n, j).

In particular, when j = 0, we get

(41)

n−1∑

ℓ=0

e2πiℓ2m/n

=
1 + i
2

( n
m

)1/2
2m−1∑

ℓ=0

e−πiℓ2n/2m.

If we further specialize to m = 1, we get

(42)
n−1∑

ℓ=0

e2πiℓ2/n =
1 + i
2

n1/2(1 + i−n).

The identity (42) is the classical Gauss sum
evaluation, produced by Gauss and used in
one of his proofs of the quadratic reciprocity
theorem. The results (41) and (40) are gen-
eralizations of this to Gauss sum identities
established byDirichlet (by different means,
to be sure).

This discussion was intended to illustrate
the usefulness of the distribution theory ap-
proach to problems in Fourier analysis and
PDEs, allowing one to obtain substantial
conclusions, often with impact on other ar-
eas of math. One frequently finds that the
arguments involved are fun and easy, and
everyone can play!

Actually, there is more to be said about
this last assertion, and this bears on the rai-
son d’etre for the book under review. Since
the classics [8, 9], there have been other
treatments of distribution theory written,
some of which have also become classics.
One is the three volume set [1, 2, 3]. An-
other is the treatment in Chapter 6 of Yosida
[13]. This chapter was influenced by the
notes [4] and for many students and re-
searchers served as an introduction to [5],
which made full use of distribution the-
ory as a tool in linear PDEs. The book
[5] contained a very brief introduction to
distribution theory. The book [6] fleshed
out this presentation of distribution theory
considerably. It has become common (we
mention [7] and [10, 11, 12] as examples),
though not universal, for a PDE text to
include a chapter on distribution theory.

All these references share in common the
fact that they are addressed to a reader
who has already acquired a significant back-
ground in functional analysis (for [13], by
getting through Chapters 1–5). Also, a
background in basic measure theory and
Lebesgue integration is assumed. From one
point of view, this is reasonable. Distribu-
tion theory is essentially written in the lan-
guage of functional analysis, and the space
of distributions on a domain Ω ⊂ Rn con-
tains the set of locally finite measures on Ω.
These factors notwithstanding, practition-
ers of the art have long noted that distri-
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bution theory, for the most part, is easier
than measure theory, and only rarely does
one need to confront heavy duty functional
analysis.

With these notions in mind, the authors
have set out to produce a text on distribu-
tion theory accessible to undergraduate (or
beginning graduate) students at the point
in their studies where it could serve as an
alternative to a beginning course in measure
theory. This involves a bit of a balancing
act. The authors intend to include material
of serious use in PDEs, so the presentation
cannot be too lightweight.

I would say the authors have done an ad-
mirable job of finding the sweet spot for this
presentation. They introduce ideas of basic
functional analysis as needed, throughout
the text. The occasional need for results in
measure theory is met by an appendix (la-
beled Chapter 20). The approach in this ap-
pendix involves producing a measure from
a positive linear functional (the Daniell ap-
proach to integration), which is close in
spirit to the main ideas of distribution the-
ory. The authors discuss many fascinating
results in distribution theory, with an em-
phasis on the use of the subject in linear
PDEs, but also with interesting side trips
involving such topics as Shannon’s sam-
pling theorem. The book succeeds both as
a basic and as a rich account of results in
distribution theory.
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Numerical Analysis. By L. Ridgway Scott.
Princeton University Press, Princeton, NJ, 2011.
$65.00. xvi+325 pp., hardcover. ISBN 978-0-
691-14686-7.

This is not just another numerical analy-
sis text. The books on numerical methods
that are most popular today intentionally
soft-pedal the mathematics. As a result,
most students miss exposure to numerical
analysis as a mathematical subject. Scott
wishes to reverse this trend, so he has writ-
ten a text in which the mathematics takes
center stage. His target audience consists
of students who have had some exposure to
real analysis at the level of blue Rudin [1].
These students know what a proof is and
have had some experience writing proofs
of their own. The student who then takes
a course from Scott’s book will get a lot
more proof-writing experience. At the end
of each short chapter there is a substantial
collection of exercises, many of which ask
the student to prove something. Indeed, of
the proofs of the theorems that are pre-
sented in the text, many of the details are
deferred to these exercises. The student is
expected to work them all, and he who
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