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RIESZ DISTRIBUTIONS

JOHAN A. C. KOLK and V. S. VARADARAJAN!

Introduction.

In this note we study some properties of the Riesz distributions associated to
a quadratic form of signature (m, n). Although there is an extensive literature on
this subject, the extent to which the Riesz distributions determine the space of all
invariant distributions does not appear to have received the attention it deserves.
This note is addressed to this issue. For clarity of exposition we have written this
article in two parts: Section 1 deals with the hyperbolic case (of m = 1), while
Section 2 takes up the general case (including the situation of m = 0).

This note is closely related to the longer paper [KV] on Lorentz invariant
distributions supported on the forward light cone associated with a form of
signature (1, n).

1.0. Riesz distributions in the hyperbolic case. In this section we work in R,
for n 2 2, with coordinates (xq,x,...,X,). We set d =n + 1, and we have
R!" ~ R?. We denote by w the (normalized indefinite) quadratic form of signa-
ture (1,n):
o(x) = x3 —x} — ... — x2.

Since w: R'"™\ {0} — R is a surjective submersion, we have the operation w,, of
pushforward mapping C® (R*"\ {0}) onto C®(R), and the dual operation w* of
pullback sending distributions on R to distributions on R\ {0} (see [KV,
§5.3-4] for more details). We write G for SO(1,n)°, the connected component
containing the identity of the subgroup of GL(R*") of elements fixing w. The cone
Xo = {xe R | w(x) = 0} is the union of the following G-orbits: {0}, the open
forward, and the open backward light cone resp., given by

X& = {xeR""|w(x) =0, xo 2 0}.

The classical Riesz distributions, cf. [Ri] (and [D] for a contemporary review),
are intimately tied up with the problem of finding G-invariant fundamental
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solutions for the associated constant-coefficient hyperbolic differential operator:
0% 0? 0*
Taxd o T ax
that is, of finding G-invariant distributions T on R!" satisfying (1T = 8, where
6 denotes the delta function on R!™ at 0. Along with w and (] we have their
commutator; up to constants it is equal to the radial or Euler vector field

€=x0 ++

— Xy
0xo " 0x,

These three operators generate a 3-dimensional simple subalgebra a of the
algebra of polynomial differential operators. In fact, let M(w) be the operator of
multiplication by w. Then, if we write
d 1 1
= Z X=—M = _ —
H é’+2, 3 (), Y ZD’
we have the commutation rules [H,X] =2X,[H,Y] = —2Y,[X,Y] = H; so
that

a=C-H+C-X+C-Y

is a three-dimensional simple subalgebra of the algebra of polynomial differential
operators on R,

We denote by J(C) the linear space of all distributions on R!*" that are
invariant under G and supported on Cl(Xy) = X v {0}, the closed forward
light cone. It is clear that a operates on J(C) so that J(C) is an a-module.

The Riesz distributions are supported on the closed solid forward light cone
't ie.

F+ = {(xo’xla'“,xn)lxo 2— (x% +...+ xf)l/Z}.

They are tempered distributions R, on R!"" depending complex-analytically on
the complex parameter s (in fact R is the restriction to I'* of w® with a suitable
normalization); they form a one-parameter group for the operation of convol-
ution of distributions. The element R, provides a fundamental solution for the
wave operator [J; more generally we have OR,,, = R,.

We determine which of the R, have their supports in 6I'* = Cl(X ). Taken in
conjunction with the results of [KV] our present results show that the Riesz
family determines in a very explicit fashion the entire a-module structure of J(C).
We also show that a corresponding result is true for all G-invariant distributions
supported on I'*, namely that all of these are (generalized) superpositions of the
R,.
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More precisely, for d odd we can take as generators for J(C) the distributions
R;-, and Ry. Now R, _, is up to a scalar factor equal to ag, the (normalized)
invariant measure on X, which is a distribution homogeneous of degree —2,
while Ry, = d, which is homogeneous of degree — d. On the other hand, for d even,
we can take as a generator for J(C) the generalized Riesz distribution

p:“i R

- dS s=0

on R'" which is the infinitesimal generator of the group of the R,. This
distribution p is uniquely determined by the following properties

1) p= n-t7t w*(ég%)), outside 0;

@ E+dp=39

(3) <p,e”*>=0.
The distribution p is thus associated with the quadratic form w, and also
normalized, in quite a natural fashion.

1.1. Mellin potentials on R. For a e C with Re a > 0 the tempered distribution
2~ ! on R with support contained in [0, c0) is given by

L = jt“_‘f(t)dt (f €S(R)).
0

Then

-___1_ a—1 ’
(1.1) a—M,:= r(a)t+ eS'(R)

defines a complex-analytic mapping. In fact, integration by parts gives
M, = (M"Y (ke2);

and this formula immediately leads to the analytic continuation from the domain
Rea > 0 to all of C. In particular, we notice

(1.2 M_, = 6%, supp(M,) < {0} < aeZo.

1.2. Distributions supported on I'*. For any open set U = R""", we shall write
S(U) for the Schwartz space of U, that is, the Fréchet space of all C* functions
f defined on U for which the usual seminorms are bounded. We denote by
D'(I'*), and §'(I'*), the space of distributions, and tempered distributions, res-
pctively, on R*" with support contained in I'*; and by D'(I" *)¢,and S'(I *)S, resp.
the subspaces of G-invariant elements. As usual, these spaces are provided with
the weak topology.



276 JOHAN A. C. KOLK AND V. S. VARADARAJAN

In order to maintain Riesz’s classical normalization using the function
x> e~ *°, we must make sure it is the restriction to I' * of a Schwartz function on
R*". This is easy to do and we state the result for the reader’s convenience.

LEMMA. Fora,b > 0,weset U, , = {xe R""|w(x) > —a,x, > —b}. Then we
have, for all T > 0, that x+ e~ belongs to S(U, ,). There exists f € S(R*") that
restricts to x> e~ " on U, ;.

COROLLARY. Let pe C!"be suchthat Re(p)e(I'*)™. Thene™ <P is the restric-
tion to a neighborhood of I'* of an element of S(R'"™), which neighborhood stays
fixed when p varies in compact sets.

ProoF. We may assume p real, and in (I"*)'™, As R, - G-(1,0,...,0) = (I *)™,
we come down to p = (1,0,...,0). Then e <*?> = ¢~ >0,

Next we observe that, for Te D' (I'"), (resp. S'(I'*)) and f in D(R'""), (resp.
S(R*") we have T(f) = 0 whenever f vanishes on I'*. It follows, for such
distributions T and p as above, that T(e ™ <7”) is well-defined. Indeed, there are
¢meD(RY") such that ¢, f — f, for all feS(R!"". So it is enough to prove the
result for Te D'(I'"), and to show that T(¢ f) = 0, for all ¢ € D(R*:"). So we may
assume that supp (T) is compact. Applying [H, Th. 2.3.3] (and taking for k the
order of T) we now get T(f) = 0, because f = OonI'* implies&*f = OonI'*,for
all a.

1.3. Riesz distributions on I'". We define for se C with Res > d — 2, the
distribution R,e S(I'"*)¢ by

G.1) Ry, f7 = 7{,1(5 f WS d x (feST),

(r+ )int

d-2 s s—d+2
H)s)=n 2 2 11“(—2~>F(———2————)

A simple calculation using polar coordinates on R x R” shows that the integral
converges absolutely and represents a holomorphic function in this domain. The
constant Hy(s) is determined by requiring that

(3.2) 1 =<{R,,e" %),
so that

where

Hy(s) = e (xI—(x+...+ x,f))s_? dx.

ar+ )int
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We now take up the analytic continuation of the mapping s — R;. One immedi-

ately checks that Dwﬁi_d =s56—d+ 2)a) 7 . So we have, for Res > d and
feS(I'"), that OR[> = (Ry42, Of) = (R, [, since we are allowed to
use the second Green identity (the vertex of the cone is of codimension = 2) and
the partial derivatives of the powers of w vanish on Cl(Xy ). Thus 0% R, = R,
(Re s > d,keZ;,). It is now obvious that s+ R, can be analytically continued
from the domain Res > d, so that

(3.3) s+ R, is a complex-analytic mapping C — S'(I"*)¢ with the property
(3.4) O*Rssak =R, (s€C,keZy)

Notice that R; is a distribution homogeneous of degree s — d, that is

(Ry, > =t74(R, f,>, with f(x) = t’f(tx) (¢t > 0).

So the R; satisfy the following differential equation expressing their homogeneity
(3.5) &R, = (s —d)R, (seC).

We observe that formula (3.2) directly implies the normalization
(3.6) {R;,e"™y =1"°% (seC,t>0).

But this gives (R4, 6> = (R, e ™) (R,, e~ ™). On the other hand, we
have the following homomorphism property of the Laplace transform, where we
denote the convolution of distributions by ,

(R, € ) (R, e”7) = (Ry* R, e"™).
Accordingly
<Rs+n e—txo> = <R * R"e'rxc>.

Now one can use the fact that (I'*)™ = {tg-(1,0,...,0)|t > 0,g€ G} to show
that if Te §'(I"'*)¢ and T(e™™°) = 0, for all 7 > 0, then T = 0. So we obtain the
group property of the Riesz distributions

(3.7 R,,, = R,*R, (s,teC).

1.4. The space of distributions D'(I' *)¢. One can proceed as in [M] [GL] [T]
to describe all the elements in D’(I"*)S. For this purpose we should introduce the
restricted mean value function

M*HE) = f f(xo, d"x, xp=+/Ix*+1tt>0.

Here f varies over C®(R!""). We denote by y the function on (0, co) which depends
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on the parity of d as follows:
0 = t*?,  d odd,
= logl, d even.

We define M * as the space of all functions h on (0, co) that are smooth and of the
form

h = hy + yh,,
where h; (i = 1,2) are in C®([0, 00)). If he M™* and if
_WO O
o T
it follows as in [K'V, §7.3] that m; = m;(h) and [; = I;(h) are uniquely determined
by h. It is easy to give a topology for 9" that is entirely analogous to the one

given for the image of the unrestricted mean value map. We can then obtain the
following

b

-2
THEOREM. Let m = I:%——jl Then f+—M™ f is a continuous, linear, and
surjective mapping
C2(R™) - My,
where M, denotes the subspace of all ke M™ for which Ij(h) =0, for 0 < j < m.

Moreover, the dual map into D'(I'*)®, the space of G-invariant distributions on R
that are supported by I'*, is surjective.

As a consequence we have the following characterization of the R; (using the
formulae for &, in [K'V, §5.5]). We denote by D'((I" * }™)¢ the space of G-invariant
distributions on the open solid forward light cone.

COROLLARY. Letse C. Every distribution in D'((I' *)™)¢ that is homogeneous of
degree s — d, is a scalar multiple of the restriction to (I'*)'™ of the Riesz distribu-
tion R,.

From the formulae in [KV, §5.3] we now obtain, for f e C*(R*" and s > 0,

@.1) Hys)<R,, f> = j M* f(Of 7" dt.
0

If we define A, the Mellin transform of h, for he ! ([0, ©0)), by

29

h:{seC|Res >0} -»C, h(s)= jh(t)t’%t—,

0
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s—d+2

it follows that Hy(s)<R;, f> = M™* f ( 3

); and Mellin inversion gives us,

forallt >0and ¢ > 0,

1 )
M f()= 5= | <7 Hd — 2+ 20 + iD)Ry_ 34 25410 f D dT.
2n

This expression for M * f, in conjunction with the Theorem leads to the following

PROPOSITION. Every element of D'(I'*)¢ can be written as a generalized super-
position over (a subset of the) se C of the Riesz distributions R,.

1.5. Riesz distributions supported on Cl(X ). The parameter se C is said to be
a singular value of the family of parameters if supp (R,) = CI(Xy). In this and the
next paragraph we shall determine all the singular values s and identify the
corresponding R,.

In view of (4.1) and (1.1) we have, on I'*\ {0}

1

d—2 S
—2s—1r e

Using (1.2) we get that supp (R,) = CI(X7) if s — d + 2)eZ<,, that is
(5.2) supp(R,) =« Cl(Xq) if s=d —2—2k (keZs,).

(5.1) R, = o* (7)) = w* Ms=d+2 .

1
Hy(s)

More precisely, according to (1.2)

1
n%zdﬂ—zkr(

(5.3) Ri—z- = 0* 53” :

d—2-2k
2

Moreover, because of the zeros of s ————>— we find an additional restriction on

the supports r <_2—

(5.4) supp(Ry) = {0} <> s = —2 (I€Z;).

A further study of the conditions (5.2) and (5.4) requires distinguishing between
odd and even d. Before doing so, we first identify Ry and R, _, with well-known
distributions. We have, cf. (3.5),

supp(Ro) = {0}, R, homogeneous of degree —d,

where —d is the degree of homogeneity of 5. Thus R, = ¢4, for some constant c.
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But (3.6) gives (Ry,e~ ™) = 1, hence

(5.5) Ry =4.
Furthermore, on I'*\ {0}
1
Ry, = ©*(dy), R,-, homogeneous of degree —2.
422 45 ( d— 2)
2

OnTI'*\ {0} we have that *(d,) = «g , the invariant measure on X;. Now R, _,
still might have a summand supported on {0}; this then has the form
P(0) = Y a;0/, for some polynomial P(X) = Y a; X/, because of the G-invari-
ance of R;_,. But a distribution of the form P((1) consists of summands
homogeneous of degree < —d, whereas R,_, is homogeneous of degree —2.
Hence there is no summand in R, , supported at {0}, at so we have obtained, in
S’( I—v+)G

1

d—2
2 0d-3
2r<2)

We now suppose that d is odd. Then (cf. (5.2) and (5.4)) d — 2 — 2k is always
odd, and —2Iis even, so the two families of singular values are disjoint, and we
obtain

(5.6) Ri_2=

1

d-2
22043
2r(42)

R—Zl = D'5 (lez;o)

Ri—z2-n = DkRa»z =

Ofag  (keZsy),

Itisnow clear from [KV, Lemma 6.5] (forj = 0) that the R, for singular s span the
space of invariant distributions supported on CI(Xy ).

Let now d be even. Then d — 2 — 2k is even, as is —2/; so the two families of
singular values do overlap, viz. for k = k¢, where d — 2 — 2k, = 0. Enumerating
in this case the R, exactly once for singular values of s, we find

1 -
Ry-2-a = P O*ag (0§k< d 2>,
d i-3 2
%) r( . )

R—21 = Dlé (lEZgo)

From the relation
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Dg—%& Ri—2 =Ry =9,
we obtain (compare with [KV, §7.1])

0%%%af =" 70 24" 3r<d . 2)5.

These formulae also display the validity of the Huygens principle in a very
simple and direct manner. However, because of the double multiplicity of the
singular values, one should expect the existence of additional distributions. We
shall find that this is indeed the case, and that they are obtained by the Frobenius
method of differentiation with respect to the parameter s. We take this up in the
next paragraph.

1.6. Infinitesimal generator of the Riesz family. We continue to suppose d to be
even. In view of (3.3) we have well-defined elements

i R,eS(I'*)C.
ds

From (3.5) and (3.6) we obtain by differentiation
d
(ép_s+d)iRs=Rs’ _Rsye_txo = —T_slogt'
ds ds
In particular, let us put

R,eS(I'*)C.

s=0

d
6. =
(6.1) pi=

The distribution p is the infinitesimal generator of the group of the Riesz
distributions, in a setting of the dual of a Fréchet space. Furthermore p is
a generalized eigendistribution for & for the eigenvalue —d, and is normalized in
a natural fashion, viz.

(6.2) (€ +d)p =0, {pe"™)=—logr.
In view of (5.1) we have, on R1'"\ (=TI'")

1 d 1
— %* —_ ____—Ms—-d+2
p=o (nT ds s=o<2“r(%) T))

d 11
Because —— = 0, and — =
(I) ds |s=o I’ (7) 2’

(6.3) p= n_g—;—zw* (M—d2+2) = n_d_;;w* (5%1:1_1))

, we actually have, on R\ (—T'")
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This shows

(6.4 supp (p) = CIXJ).

Expressing (6.2) in terms of H = & + —‘21—, we find

d
(H+5>p—6.

(Despite the absence of the factor 2, this is in complete agreement with [KV,

Lemma 6.8]. Indeed, the t in that lemma is supported by the full cone X,

whereas p is supported by CI(X ). But p corresponds to t under the mapping

s—s + s° of Lemma 6.6, and therefore gives only half the contribution of t.)
We summarize the results obtained in the following

THEOREM. The generalized Riesz distribution p € S'(I" *)€ is uniquely determined
by (6.1)«(6.4) and generates J(C) as a a-module.

ReEMARK 1. An easy computation gives
R, =3(s —d + 2)R,,,, [HwR;=5s(s —d + 2)R,.
Accordingly
d 2 d
6.5) Owp =— (5*—ds+25)R,=—(d—2)| H+ = }p.
ds s=0 2

Note that (6.5) is another proof of [KV, Lemma 6.9]. In other words, the
y-invariant of the a-module J(C) equals 3(d — 2). Notice also that this computa-
tion is actually independent of the particular identification in (6.3) of the distribu-
tion p on RY™\ (—TI'*) as a pullback.

. . . 1 .
ReMARK 2. Ifd = 4, one can give a direct proof that p is equal to - times the
space-time expression 1, for t (cf. [KV, §7.2]) on So(R*-3), the subspace of the

Schwartz space consisting of functions that vanish at 0. That is

_L S Lfx
o) f S0 —

R3

(l l X)| e (f €So(R™?).

+
In fact, for f € So(R!'3), we are allowed to compute A:t A (0) by differentiating

M™ f(¢) (cf. §1.4) under the integral sign; this immediately leads to
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AM* f
dt

0 = —1.(f) (feSo(R"?)).

But, taken in conjunction with the one-sided Methée’s calculus, this gives that we
can write

(6.6) M7™f(t) = h(t) + k(t)tlogt, k(0) =0, h,keCZ([0,0)).

On the other hand, if we start from (p, f) = %
feSo(R?),

{Ry44, O%f) we get, for
=0

S

1
o, f)= Ton J 02 f(x) log w(x) dx.
(r+)int
The Methée calculus enables us to rewrite this as

e o)

< f>——1— logt t2—‘£4—+2t—43— M* f(t)dt
pJr=7 )08 dr* dr? ‘
(1]

By a straightforward calculation and using (6.6), we now find

__lamy
<p’f> - _'n dt

1
(0), and thus p = —1; on So(R13).

2.1 Riesz distributions in the ultra-hyperbolic case. We now study distributions
analogous to those of Riesz that can be associated with an ultra-hyperbolic form,
i.e. a (normalized) indefinite quadratic form on R™" of signature (m,n), with
m>landn>1:

Ox)=x2 4. A XE—xE — e — X
for X = (X1,..., Xy Xma 1>+ ++» Xm+n) € R™". We shall write G for SO(m,n), the
orthogonal group of the form w. Such distributions have been considered before,
for recent contributions, see Orloff [O]. They can be used to find G-invariant
fundamental solutions for the associated constant-coefficient ultra-hyperbolic
differential operator:

82 02 02 62

O=—+...+ =—5— cer — .
oxi 0xp  OXpmsy X4

Fundamental solutions have been constructed by Gelfand and Shilov [GS, Sect.
ML 2.5], Fourés-Bruhat [F] and de Rham [Rh].
Here we shall give a simple and unified approach to these problems, using two
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generically distinct one-parameter families of Riesz distributions, denoted by
(Rsi )seC'

If mor nis odd, then at least one of these families contains a nonzero multiple of
; and therefore it also contains a fundamental solution (cf. (3.3), (3.4), (3.5) below)
for O, which turns out to coincide exactly with those given by de Rham. But if
both mand n are even, then the R degenerate ats = 0, thatis, R} = R; = 0. As
a remedy we differentiate with respect to the parameter s at s = 0. This, indeed,
will provide nonzero generalized Riesz distributions p* on R™" associated with
w; actually they are the infinitesimal generators of the families RE. In the
hyperbolic case the counterpart p of these p* is supported on all of the forward
light cone and fails to be homogeneous at 0. In the case at hand the degeneracy of
the Riesz distributions (RZ) causes the p* to be supported at 0 and also to be
homogeneous at 0. In fact, we have

%_ 1 d
(1) pt =21t~ 1)E Y (335
k=0

@ pt +(=1)2p™ =(=1)F 7o

As an easy consequence the same fundamental solution (cf. (4.4)) as found by de
Rham is easily obtained.

In constrast to the situation above, in the hyperbolic case the distribution p is
not needed to construct fundamental solutions. In Section 1 we encountered
p only when finding a generator for the a-module J(C), when n + 1 was even.

2.2. Riesz distributions. We set d = m + n, thus R™" ~ R%. In contrast to the
case of m = 1, we have for m > 1 that the complement in R™" of the cone
X, = {xe R™"|w(x) = 0} consists of two connected components; we shall de-
note these by:

C* = {xeR™"| + w(x) > 0}.

For se C with Re s > d — 2, we introduce two Riesz distributions, R} and R_,
both in §'(R™"), defined by:

2.1 REf>= ?:(-s—) f (iw(x))%lf (x)dx (f eS(R™").
c*

Notice that the factor

2.2) Hys) = 2222 (%) r (_s_-_ng_z)

is independent of m and n separately. We have
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1

. Ri = Ea I
(2 3) s n“gzzs—1r<i>r<s_d+ 2>(i0)) 2 lc
2 2

Itisimmediate that the R} are invariant under G, and that supp (RY) = C*.Ttis
obvious from (2.3) that

(2.4) R, =R}.
Here R} is the + Riesz distribution associated with @ which is defined to be the
quadratic form — w of signature (n, m):

X)) =x20y .o+ XE =03+ + X2

We now can apply, mutatis mutandis, the arguments in §1.3. If we keep in mind
that — [0 = (J, the differential operator associated with the quadratic form
@® = —w, we obtain:

2.5 s+— RZ is a complex-analytic mapping C — S(C*)°®
(2.6) DR =RS, TR =(=1FR; (seC keZ,,)
2.7) ERE = (s — d)RE (seC).

Further we obtain that there exist constants ¢, € R such that
(2.8) RE = c4é.

In order to determine c .., we compute

(R, [, for f(x) = e=tivmrm,

Although this function f is not in S(R™"), the computation below may be justified
exactly as the case of x+— e~ in §1.2. Using bipolar coordinates (x,...,X,) =
UP, (Xm+15- - Xm+n) = VY, it is easy to find that

2.9) <R:,f>=231_1 - : —- (s¢C).
”(‘z‘>f<5+“7)

In other words,

A=1)"7"6, for m odd,

2.1 -
210 Ro {0, for m even.

In view of (2.4) we obtain from (2.10)
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n—1
_ 2(—=1yZ 6, for n odd,
2.11 Ry =
( ) 0 {O, for n even.
2.3. Fundamental solutions. If m or nis odd the results above immediately lead

to the same fundamental solution for [J as given in [Rh, pp. 365-6]. We notice
that, in view of (2.3)

1
G.1) R} =— < len.
422 50-1p( 2
()
* 1 -3
32) Ri = — ——lol H..
(1)

We distinguish cases.

m odd and n odd. Then d = m + n is even, thus D%RI = R¢. In view of (3.1)
and (2.10) this implies

m—1
(3.3) 0% '}Si)—ziz—lc* =
75—7—2'1['(-2—)

Notice that the fundamental solutions for 0% for1 < k < , described here
have support in the cone dC* = X, = {xe R™"| w(x) = 0}.

m odd and n even. Then d is odd, and l:—;i—] = d ; ! , thus D[%]R;_l =R;.

In view of (3.2) and (2.10) this implies

= 0.

m—1
(3.4) o4l (=1 2d ot e
d—1 d-1 -
nz 2°°'r (—2 )
The fundamental solutions for (0%, for 1 < k < [;] — 1, described here have
support in the solid cone C*. ,
m even and n odd. Then d is odd, thus (cf. (2.6)) we get O (5] Ri.,=(— 1)!1_3l Rg.

-1 n-1
In view of (3.2), (2.11) and . ! n

+ 5 = > mod 2, we obtain
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(3.5) m]E (_lﬁd ~lol e =,
nd_gl2"'11"<——;2_——)

d
These fundamental solutions for (0%, for 1 £ k < [E} — 1, have support in the

solid cone C~.

m even and n even. The method employed above fails in this case, since
Ry = Ry = 0. Therefore we need another approach, which is developped in the
next section.

2.4. Infinitesimal generators p*. We assume that m and n are even. Then
(+ EI)%Rf+ 4 = RZ and therefore we get

4.1) pi:=—l—i—

+ _ 4d
ds Rs —(iD)Z ds

Ry 4eS(CH)C.
0o

s=0 s=

We shall also refer to the p* as the generalized Riesz distributions. Here (cf. (2.3))

1

R%,, = 1cs e2'oslol,
s d-2 s+d s+2
3 zs+d— 1 F e I-'
. . I'(z)
If we introduce the function ¥ of Gauss, and the constant C, by ¥(z) = o)’ and

C= —(log2 +1¥ <%) + 1¥(1)) resp., then we obtain

d
4. La t _ CRE A ,
4.2) Is s=oRs+d CR; + iz, (d lc+loglo|
nz 2T —
2
Since (+ D)%R} = R¥ = 0, we get from (4.1) and (4.2)
t 4 1
p =(_—t D)Z Tz—-—d—lct logl(D|
) 2"F<—>
2
Thus
+ 4 _ d 1
4.3) pt +(—12p =02 ——F+—log|o|
a2, (d
w2 2 F(E)

As in Formula (6.3) in §1.6 we have, on R*\ {0},
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pt =1 T () (8 7))

If we write gY(t) = g(—t), then we have

(o) f() = f J(x) dulx) = (@, f)"(1).

{~ox)=1
Hence, on R\ {0}

- _d=2

d—2 - ~ d—2

pm =n @ T = T - )T el T = (- D1,
Thus on R\ {0} we have p* + (——1)%p“ =p* —p* =0; in othér words,

to (2.7) we obtain that
s=0
Ept = RE —dp* = —dp*. That is, the p* are distributions homogeneous of
degree —d, and supported at 0. But therefore they are scalar multiples of . From
(A.5) in the Appendix below we obtain:

. . d
pt + (~1)%p‘ is supported at 0. Applying I

pt+(=1ip = (—1E 7o,
Thus we get from (4.3) the following (cf. [Rh, pp. 365-6])

— m_l
4.4) o2 %—llleog lo| =90
1:72"I’<—§—>

Notice that the fundamental solutions for 0%, for 1 < k <

, described here
have support in all of R?,

2.5. The modules J(C). In this section these are defined as the a-modules of
G-invariant distributions on R™" with support on the cone X,. It can be shown
that (cf. [KV, Section 2] for the definition of the modules of the type W, V and
M infra):

- d d m odd and n even;
J©~ V<_~ B 2) ® V<~ 7)’ for {m even and n odd;
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It is remarkable that, in all cases, J(C) is spanned by Riesz distributions with
a singular value of the parameter and by generalized Riesz distributions. More
precisely, it is spanned by

(Rf)and p*, for mand n both odd;
(Rf)and p~, for modd and n even;
(R7)and p*, for meven and n odd;
(R¥)and p*, for mand n both even,

where s runs through the singular values.
We also remark that the analogue of Proposition 1.4 is true in this case.

2.6. Eigenvalue problem. Notice that
S j') Z le+2+21€D'(Ci)G

defines an entire function of the variables s and A€ C. The results above now
immediately lead to a G-invariant fundamental solution to the eigenvalue prob-
lem for the ultra-hyperbolic operator, that is, an element U, € D'(R™")° satisfying:

@ -AHU,=6 (4€C).

Indeed, U, can be taken to be:

=)™ T*0:2) or (=12 T(0: ), m, n 0dd;

(- )3T 0:4), m even, n odd,;

H=1)"T"T*(0: ) m odd, n even;
d

— ~1—(—1)%“1(T+(s:,1)+(—1)%T‘(s:1)), m, n even.
ds s=0 T

2.7. ReMARK. Finally, the elliptic case m = 0 can be treated likewise. There is
only one Riesz family (R,) and Ry = 4.

APPENDIX: SOME COMPUTATIONS. Here we assume both m and n to be even. For
xeR™" we set |x||2=x3+ ...+ x2 4+ x2,., +... + xZ,,, and, for seC and
>0,

(A.1) I*(s:7):= (R}, e "Iy = H—l(s)_ J‘e"l"""zw(x)%ddx.
f

We shall prove that

(A2) I*(s:1) = m22 s 7~5(= )31 x
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As in § 2.2 we begin by introducing bipolar coordinates, and we get, by means of
z

the substitution 4 = ———,
(1 + 1)

I*(s:7) = —1——|s'"‘1||s"-1|r—sr<i> F(s),

4H,(s) 2
1
1—t\5"% 81
where F(s) = 2 dt.
) 1+t (1 + 0%

1-—1¢
The change of variables Tr= X Nnow gives

1
F(s) = 2 ’%Jx%‘%(l — x)571(1 + x)F " Ldx.
0
We calculate this in terms of the hypergeometric integral

m d s m s
F(l—-z—,l——2—+—2‘,1——2“+5.—1>,

or by expanding (1 + x)2~ %, and we obtain

s d
d_(m n)\ it F<5_5+1+k)
_"1-35 _ e .
F(s) =2 2I‘<2>F<2)k§0r CRA Y LI ;
2 T\2 2

and therefore we find that I*(s: 1) is equal to

d
m_1r<i——+1+k)
2-s-4 —.sr2 2 2 1
n227 Ty

o s _d - s.om o\
r<2 2+1)k. r(2 k)I‘<1+2 2+k)
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Formula (A.2) now follows easily.

. S . . .
Notice that — occurs as a factor just once in every summand in (A.2). Therefore

I*(s:7) is easy to compute:

d m -1
R+, _t2||.||2> 21 __( 1)__] Z < 2 >
S—O ‘:

k=0

4
dS s=0

d
(A.3) <£

If we apply (A.3) to R; = R} (cf. (2.4)), we get at once

d d d m —:‘1 d _1
£ S N A WD SPIY: SUPPR B T 4
(A.9) <ds s=ORs,e > (=1Dzm2'72(—1)2 k;;( L >
From (A.3) and (A.4) now follows
(4.5) p* +(=1Fp eI = (—1F 17,
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