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1. Introduction

Let S be a Riemannian symmetric space of noncompact type, and let G be the
group of motions of S. Then the algebra #y,(S) of G-invariant differential
operators on § is commutative, and its spectrum A(S) can be canonically
identified with %/ where & 1s a complex vector space with dimension equal to
the rank of S, and w is a finite subgroup of GL(%) generated by reflexions. Let
I’ be a discrete subgroup of G that acts freely on S and let X =I"\S. Then the
members of Lp(S) may be regarded as differential operators on X. Let us now
assume that X is compact and define the spectrum A of X as the set of those
elements of A(S) for which one can find a nonzero eigenfunction defined on X.
In this paper we study the relationship of A to the geometry of X and determine
the asymptotic growth of A as a subset of A(S). In subsequent papers we plan to
study the asymptotic behaviour of the eigenfunctions and to examine the
problem of obtaining improvements on the error estimates.

It is well-known that G, which is transitive on S, is a connected real
semisimple Lie group with trivial center, and that the stabilizers in G of the
points of S are the maximal compact subgroups of G. So we can take S=G/K, X
=I'\G/K, where K is a fixed maximal compact subgroup of G, and I' is a
discrete subgroup of G containing no elliptic elements (=elements conjugate to
an element of K) other than e, such that I'\G is compact. Let G=KAN be an
Iwasawa decomposition of G; let a be the Lie algebra of A; and let w be the
Weyl group of (G, A). If we take . to be the dual of the complexification a, of a,
then A(S)~ % /w canonically. In what follows we shall commit an abuse of
notation and identify A(S) with % but with the proviso that points of # in the
same w-orbit represent the same element of A(S).
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For the L*-eigenvalue problem on S determined by %y, (S) the spectrum is
the R-linear subspace #, =ia*; the spectral multiplicity is always 1; and the
spectral measure is of the form fdv, where dv is a Lebesgue measure on %, and
f§ is a nonnegative w-invariant smooth function on %;, which, together with each
of its derivatives, is of at most polynomial growth on #%,. However, for the
spectrum A of X we always have A4 .%,; this leads to a natural splitting of A as
a union of the principal spectrum A,= A%, and the complementary spectrum A,
-\,

The main result of this paper may be divided naturally into two parts. The
first part is concerned with the connection between A and the geometry of X,
and is treated in Sections 2-5. To every I'-conjugacy class ¢ different from the
class [e], we associate in a natural manner a tempered w-invariant distribution
T, on the vector group A; its construction is an application of Harish-Chandra’s
theory of harmonic analysis on semisimple Lie groups. We then prove (Theorem
5.1) that the distributions T, and the multiplicities m{4) (A€ A) are related by the
following identity of distributions:

Y m(A)n,=vol(X)w|~'f+ ¥ T, (L.1)

AeA c*+ielr

Here, n,=¢*""*¢, log(4 —a) being the inverse of exp(a— A4); f is the Fourier
transform of f, and v, is the volume vol(I’\G,), where yec and G, (resp. I) is the
centralizer of y in G (resp. I'). It is clear that (1.1) is the analogue, for X, of the
classical Poisson Summation formula; it is a consequence of the Selberg Trace
formula and the Harish-Chandra theory of integrals over G-conjugacy classes.

To the I'-conjugacy class c=[e], corresponds a free homotopy class of loops
in X. The closed geodesics in this class all have the same length /(c) and form a
compact manifold F(c) in the tangent bundle T(X)x= T*(X); the distribution T,
is intimately related to F(c). For instance, the support of T, is contained in the
union, of the images under w, of an affine subspace *L{(c) of A, at a distance I(c)
from 1; if the elements of ¢ are regular in G, T, is even a smooth function on
U s-*L(c) (Theorem 5.2). When c is such that the G-conjugacy class in which it
is contained passes through an element of M A4 with component h, in 4 which is
regular in A4, F(c) reduces to a torus, and 7, comes out to be equal to the sum of
Dirac measures

lw|~ ! |det(I—P)*|7* > dps (L.2)
where P, is the linear Poincaré map along the element y of ¢ (Proposition 5.16).

It is clear from these remarks that the distributions T, are closely related to
the singularities of the distribution & studied by Duistermaat-Guillemin [6]. The
precise contribution of the T, to the asymptotic expansions in Theorem 4.5 of
Duistermaat-Guillemin (for the Laplace-Beltrami operator on X) can be de-
termined easily once F(c) and the singularities of T, are analysed in detail. In
Section 5 we do this completely for the classes ¢ of the type mentioned above;
for other classes we indicate some partial results. We hope to treat the general
case in a subsequent article.
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In the special case when 1k(S)=1, all classes c=[e], are of the type
mentioned earlier; then F(c) reduces to a single geodesic of length /(c), and the
Poisson formula (1.1) then takes the form, with 4 ~IR,

S m(2)e*=}vol(X) /?
ieA — 1 3)
+3 2 (o) ldet(I = P)*| ¥ (8,0, + 0 _ ), .

c*lelr
here [,{c) is the primitive length corresponding to ¢ (Theorem 5.17). If we take G
=SL(2,IR) so that S is the upper-half plane, this specializes to a formula of Lax-
Phillips [29] and Randol [37].

We now turn to a description of the second part of our results. Our aim here
is a determination of the asymptotic growth of A; and the results that we get are
in Sections 7 and 8. The starting point is the remark that there is some
neighborhood of 1 in A that does not meet the support of any of the distri-
butions T.. Consequently the Poisson formula (1.1) becomes

Y. m(2) f(4)=vol(X) |w|~* {B. f>, (1.4)

ieA

for all feC*(V), V being a sufficiently small w-invariant neighborhood of 1 in
A.

Roughly speaking, formula (1.4) says that the measure vol(X)}|w|~ ' fdv and
the spectral measure which assigns to AeA its multiplicity m(4), have “Fourier
transforms” that coincide around the origin. General principles of Fourier
analysis would then lead us to expect that these two measures should be
asymptotically equal to each other at infinity on %,. However, it does not seem
easy to deduce such a result from classical Tauberian theorems; not only are we
dealing with a multidimensional case here, but the situation is further com-
plicated by the presence of the complementary spectrum A, = A\ Z,.

A basic step in our treatment of this problem is to obtain an estimate for the
number (counted with multiplicities) of points of A lying in a ball of radius t in
& with center at a wvariable point ue#;. We do this by using in (1.4) test
functions f whose Fourier transforms are =0 on A and whose absolute values
are 21 on large balls in #. The resulting estimate is contained in Theorem 7.3
and asserts that the number in question is majorized by const t¥ f(u) where f is
a “smoothed out” version of f defined by (6.11). Now, as |u| — + oo, B(n) is
o(jjull" "} (n=dim X, r=dim A); but if u varies only on a subspace of &, where
m positive roots vanish, Buy=0o(ul" ™), basically because § vanishes to the
order m at such u. Since the imaginary parts of the points of A_ are of this type,
it is not too difficult to argue that the number of points of A, in a ball in &
around the origin of radius r is O(t" ?~ '), where d is a certain integer = 1.
Without extra conditions, this estimate is sharp and it makes precise the
heuristic remark that A, is negligible in comparison with A, because known
results on the Laplace-Beltrami operator already imply that the number of
points of A in a ball in % of radius t around the origin is ~ const "

One can now deal with the principal spectrum. Our main results are
Theorems 8.5 and 8.8. Theorem 8.5 is a very general one which asserts that for
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any bounded measurable subset Q in %; the number of spectral points 4 with
A€Q can be approximated by a constant x { f(v)dv, with an error that is

2

majorized by the integral of § over a neighborhood of the boundary of Q, of
arbitrary but fixed size. We regard this result as a definitive formulation of the
spectral information which is contained in formula (1.4). However, in this result
the error term cannot be made small relative to the main term j p(v)dv, unless Q

s “big and fat”.

Theorem 8.8 describes one particular result of this type. It follows from this
theorem that if Q is any bounded open subset of #; with smooth boundary,

Y. m(A)=const | B(v)dv+0(@""") (t— +o0). (1.5)
1Q

Aedpr Q)

Here the constant, which depends only on X and not on Q, can be explicitly
determined; and the main term in (1.5) is ~const ¢".

In the last section we take a closer look at the case when rk(S)=1. In this
case, the simplicity of the Poisson formula (1.3) makes it possible to work with it
rather than the truncated version (1.4). As a result we are able to show that the
error term in (1.5) is even O(t"~'/logt), when t— + oo (Theorem 9.1) (cf. also
Kolk [27, Proposition 5]). It must be remarked however that when rk(S)=1,
ZLpis(S) 1s the algebra generated by the Laplace-Bertrami operator 4, and the
above result can be obtained also by putting together the results of Bérard [2],
Hejhal [23] and Randol [38].

In order to carry out the proofs of the results described above it is necessary
to make full use of the theory of harmonic analysis on semisimple Lie groups.
Sections 2-4 describe briefly the aspects of this theory that are needed for our
purposes, with some variations at suitable places.

We wish to point out that the suggestion for considering higher dimensional
spectra of algebras of differential operators on compact locally symmetric spaces
of negative curvature, and for studying it in the group theoretic framework,
seems to have appeared first in Selberg’s article [40] (p. 68), and later, in more
detail, in the Stockholm address of Gel'fand [11]. This address also contained
the indication that the spectrum of X grew just like § at infinity. The first
systematic use of the Harish-Chandra theory in this problem goes back to
Gangolli [7] who treated the asymptotics of the Laplace-Beltrami operator on
X, but worked under the additional assumption that the group G was actually
complex. Since then various authors have taken up the group theoretic view, but
always only for the Laplace operator, cf. De George-Wallach [5], Gangolli [9],
Gangolli-Warner [10], Wallach [43], [44]. The first multidimensional treatment
is due to Kotk in his Utrecht dissertation [28]. Kolk’s results, which were
announced in the note [27], form the point of departure for the present work.
For multidimensional spectra in another context see the recent work of Colin de
Verdiére [4].

We have made a real effort throughout this paper to calculate explicitly all
the constants that appear in the various formulae. In addition to providing
various internal checks, this has made possible a very detailed comparison of
our theory with other known results.
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2. Eigenfunctions and Spectra for Locally Homogeneous Spaces

In this section and the next we introduce our basic framework. Almost all the
results presented here are well-known and, in the context of semisimple Lie
groups, due essentially to Harish-Chandra. However, as our point of view
emphasizes distributions rather than representation theory, it will be convenient
to describe these results in the context and form most suitable for us.

2.1. Generalities. For any C” manifold M we topologize the spaces of test
functions C* (M) and C*(M) in the usual manner. The space 9'(M) (resp.&{M))
of distributions (resp. with compact supports) is the dual of C*(M) (resp.
C*(M)). The diffeomorphisms of M act on these spaces by transport of
structure.

Let G be a Lie group with bi-invariant Haar measure dx. As usual we
identify a locally integrable function f on G with the distribution fdx. Let [(x)
(resp. r(x)) be the left (resp. right) translation by xeG and let ¥ be the involution
x+>x~'(xeG). For f, ge C*(G), f+g denotes their convolution. We extend the
convolution by duality to apply to (suitably restricted) distributions on G; in
particular, T+ U is meaningful whenever either T or U belongs to &'(G). &'(G) is
an algebra under * with §,, the Dirac measure at the identity e of G, as its unit.
If H=G is a closed subgroup, we write &5(G) for the subalgebra of distributions
on G whose supports are compact and contained in H.

We identify 6'(G) with the algebra £ (G) of all continuous endomorphisms of
C*(G) that commute with all left translations, by the correspondence
T~®, (b, f=f+T). This isomorphism maps &.(G) onto the algebra of all left
invariant differential operators on G. The latter algebra is identified as usual
with the universal enveloping algebra U(g,) of g,, the complexification of the Lie
algebra g of G.

For any closed subgroup H <G we have the embedding C(G/HY= C*(G);
and if H=K is compact, we also have the projection B: C%(G)— C*(G/K)
given by (K f)(x)={f(xk)dk (xeG). Here dk is the Haar measure on K

K

normalized by {dk=1. Let #(G/K) be the algebra of continuous endomor-

K
phisms of C*(G/K) that commute with the action of G; then ¥i— ¥ o Py gives an
embedding £ (G/K)— £ (G). Clearly

L(G/K)~&'(G//K), (2.1)

where 6'(G//K) is the subring of all Te&'(G) which are K-bi-invariant. &'(G//K)
contains

C2(G//K),  resp. &x(G//K) (2.2)

which correspond to the subring in #(G/K) of smoothing operators, resp. the
subalgebra of differential operators. Denoting the latter by Liec(G/K), there is a
natural homomorphism

U(8)* = Lpii(G/K) x &4 (G//K). (2.3)
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It is actually surjective and, if f denotes the Lie algebra of K, its kernel is
U@ n(U(8)D=U(g)* n(tU(g,). (2.4)

If s is any Ad(K)-stable subspace of g complementary to I, and if A is the usual
symmetrizer map that goes from the symmetric algebra S(g,) to U(g,), it is not
difficult to verify that (2.3) is a linear bijection of U(g)¥nA(S(s)) onto
Lot G/K).

We make with Gel'fand the following classical assumption: G has a closed
Abelian subgroup 4 and an involutive automorphism 6 such that

G=KAK; A’=A; d°=a"'(acA). (2.9

Under these circumstances T=T%Te& (G//K)), and so &'(G//K) is a com-
mutative algebra.

&'(G//K) acts on 2'(G/K)(=2'(Gy'®)) by convolution from the right. Ob-
serve that Z,(G/K) contains nonzero elliptic elements; in fact, if (.,.) is a
positive definite Ad(K)-invariant scalar product on s, then, for any orthonormal
basis {Z,},<;<, 0f 5,

ws=Z3+...+Z2eU(g ¥ (2.6)

defines such an element via (2.3). wg induces the Laplace-Beltrami operator on
G/K, assuming the Riemannian structure induced by (.,.).

Proposition 2.1. (i} Let ue9'(G/K) and y a homomorphism &y (G//K)— C such that
ux T=y(T)u(Te&y(G//K)), then u is an analytic function. (ii) Suppose that A is
connected. If yi: &x(G//K)—C is any homomorphism, the subspace
F(xx) = C*(G//K) of all ¢ such that ¢ « T=y,(T) ¢ for all Te€y(G//K) is at most
onedimensional. It has dimension 1 if and only if y, extends to a continuous
homomorphism y:. ' (G//K)— C; such an extension is necessarily unique, and the
elements of F(yy) remain eigenfunctions for &'(G//K) with y as the corresponding
eigenhomomorphism.

Assertion (i) is clear using (2.6) and the classical Regularity Theorem. We
note that the map ¢ —¢(e) is injective on F(yg) (cf. Varadarajan [42, 11,
Proposition 8.2(ii)]). Suppose @€F(xx) and @(e)=1, then yx(T)=(¢p = T)(e) so
that y, is continuous. If now fe C*(G//K), Te&x(G//K), then ¢ »f+ T= @x TS,
which implies ¢ *feF(y). Hence @ *f=y(f)o for some x(f)eC. y is con-
tinuous on CP(G//K), and so extends to a continuous homomorphism y:
é'(G//K)— € which is an extension of y;. Since C*(G//K) is reflexive there is a
unique Yy e C*(G//K) such that y(T)=<T,y>(Ted' (G//K)), while y(e)={dk, >
=yx(dk)=1. It is not hard to prove that ¢ =1, using the onedimensionality of
F(yg). If y' is another continuous homomorphism of &(G//K) into € that
extends g, and ¥'e C*(G//K) is such that ¥ (T)=(Ty"> (Teé'(G//K)), a similar
argument gives ¥’ =, and thus ¥’ =y.

Write S=G/K and define the formal spherical spectrum A(S) of S (or G) by

A(S)={x: x continuous homomorphism: &' (G//K)— C}. 2.7)
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From Proposition 2.1(ii) we get a bijection y«>¢, between A(S) and the set of
all 9 =¢,eC”(G//K) satisfying

p@=1; 1N =(Te>e+T=x(T¢ (Tet (G//K). (2.8)

2.2. Let I' =G be a discrete subgroup. We assume always that I' acts freely on
G/K, so that

X=I\G/K=I\S 2.9)

is a manifold. The measures dx on G, dk on K and the counting measure on I’
induce a measure dX on X, and we write I*(X) for I?(X,dX). Since
2'(X)=2' (G/KY", 6'(G//K) acts on 2'(X). From now on we assume that X is
compact, and we have the following well-known result.

Proposition 2.2. (i) For any fe C*(G//K), R(f): ur—uxf (ueI?*(X)), is an integral
operator in I}(X) whose kernel K, eC*(X x X} is given by

K (x,5)=) fix"'yx) (x,x'eG,x=I'xK,x' =TxK). (2.10)

yel

(ii) All the R(f) are operators of trace class, and

R(f ))=)};K,-(i>?)di (feCI(G//K)). (2.11)

(iii) If f(x)=f(x)°", then R(fY=R(f)! (* denotes adjoint). The identity operator
lies in the strong closure of R(Cf(G//K))

As before any eigendistribution on X for &'(G//K) is an analytic function
and the eigenhomomorphism is continuous. We put

A=A(X)={y: yeA(S), 3 nonzero eigenfunction on X for y}. (2.12)

For any ye, let C*(X:y) be the corresponding space of eigenfunctions.

Proposition 2.3. (i) A is nonempty, viz., if e(T)=<{ T, 1> (T€&'(G//K)), then e A and
Cm(vX:s):(E- L. (ii) For each yed, the space C*(X:y) of ueC*(X) satisfying
uxT=y(T)u(Teé'(G//K)) is finite dimensional. The subspaces C*(X:y) are mu-
tually orthogonal in I?(X) and [*(X) is the orthogonal direct sum of the C*(X: y).
In particular, A is at most denumerable.

Assertion (i) is obvious. Ad(ii), we decompose I?(X) for the action of
CE(G//K) by means of Proposition2.2 (iii). The eigenhomomorphisms
1:C2(G//K)—> € are extendible to eigenhomomorphisms y:&(G//K)— € by
continuity, and they are continuous themselves.

Proposition 2.4. For any yeA we have: (i) y(T)= Ty (Te&(GJ/K), T= (T)“‘“J)
(ii) @ =g, (cf. (2.8)) is positive definite, i.e., {T*T, 0> =0(Te& (G)). In particular,
o=9¢; lpxIsl (xeG). (2.13)

For proving (i) we go over to I>(I'\G). The action of G on I?(I'\ G) extends
0 an action of CX(G) (f+>R(f)). Suppose now that yeA and choose
ue C*(X:y) such that (u,u)=1, and regard u as in I*(I"\G). Then
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R(Nuw)=<f.¢> (feCZ(G)). (2.14)

This follows from the easily established fact that the distribution
®: fis(R(f)u,ud on G satisfies ®+h=y(h)d(he C*(G//K)). But (2.14) implies
Sfrfo o> =(R(f)RN u,u)=|R(f) u]>20, for all feCZ(G).

2.3. A Trace Formula. In rough terms we can say that our interest is in studying
the distribution of the points of A (cf. (2.12)) within A(S) (cf. (2.7)). Our basic tool
for this purpose is the Selberg Trace Formula.

Let feCX(G//K), and let R(f) be the operator defined in Proposition 2.2 (i).
Then R(f) acts on C*(X:y) as the scalar x(f). So, if

n(y)=dim(C*(X:y) (xeA), (2.15)

then tr(R(f)=) n{x)-x(f), the series being absolutely convergent. On the

yeA
other hand, using Proposition 2.2,

tr(R(/N=]Ky(x,x)dx= | } f(x~"yx)dx,
X I'\G yerl’
where dX is the G-invariant measure on I'\G. The integral on the right can be
further simplified following Selberg’s classical argument. First we have the
following lemma (see Mostow [33, Lemma8.1]).

Lemma 2.5. (i) For any yel', the G-conjugacy class [y]; is closed. More generally,
for any subset I''<I', | | [v]¢ is a closed subset of G. (ii) If, for yeI', we write G,

vel
(resp. I) for the centralizer of y in G (resp. I'), then I'\G, is compact. (iii) A
compactum in G meets only finitely many [y].

Let us now make the assumption that for each yerl, G, is unimodular. Since
we have fixed a Haar measure dx on G, it follows that once a Haar measure on
G, is chosen, we have a uniquely determined G-invariant measure d,X on G \G,
and a G,-invariant measure on I')\G,, the Haar measure on I, being the
counting measure. Define now, for feC (G),

JN=VOING,) | f(x'yx)d, % (2.16)

G,\G

Since [y]; is closed by Lemma2.5 (i), the function G,x+-f(x '7x) lies in
C(G,\G) and so the right side of (2.16) is well-defined; moreover, the remarks
preceding (2.16) show that j(f) is independent of the choice of the Haar
measure on G . It follows from this that j (f)=j,,,-:(f) (y'el, fe C(G)). Let us
now define €(I') to be the set of all I'-conjugacy classes of elements of I'. Then
these remarks make it clear that for any ce%(I'), the map J.:fi—J,(f)=/,(f)
(yec) is a well defined Borel measure on G, invariant under the inner automor-
phisms of G. Selberg’s formula, with the conjugacy class [e], separated from the
others as usual, can now be formulated as follows.

Proposition 2.6. Let n(y) be defined by (2.15). Then, for all fe C*(G//K),
2. 10 x(f)=vol(r\G)f(e)+ Y. J.(f). 217

reA c¥[elr
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where

JN)=volTNG,) | f(x 'yx)d, K(rec) (2.18)

G,\G

It is now interesting to note that to a first approximation we can ignore the
J..c*x[e],. We have

Lemma 2.7. There is an open nbhdU of e satisfying:
(@) U=U"'"=KUK; b)Un[y],=0. if yeI and 7 +e.
Let I"=I\{e}. Then Q= U [v]g is closed in G by Lemma 2.5 (i); so KQK is

closed in G. We claim that eqéKQK For, if e=kxyx~'k’, for some k k'eK,
yel”, xeG, we see that y=x""(k~' k'~ 1) x lies in x~ 'meF. So y fixes the coset
x " 'KeG/K, showing y=e, since I acts freely on G/K ; contradiction. So we can
find an open nbhd V=V ' of e such that VA KQK =f. We set now U=KVK.

Proposition 2.8. Let U be any open nbhd of ¢ with properties (a) and (b) of Lemma
2.7. Then, for all fe C*(G//K) such that supp(f)=U, we get

2 1) x(f)=vol(I'\G)f (e). (2.19)

XA

This is obvious now.

2.4. Eigenfunction Expansions in [*(G//K). The Plancherel Measure. Let us now
define the transorm f of any feL'(G//K) by

T=1N)={Lo)>  (eAS). (2.20)

Since A(S) is a closed subset of the separable Fréchet space C*(G//K) it may be
regarded as a standard Borel space (Mackey [30]) and the functions f are Borel
on A(S). If A7(S) is the subset of A(S) of all y for which ¢, is positive definite (cf.
Proposition 2.4), then A™(S) is a Borel subset of A(S) and

FOISISI (xeAS), feL(G//K)). (2.21)

Let 4 be the #-representation, of the commutative Banach algebra I}(G//K)
with involution ~, in the Hilbert space I*(G//K), the action being via left
convolution. It is then possible to prove the existence of a unique projection
valued measure IP on A (S) (in I*(G//K)) such that

M= | fdPy)  (feL(G/K)). (2.22)

A4*(S)

One can moreover prove the existence of a unique o-finite measure w on A*(S),
the so-called Plancherel measure, such that

(P(E)g.g)=[1g(nI*da(y) (geCG//K)) (2.23)

for all Borel sets EcA*(S). Taking E=A7(S) we get the Plancherel formula,
valid for all ge C(G//K):
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Vlg)lPdx="{ 800> do(y). (2.24)
G

A*(S)

Further, one has the inversion formula, valid for ge CAG//K) = C (G//K):

gx)= | g e,do(y) (xeG). (2.25)

A474(S)

If A is the algebra which is the closure of A(L'(G//K)) and X is the Gel'fand
spectrum of 2, the above results can be established on X, with the Gel'fand

[

transform 4(f) in place of . But now there is a canonical map oy, of X into
A*(S), which is a Borel isomorphism of X onto a Borel subset 4,(S) of A7(S),

such that A(f)(o)=f(x,) for all ceZ, feI}(G//K); the results (2.22)«2.25) are
then obtained by transferring from X to A*(S). In particular this gives

dIP =0, [ do=0. (2.26)

A (SHAR(S) AT SNAR(S)

Let £, be the R-algebra of all formally self-adjoint elements of £,.,(G/K).
Then, for any yA(S) we may regard ¢, as the unique solution to the eigenvalue
problem

up=yWouely), @eC?(G/K), o¢le)=1. 227

Now, for any ue,, it is well known that u is an essentially self-adjoint operator
on the (Géarding) subspace C*(G//K)**(G//K); if A(u) denotes the unique self-
adjoint operator in I?(G//K) thus obtained, it can be shown that

A= [ xwdP(y) (uel). (2.28)

A*(S)

We may therefore interpret IP as the spectral measure of the commuting system
of self-adjoint differential operators A(u), uef,; (2.24) and (2.25) are then
respectively the Plancherel and eigenfunction expansion formulae for the prob-
lem (2.26).

The R-algebra £, is finitely generated. If u;(1<j<0) is a system of gen-
erators, the map y—{x(u,), ..., x(4)) sets up a Borel isomorphism of A(S) with a
Borel subset of R". The eigenvalue problem (2.27) as well as the measures IP and
® may then be transferred to R' to give the Plancherel and eigenfunction
expansion formulae for the simultaneous eigenvalue problem

wo=t;p(1=j<h),  @eC*(G//K), p(e)=1. (2.29)

Let us now consider the spectrum A= A(X) of X. Since it 1s possible that
A,(8)*FA%(S) and AdA,(S), we may define the principal and complementary
spectra A, and A, of X by A,=AnA,(S), A,=A\A,. The trace formula (2.19)
now becomes

Ym0 f()=vol('\G) [ f(x)do(y) (2.30)

xeAd Ap(S)
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valid for all feC?(G//K) with supp(f)c U. It is this relation that suggests that,

asymptotically, A, grows like w and A, is negligible in comparison with 4.
The results mentioned in this paragraph are all essentially known; they may

be proved by suitably adapting to our context the arguments of Harish-Chandra

([14]).

3. In Which G is Semisimple

3.1. Notation. From now on we shall assume that G is connected semisimple
and that it has a finite center; other notation is as in Section 2; so dx is a fixed
Haar measure on G. K is a maximal compact subgroup of G and is the set of
fixed points of an involutive automorphism 6 of G. We have g={®s where s is
the orthogonal complement of T with respect to the Killing form; <-,*) is
positive definite on s. a is a maximal Abelian subspace of 5; 4 the set of roots of
(g, a). We choose a positive system of roots 4™ and write g=t@a®n, G=KAN,
for the corresponding Iwasawa decompositions; here, as usual, 4=expa, N
=expn. Let w be the Weyl group of (g, a). For ae4, g, is the corresponding root
space. We put p=4% ) dim(g,)a, p(H)=3tr(adH|,) (Hea). Let & be the dual of

acsd ™

the complexification a_ of a. The Weyl group w acts naturally on #. We denote by
Z, (resp. Fy) the R-linear subspace of & of all elements that take only purely
imaginary (resp. real) values on a. #; and %, are w-stable. Then # =%, @ %;;
for any é=¢&,+ &g, ErnE™i= — ¢ + &, is then the conjugation in & induced by
Fr. The Killing form restricted to a X a is nondegenerate and positive definite.
We extend it to a complex bilinear form {.,.> on a, x a.. Using the isomorphism
a> % induced by it we transfer it to a nondegenerate complex bilinear form
{(.,.> on F xF. For {eF we write H, for its image in a ; then, foy (e,
(Hyg, Hpy =& &) =E(H ) =& (H,). The Hermitian form &, &'+ (&, &°°™) is then
positive definite and converts & into a Hilbert space. We write |[+|| for the
corresponding norm; [|&[|2= &g )12+ [I£,]%. We denote by log: 4 —a the inverse
of exp: a — A. For any {e# we denote by #, the quasicharacter of 4 given by

ne(a)=e*%?  (aecA); (3.1

1. is a character (i.., unitary) if and only if e %;. One can select Haar measures
da on A and dn on N and fix dx by

dx=mn,,dkdadn (x=kan). (3.2)

For our subsequent needs it is convenient to use a specific normalization of dn. To

choose dn, let N=6(N) and let dn=0(d#n), with d7 the Haar measure on N such

that {n_, ,a(m)dn=1 (cf. Harish-Chandra [18, Lemma 44]). The polar decom-
N

position formulae
G=KAK; A°=4; d=a"' (ac4d), (3.3)

show that we are in the framework discussed in Section 2.
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3.2. The Abel Transform. The central fact of the theory for semisimple G is the
existence of the Abel transform that is an algebra isomorphism of &(G//K) with
&'(A)” (cf. Harish-Chandra [ 18], Gel'fand and Graev [12]). To define it, write,
for any element xeG, x=k(x) a(x)n(x)(k(x)eK, a{x)e A4, n(x)eN), H(x)=log a(x).
n: X+a(x) is an analytic map of G onto A. Let n* be the pullback map =*:
C*(A)— C*(G). By duality, this gives the push-forward map n_: '(G)— &' (A).
7, is continuous map of CZ(G) into C*(A4), and is given by (use (3.2))

(me SN @)=n,,(a) | flkanydkdn(feC*(G),acA). (3.4)
KxN

We introduce the spherical pull-back 7% =P on*: C*(4)— C*(G//K), so that,
for any he C*(A), xegG,

(x* h)(x)= | (=% hy(xk)dk =  h(a(xk))dk, (3.5)
K K

and correspondingly the spherical push-forward =, : &'(G//K)— &'(A). It is then
clear that n,(T)=n(T) (Te&'(G//K)). For fe CF(G//K), (3.4) reduces to

(s N)@=n,,(a) | flan)dn  (acA). (3.6)

Following Harish-Chandra we define the Abel transform
A =n_,omy: E'(G//K)— &'(A). (3.7

The basic fact is that &/ is a homomorphism of algebras. Of course, 7, is already
a homomorphism; the shift by #_, is introduced so that ./ commutes with ~. It
is well-known (cf. Varadarajan [42, II. Proposition 8.7]) that for any
feC2(G//K), dfeC>(A)®; and so A Teé'(A)® for Ted'(G//K). We thus have

Proposition 3.1. &7 is a continuous homomorphism of &'(G//K) into &' (A)* that
commutes with ~ and ¥, ie., &lffz.xz!i (A T) = T(Te&' (G//K)).

It follows easily from the definition of n, that supp(n,(T))<n(supp(T)), for
Teé&'(G). Hence supp(« T)cn(supp(T) (Teé(G//K)). In particular, if
Ted%(G//K) (cf. (2.2)), supp(«f T)= {1} and hence &/ T can be identified with an
element of U(a,) which is w-invariant. So, by (2.3) we obtain a homomorphism
y: U(g,)*— U(a)® From the definition of =, and the various identifications
used above we get, for any he C”(A4), geU(g)* that h(1;7(q)=(n*(n_, M)(L;q).
It follows from this that, if y'(g) is the unique element in U(a ) such that

g=y(gymod(t U(g,)+ Ulg )1}, (3.8)
then
) =n,°7(@en_, (qeU(g). (3.9)

y is thus Harish-Chandra’s homomorphism U(g,)*— U(a,)® (cf. Varadarajan,
[42, 11, subsection 8.3]). We describe these results in

Proposition 3.2. The restriction of & to 8x(G//K) is a homomorphism into 61(A)".
The homomorphism that one obtains from this via natural identifications, from
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U(g)® to U(a)® is none other than the Harish-Chandra homomorphism 7y:
U(g,)*— U(a,)®. In particular, the restriction of o to &(G//K) is an isomorphism
of 6x(G//K) onto U(a)".

3.3. The Structure of A(S). Formula for the Functions ¢,. We denote by " the
Fourier-Laplace transform on &'(A4). Thus

T)=(Tn,> (Te&(A), eF). (3.10)

The composition of * with the Abel transform is the Harish-Chandra transform
A E1GIK) > E (A

(AH T N=ATW)=(AT,n,> (Te&(G//K), le F). (3.11)
Since # is a homomorphism, for each ie %, the specialization
0 EGIK) > C (T =AT()  (Te€'(G//K)) (3.12)

is a continuous homomorphlsm Let ¢,=¢, be the corresponding eigenfunc-
tion in C*(G//K) as in (2.8). Since (T, @) = /A(T) (AT n>={Tn*y,. > for
all Te&'(G//K), we recover, using (3.5), Harish-Chandra’s famous formula

@ (x)={n,_(a(xk)dk (AeZF xeG). (3.13)
K

From (3.11) and the fact that &/ commutes with ¥ and ~ (Proposition 3.1), we
get

(HTYN=(HTH=2); (HTD=(HT) =iy (Te& (G//K), e F).

If we now use these relations in conjunction with #' T(})=(T, ¢,>. it follows
that

(ﬁ).:gDA/l; @A:(D_lconj (26,97) (314)

Proposition 3.3. The y,(AeF) are precisely all the continuous homomorphisms of
& (G//K)) into C; and y,=y, <>w-A=w-A. For any AeF the corresponding
eigenfunction @,=¢, e C*(G//K) is given by (3.13); it satisfies the system of
equations

exT=HT() e, (Te€'(G//K): @,(e)=1; (3.15)
and is the unique solution in C*(G//K) for this system. In particular,
10, =N, (AeFqeU))y;  ¢=¢pew i=w-1.

We recall that as a is Abelian, U(a,) is canonically isomorphic to the
symmetric algebra S(a,) and hence to all polynomial functions on &% The
present Proposition follows without much difficulty from the Propositions 2.1
and 3.2 in conjunction with the well-known result that the homomorphisms of
U(a,)® into € are canonically parametrized in the usual way by the w-orbits in
F (cf. Helgason [24, X, Lemma 6.97).

It is clear that from this point of view, the Abel transform is the fundamental
object. The fact that both the integral map (3.6) and the differential map (3.9)
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given by the Harish-Chandra homomorphism, are specializations of & is one of
the major unifying features of the Abel transform.

It follows from Proposition 3.3 that, in the notation of (2.7), A(S)~ % /w; we
shall commit a mild abuse of notation and write A(S)=#%. Similarly we write
(cf. (2.12))

A={A: le Z# C*(X: x)£(0)}. (3.16)

Proposition 3.4. (i) peA; (i) A4 =(—A)*°"; (iii) ¢, (ue F) is bounded if and only if
Ug lies in the convex hull of the points s- p (sew). In particular, | Az Zilp| if e,

Assertion (i) follows from Proposition 2.3(i) as ¢, =1 (cf. (3.13)) whereas (ii) is
obtained from (2.13) and (3.14). The first assertion in (iii) is a result of Helgason
and Johnson [24, Theorem 2.1]. By (2.13) ¢, is bounded if 1eA. Since |s-pl|
=|lp| and since the set {u: peFy, [ull < |pl} is convex we see that ¢, bounded
implies [zl < ol

Corollary 3.5. For every sew, let F(s)={u: peF s -u;=p;, s-fg= —ug}. Then
FN)=F and Ac ) F(s).

Finally let us recall the Laplace-Beltrami operator wg on S(cf(2.6)). The ¢,
are eigenfunctions for wg and a simple calculation shows that

ws @, =(KA4L4>—Lp,pd) o, (AeF).
If 1eA, then {4,A>—<p,p) is real and <0 and we have

ws @ =14l = lol? = 141*) 9, (AeA). (3.17)

The classical example is: G=SL(2,R), K=SO(2,R) and S the Poincaré upper
o> 02

half-plane; then with z=x+iyeS(y>0), we have 2wg=y? (&i+64)17>
3.4. The Analytic Theory of the Harish-Chandra Transform. The Theorems of
Harish-Chandra and Gangolli. For any fe C?(G//K) the restriction to &%; of the
Harish-Chandra transform s f lies in the Schwartz space &(#;); so we can
regard # as a continuous map CP(G//K)-» F(F;)". Observe that this map
depends on our choice of dx. The Plancherel measure for the Harish-Chandra
transform is then a measure fdv where (a) e C*(#,)®; =0; (b) § and all its

derivatives grow at most polynomially; (c) if dv is the Lebesgue measure on %,
dual to the Haar measure da on A,

f(x)=|w|~* ; (A )(¥) @,(x)° B(vydv(fe CZ(G//K), xeG) (3.18)
In particular, for fe C*(G//K),

f(e)=lm|“a[(Jff)(v)ﬂ(v)dv=<ﬁ,df>. (3.19)

We note that § makes sense as a tempered distribution on %, in view of (b). It is
known that f exists and is uniquely determined by (a)«(c); and that supp(f)
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=4%;. There is in addition an explicit formula for f, due to Gindikin and
Karpelevi€ [13]; see Section 3.8 infra for a more detailed discussion of S.
Moreover, the map fi—# f extends to a unitary isomorphism (also denoted by
#) between I*(G//K) and L*(%,, Bdv)® so that #(C*(G//K)) is dense in
L(F;, Bdv)®, and, for all fe C¥(G//K),

JIf P dx=|w| =" | [#f(W) B(v)dv. (3.20)
G Fr

The Fourier-Laplace transform (cf. (3.10)) is an algebra isomorphism of
CZ(A) with the algebra 2(#) of entire functions on & satisfying the well-
known conditions of the Paley-Wiener Theorem. As # f=./f, we have a
commutative diagram

C*(G//K)—E—> P(F)* (3.21)
L /

N

o f’/l ourier-Laplace
o w
C2(A)

It was proved by Gangolli [8] that in this diagram both & and # are
isomorphisms for the structure of topological algebras. Moreover, he established
the following more refined result: Let A(b) denote, for any b>0, the subset of all
ac A such that |loga| <b; then A(b) is w-invariant and

supp(o/ ') cKAMB) K  (he C*(A(B)®). (3.22)

For convenience of later use we note here that for any he C*(A4(b))",

A Zc, exp(b AL+~ (AeFm=0,1,...), (3.23)

where ¢, =c,,(h) are constants >0.

The Harish-Chandra and the Abel transforms are actually defined on the
{(spherical) Schwartz space 4(G//K) of Harish-Chandra (cf. [21, p.46]); and
Harish-Chandra’s fundamental theorem asserts that the following diagram,
where & denotes Fourier transform,

%(G//K)—*— S (F)"
~

e
~.

is commutative, all the arrows being linear topological isomorphisms.

It follows from the theorems of Gangolli and Harish-Chandra that for any
Ue2'(G//K) (resp. Ue%'(G//K)) there is a unique UTe Z'(4)® (resp. UTe S (A)")
such that

ULH=ULL ) (feCI(G//K), resp. €(G//K));
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and further that Ur>UT is an isomorphism of 2'(G//K) with 2'(4)* (resp.
€' (G//K) with &’ (4)"). It is not hard to show that if T'=&"(G//K), the tempered
distribution T on A4 is given by

T'=|w|-'F'ofoFon_,n, T (3.24)

In fact, if fe CF(G//K), we find, on using the Plancherel formula (3.20) for G
as well as the usual Plancherel formula for 4, that, for all ge C*(G//K),

fgy=Lw|~"F oo Fosd fid g);

since o/ f=n_,n, f (cf. (3.6)) we get (3.24) in this case. For an arbitrary
Tedé’(G//K), (3.24) follows by a density argument.

3.5. The Principal and Complementary Spectra of X. Let I'=G be as in sub-
section 2.2. The requirement that I' acts freely on G/K is not too serious a
condition. Indeed, according to Borel [3], if I'=G is a discrete subgroup with
compact quotient I'\G, there exists a normal subgroup I'"<=I of finite index,
without elliptic elements other than the identity. If yeT, [y]; is closed according
to Lemma 2.5(i); this implies that y is a semisimple element (cf. Varadarajan [42,
11, Theorem 2.17]). The centralizer G, is then reductive and so, in particular, is a
unimodular group. The results of subsection 2.3 are thus available.

We define the spectrum A of X by (3.16), and the subsets 4, and A, are now
defined by

A,y =AnF;  A=A\A,.

A, (resp. A,) is called the principal (resp. complementary) spectrum. A_ is
nonempty by Proposition 3.4(i). Both A, and A, are w-stable. This separation of
A into principal and complementary spectrum seems to be justified in view of
the fact (cf. (3.20)) that %, is the spherical I?*-spectrum of S. The occurrence of
the complementary spectrum is however a distinctly nonclassical phenomenon.
It appears to be related to the “degeneracies” in the Plancherel density f.
Indeed, f has zeros in %, the points of A\ %, always have their imaginary parts
located at these zeros, and the complementary spectrum seems to emerge as a
“compensating factor™.

3.6. The Trace Formulae. Since we are treating &# and not % /w as the spectrum
A(S), we should modify our definition of the multiplicities of the points of the
spectrum of X. We do it in the obvious manner: for leA we define its
multiplicity m(A) in I*(X) by (cf. (2.15))

m(A)=m(s-)=w-A|"'n(y,) (sew). (3.25)

Proposition 3.6. A is a discrete subset of #. There are a constant ¢>0 and an
integer M >0 such that

mA)<ct™  (t=1). (3.26)

Aed, Al st
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We use the Laplace-Beltrami operator wg. For any t=1, let N(f) be the
number of eigenvalues (with multiplicities) of —wy in I*(X) which are <t. We
then see from (3.17) and Proposition 3.4(iii) that ) m(A)SN(@E*+|pl?); so

AeA,

Al st
(3.26) follows from standard results on elliptic operators on compact manifolds
(cf. Duistermaat-Guillemin [6, formula (1.13)]).

The trace formulae of Section 2.3 now take a much better form since the
Theorems of Gangolli and Harish-Chandra give definitive information on the
transforms of the test functions.

Proposition 3.7. For any he C¥(A)®

Y m(A)h(A) =w|~ ' vol(T'\G) | h(v) Bvydv+ ¥ J(/~ 1), (3.27)

AeA F1 c¥le]r

where the series on the left converges absolutely, the J_are as in (2.18) and o/ ~':
CP (A — CZ(G//K) is the inverse Abel transform.

Proposition 3.8. (i) For any he C?'(A) the series ) m(2) h(2) converges absolutely.
ieA

(i) There exists an open neighborhood V of 1 in A satisfying:(a) V=V ~and V is

w-stable; (b) for all he C*(V) we have

Y m(A) h(A)=w| ! vol(I'\ G) [ () B(vydv. (3.28)
leA Fr

Since |Agll = | p| for AeA, the Paley-Wiener estimate (3.23) gives assertion (i)
when combined with (3.26). Let V={a: aeA4, |logal<b}, b>0 being small
enough so that A(b) is contained in the nbhd U given by Proposition 2.8. Then
KA(b) K= U, and (3.22) in combination with Proposition 2.8 gives (3.28) for all
he C2(V)®. Let now ¢ be the measure on & which assigns the mass m(4) to AeA
and define the measure t on & as |w|~! vol(I'\G)fdv. Then ¢ and t are both
w-invariant; and for any he C¥(A), h lies in both L'(# 0) and L' (% 1). Since w is
finite we can average over w to get, with h=|w|~" ) #’, <o, 0> =<0, h>={t,h)
=<{1,h). sew

3.7. The Volume of X. It has to be observed that vol(I'\ G) depends on our choice
of the Haar measure dx. We fix dx, or what amounts to the same, da, in the
following manner. We note that (X, Y)= —<{X,0Y) (X, Yegq) provides g with the
structure of a Hilbert space. For any subspace [« g, d,1 is the standard Lebesgue
measure on [ (with (.,.) induced by (.,.)); and let us write d,l also for the
exterior differential form that gives rise to the measure dgl (after [ has been
oriented). If L is a closed subgroup of G corresponding to 1, there is a unique left
invariant exterior differential form on L that corresponds to d,l at eeL; this
form and the corresponding Haar measure on L are denoted by d,l If L is
compact, we write voly(L)=v,(L)={ d,l. We now fix dx by
L

dx=n,,dkdyadn (x=kan). (3.29)
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Here we recall that dk and dn are defined in Section3.1. Let vol(X) and
vol(I'\G) denote the volumes on X and I'\G defined by dx, then

vol(X)=vol(I'\G). (3.30)

On the other hand, the form (.,.) gives rise to a left invariant metric on G which
is right-K-invariant. On G/K it induces the same metric as {.,.>. So vol,(X), the
volume of X defined by the Riemannian metric on § coming from the Killing
form, is evaluated by means of d,x, and we have

voly(X)=voly(I'\G) vo(K)~ . (3.31)

If d(G)>0 is the constant such that dx=d(G)d, x, it follows that

vol(X)
vol,(X) =d(G) v,(K). (3.32)

We wish to find a more explicit expression for d(G); such a formula would
enable us to compare our results on the asymptotic behaviour of the spectrum
with classical ones (for instance, Minakshisundaram-Pleijel [32], Duistermaat-
Guillemin [6]).

According to Harish-Chandra [22, § 37, Lemma 2] (see also Varadarajan [42,
I1, Section 17]) we have, with n=dim(G/K) and r=dim 4,

dox=2""""2p (K)n,,dkdyadyn; (3.33)
and therefore d(G) is known if we determine the constant y=7y(G)> 0 satisfying
dn=ydyn; dn=yd,n. (3.34)

For the normalization of dii we have the result of Harish-Chandra [18, Lemma
44] according to which the map ¥: N x M — K given by (i, m)=mk(n) (ieN,
meM, the centralizer of a in K) is a diffeomorphism onto an open subset of K
whose complement has measure zero, and has the property that dk goes over to
the measure 1 _, (a(n))dndm, if { dm=1. Let m be the Lie algebra of M.

M

Lemma 3.9. (i) If ¥ =(dy) 4, then ¥(X,Y)=X+0X + Y (Xen, Yem). (i) Let g
=n—r and X,,...,X, be an orthonormal basis for W with respect to (.,.). Then
275X, +60X)),...., 274X, +0X)) is an orthonormal basis for ¥©m, the ortho-
complement of m in f.

Obviously Y(X,Y)=P(X,00+ P(0,Y)=P(X,0)+ Y(Xen, Yem). Now
¥(X,0) is the projection of X on ¥ according to g=f+a+n, which is X +0X,
since X =(X +60X)+0+(—0X). Regarding (ii), observe that X — X +60X (Xen)
defines a bijection between fi and t@m. So it is a question of calculating
scalar products. Now (X;+60X;,X;+0X)=20,;+(X,,0X)+(0X,, X)=20,;
—2{X;, X ;> =120, since (i, iy =0.

Let the form wy(resp.w) on N x M denote the pull-back under ¥ of the
differential form dyk (resp. dk). Then (wg)y, ,=vo(K)wy ) and o 4,
=(dfadm), ,,. If Y,,...,Y, is an orthonormal basis for m, we get, using
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Lemma 39, that wo((X,,0),...,(X,,01(0, ¥,), ... (0, ¥) =do k(X +0X,,..., X,
+0X,.Y,,..., V)= 120772 1t follows that (wg) = £2" "> d,fid,m, and we
obtain 2"="2d nd,m=vy(K)dndm. But then after integration over M, we get

28 yol (M) d, i=vol,(K)dH,
from which we obtain
dn=2*"""yol (K/M)~'d,n. (3.35)

Since [ e 2" dn=1, we get
N
volg(K/M) =2t [ o= 20H 4 7 (3.36)
N

Combining (3.32)«3.36) we obtain

Lemma 3.10. With notation as above we have

vol(X)
voly(X)

=2"""volo(K/M)™";  volg(K/M)=22""" [ e=27HE g .
N

It must be remembered that vol,(K/M) is to be calculated with respect to the
exterior differential form coming from the Killing form of g and not of L.

In §3.9 we shall compute voly(K/M) explicitly, following the technique of
Gindikin-Karpelevi¢ [13]. This method, which consists of reduction to rank one
groups, was originally devised by them to evaluate integrals of the form

je(v’p)(ﬂ(ﬁ))dﬁ (Vega)

N

that appear in the expression for the Plancherel density f. Since the properties
of § are extremely important for us we shall now turn to a brief discussion of
them.

3.8. The Plancherel Density B and Its Behavior at Infinity. The starting point is
Harish-Chandra’s formula [19, p. 611, Corollary 2]

BO)=lcI=*  (veF) (3.37)
Here ¢ is the meromorphic function on % which is given on the domain
{viveF, {vg, 0> >0Vaed*} (3.38a)

by the convergent integral

c(v)= [ e~ PH® g (3.38b)
N

while the Haar measure d7 is normalized by

£e~ZP(H(ﬁ)) dii=1. (3.39)

N
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The integral (3.38b) does not converge for ve%;, and so it is necessary to
interpret (3.37) using analytic continuation.

Let 4™ be the set of short positive roots, namely the set of roots ac 4™ such
that o is not a root. Then Gindikin and Karpelevi¢ proved (loc. cit.) that

=10 = [T I:v) (ves) (3.40)
(P) aed

where the functions I(a:-) are given by the following formulae. If
n(w)=dim(g,); n(2e)=dim(g,,);  d(o)=nlx)+n(2a) (3.41)

for aed™ *(n(2) >0, n(20) = 0), and if I' is the classical Gamma function, then

P )l )
F(%n(oc)—kilii)F(%n(2oc)+ln(oc)—+-l <v,fx>>

4 2 Laya)

To each aeA*™ one can canonically associate the connected semisimple
group G*< G whose Lie algebra g*cg is the algebra generated by the root
spaces g., and g, ,, (if the latter are nonzero). G* and g* are O-stable and the
symmetric space associated with G* has rank one. The function I(x:-) is
essentially the ¢-function of the group G* Note that (cf. (3.41))

I(o: v)= (o, o)~ ¥4@ ) (3.42)

d(0)=1<g*=s0(2, 1)=s1(2, R). (3.43)

We also remark that ¢(p)=1 by (3.40); this is just the normalization condition
(3.39).

The formulae (3.40)«3.42) can be used to determine how ¢ behaves at
infinity. We begin with the following well-known asymptotic expansion for the
I'-function:

o
F(Z):ezlogz—z j‘ ez(r+1—e‘)dT

2m\E d
~ g?logz -2 (—) (1+ Y akz*"),
z k=1

which is valid for Rez>0, |z] — + co. The proof is by applying the method of
steepest descent to the above integral which has been written in a convenient
form for this purpose. From this we obtain [I(a: v)| =2 =f,(Ca, v)) (xed™ *, veF)),
where f, is a function on (—1)*R satisfying, for suitable constants . €R, k
=12...,

f(z)~ 272D i@ (1 + ) cayklzl‘z"), |z|— + c0.
k=1

Therefore we can find constants ¢, ¢>0 such that, for ae4** and ve %,

(e )| =2 /(14 <o, v @ < (1 + [|vIa;
PV =c+Ivi)™ (3.44)
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It must be observed that, although the f,(z) have a full asymptotic expansion
in terms of decreasing negative powers of |z, B(v) has no corresponding
asymptotic expansion in terms which are O(|v||=%), k — + oc, except for the case
that G has a single conjugacy class of Cartan subgroups (cf. formula (4.18) below).
However, we obtain

Lemma 3.11. We have, for ve %, and ||v||— + 0,

ﬁ(V) =I(p)2 2*213’; A n(2a) |wS(V)| + O(Han——r— 1).
Here
ws(v)= H <O(,V>"(“)(veg71).

xeA™

Moreover, there exists xe4™* such that <{a,v) =0 if ve# satisfies f(v)=0.
We use this to prove that, given ¢>0, there is a constant ¢ =c¢(g) >0 such that

veF,, Ko, v Ze Vaed™ " =c [] (1+{<a, )" <L) (3.442)

aedt

Let S(#) be the symmetric algebra over %; for any ueS(#), ¢(u) is the
corresponding differential operator acting in #,. We set

d= min d(a). (3.45)
aed*t t
Let m be an integer with 0=<m<d and ueS(¥) an eclement which is homo-
geneous and of degree m. Then we can find a constant ¢=c¢(u)> 0 such that

BO @Y ZcL+ v~ " (ve 7). (3.44b)

3.9. Computation of vol,(K/M). To the best of our knowledge the explicit values
d
for % or voly(K/M) are not available in the literature. The determination

of these numbers is the same as evaluating

J)=[ e~ g 5 (3.46)
N

for v satisfying (3.38a). Of course the method to be used is that of Gindikin-
Karpelevi¢ (loc. cit). However, we need to keep track of the various constants
that come up during the course of the evaluation; this precaution was not
necessary for the calculation of ¢(v) because one can always use the normal-
ization ¢(p)=1 at the end. This also explains the form of the expression (3.40) for
¢(*) as a ratio.

We shall briefly sketch the modifications that are needed to adapt the
Gindikin-Karpelevi¢ argument to our present need. Actually it is more con-
venient to follow Schiffmann [39] (pp. 10-18). For any element w of the Weyl
group w let
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Jw:vy= | e OTOHM G F (veCw)), (3.47)

Now INw
where, with A¥(w)=A4TAw~1(—4%),
Cw)={v: veF, {vg,ad>>0Vacd™ (w)}.

The basic result is that the integral (3.47) is absolutely convergent for ve C(w)
and satisfies the following functional equation:

Jw:vy=Jw:w"-v)J(w'v), (3.48)
whenever
veC(w), w=w w’'(w,w"ewm) with [(w)=I(w)+IWw"). (3.49)

Here () is the length function on w corresponding to A%+ and one should
remember that

AT (W)= A" (W)ow" = 4+ (W), (3.50)

so, for ve C(w), we get ve C(w") and w"-ve C(w'). Formula (3.48) is the same as
Schiffmann’s formula (1.6.3). In deriving it we simply follow Schiffmann. Howev-

er Schiffmann’s calculations depend on the following fact: if we set N,
=Nns~ ! Ns for any sew, then, under the analytic isomorphism (of varieties)

Nw’ X ATw" - Nw

(ﬁl, ﬁ”)HW”* 1 ,-;ir W” . 7_1”
the Haar measures on N,, x N, and N, correspond to each other (see (1.4.10) of
Schiffmann’s article). But, a simple calculation, based on the fact that the
elements of w have representatives in K, shows that the Haar measures
dodyn” and dyh also correspond under the above diffeomorphism. So we
obtain (3.48).

The transition from (3.48) to a product formula for J is carried out in the
usual manner. If X is the set of simple roots of A" and

w=s, s ...5 (;eZ, l(w)=m) (3.51)

T 0% tm - 1 ay

is a reduced expression of w, then
JWiv)=J(s, V) J(5,,: 8, V) ... J(S,, i Sy, | -oeSay " V) (3.52)

Moreover, if aeZ, st:exp(g_a@g_m) so that the integrals J(s,: *) need, for
their explicit evaluation, only information from the groups G* of real rank one.

Let us now fix «eX and consider J(s,: *). For simplicity, let us write N*=N,_.
Then

J(s, v)= | e-CronHEN g 7 (3.53)
Ne

where

p.=1(n(2) + 2n(2a) o
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We are allowed to replace p by p, since H(n) is a multiple of H, when ie N* For
brevity, let us put

p=n(a), q=n2a).

We shall now use Schiffmann’s calculations for evaluating (3.53) (Schiffmann
[39, Proposition 2.17). Let H=2<{a,a> "' H, so that a(H)=2; and let

4B,(X,0X)

oX)= B,(H,0H)

(XEﬁazg—a@g—Za)
where B, is the Killing form of g* Then Schiffmann‘s formula for H(#) is given
by the following: if i=exp(Y+Z), Yeg_,, Zeq_,,,

H(my=xH, with e**=(1+1Q(Y))*+20Q(2).

We now remark that the Killing form of g restricts on g* to a nonzero multiple
of the Killing form of g* so that

QX)) =<y IX]I*  (Xer, ||X|?=—<{X,0X>).
A simple calculation then gives the formula
€= PO~ [(1 45t o) | Y )2+ 2 20> |1 212

_ 1w 11 (3.54)
C T T 3laay P Taf

Since dy i corresponds to d,Y dy Z under the map Ai—(Y,Z), (3.53) can now be
explicitly evaluated. The result is

J(s,: v)=24@N2 =02 gd@/2 [(yy: y), (3.55)
where I(a: ) is given by (3.42). It only remains to substitute these formulae in
(3.52). Let us write f;=s,,s,,...s, _, ;. Then, if we observe that

<O(J! a1 ocJ 2o Say 'V>=<ﬁjsv>,
By By =Ly,  nla)=n(By), n2o)=n2p),
and recall (Varadarajan, [41] Theorem 4.15.10) that

ﬁlzal’ﬂZ""’ﬁm

is an exact enumeration of the elements of A**nw=1(—4+")=4%*(w), we
obtain finally the following expression for J{w: v):

Y Gde-n2zm) 3 Y dw
J(w: v):2"‘ ""“’ e n ](OCI v). (356)
asA™ *(w)
Consider now the element wyew with the property that wod*™ = -—A".
Clearly (cf. (3.46)) J(v)=J(wq: v) while 4% *(wy)=47 7. Hence we obtain from
(3.56) the formula
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N _ e 29 -
56—(v+p)<mn»d0n:2‘" 7 IOy, (3.57)
I

In view of Lemma3.10 we get

Proposition 3.12. We have, with I(-) as in (3.40) and (3.42),

volo(K/M)=2"""" 2. gz =0 [ ) (3.58)

For later use we derive the following corollary of this Proposition and
Lemma 3.10:

Corollary 3.13. We have

Z n(2x)
vol(X)=2"""  =%"=" [(p)~vol,(X). (3.59)

d
Moreover, if the constant y=7 (G):d—"—n is as in (3.34)
0

P(G)=2""" L O pemen )1 (3.60)

Formula (3.60) is obvious from (3.35) and (3.58).

Remark. One can use Harish — Chandra’s results [22, §37, Lemma 4] to evaluate
voly(K) and vol (M), thence vol,(K/M), in terms of the root structures of K and
M. Such a formula for vol,(K/M) is not adequate for our purposes since we
need an expression for vol,(K/M) that is in terms of the data supplied by the
symmetric space S=G/K.

4. Orbital Integrals of Spherical Functions

4.1. For further development of the trace formula (3.27) it is necessary to study
the integrals J, more closely. Since the closed conjugacy classes of G are the
semisimple ones (Varadarajan [42, II, Theorem2.17]) we may, in view of
Lemma 2.5 (i), consider the distributions

[ | flxhx~hdx  (feCX(G//K)), (4.1)

G/Gn
where heG is semisimple (i.e. Ad(h) diagonalizable over €), G, is the centralizer
of hin G and dXx is a G-invariant measure on G/G,.

The fundamental results on these distributions (applied to not necessarily
spherical f) are due to Harish-Chandra [20], [21] (see also Varadarajan [42]).
Our main observations are straightforward consequences of Harish-Chandra’s
theory, except for some variations.

4.2. We shall begin with the normalization of the measure dx on G/G,. For G
itself we have chosen the Haar measure {cf. subsection 3.7)

dx=1n,,dkdyadn (x=kan). 4.2)
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Suppose now that Z is a f-stable closed subgroup of G such that [Z: Z°] < o«c. If
3 1s the Lie algebra of Z, 0(3)=3, and so 3 is reductive in g. It is then clear that
the restrictions to 3 x 3 of {.,.> and (.,.) inherit the same properties vis-a-vis 3
as {.,.» and (.,.) have relative to g. We may consequently speak of the Haar
measure dz° on Z° We define the Haar measure dz on Z to be the Haar
measure that coincides with [Z: Z%]7'dz° on Z° This normalization ensures
that the maximal compact subgroups of Z have volume 1. If keK, the Haar
measure on Z* corresponds to dz under the conjugation induced by k.

Let heG be semisimple and G (resp.g,) be its centralizer in G(resp.g). It is
known that [G,: G)]<oc. We say that h is in standard position if g, is O-stable.

Lemma 4.1. The following conditions on h are equivalent: (i) h is in standard
position; (ii) h can be imbedded in a 0-stable CSG': (iii)if h=kexp X (keK, Xes),
then k centralizes X ; (iv} G, is O-stable.

The implication (iv)=-(i) is trivial. For (i)=-(ii) we note that there are -
stable CSA’s of g that are contained in g,, since g, is 0-stable and rk(g,)=rk(g);
h is then in the corresponding CSG which is 0-stable. Since (ii) = (iii) is obvious,
we are left with (iii) =(iv). It is enough to prove that G,=G,nGy where G,
{resp. Gy) is the centralizer of k(resp. X) in G, since both of these are 0-stable. If
yeG,, we use the uniqueness of the decomposition of a semisimple element of
GL(g) as a product of two commuting semisimple elements in GL(g) with
eigenvalues respectively real and of absolute value 1, to conclude that Ad(y)
commutes with Ad(k) and e**. Hence X’=X, giving yeG,nG,. Since
G,NGycG,, we are done.

Lemma 4.2. Any semisimple element of G is conjugate to one in standard position.
Ifh,, h,eG are semisimple and in standard position, they are conjugate under G if
and only if they are conjugate under K.

We assume for the second assertion that h;=k;exp X; with k,eK, X;ea, X*
=X, Let yh,y '=h,, so that yk, y~'=k, and X}, =X,; so, using a result of
Harish-Chandra ([22], §5, Lemma 1), we may assume that X, =X,(=X say). If
we write y=vexpY where veK, Yes, then exp2Y =60(y~ ')y commutes with k,
so that Y* =Y. Hence k,=vk,v™"'. Moreover, as G, is O-stable and yeG,,
exp2YeGy; this gives [ Y, X]=0. But then X =X¥=X", giving vh, v~ ' =h,.

It follows from the remarks made at the beginning of this subsection that for
any semisimple & in standard position it makes sense to speak of the measure
dx, on G,. We define the measure dx on G/G, by dXdx,=dx. If h is semisimple
but otherwise arbitrary, we choose yeG such that hy=yhy~! is in standard
position, and define dx, on G, to be the pull-back of the Haar measure dx, on
G,, through the conjugation by y; and as before, dx is defined on G/G, by dxdx,
=dx. Lemmas4.1 and 4.2 show that these definitions do not depend on the
choice of y, and that the following result is true.

Lemma 4.3. Let h, ' eG be semisimple elements and W =yhy~" for some yeG. Then
conjugation by y carries dx, and dX to the corresponding measures dx, and dX' on
G, and G/G,, respectively.

1

CSG =Cartan subgroup, CSA =Cartan subalgebra
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We now define, for any fe C*(G) and any semisimple heG,

f:h=1(f)= | f(xhx~')dx. (4.3)

G/Gr

It is clear from Lemmad4.J3 that I(f: h)=I(f:yhy ') (yeG); we may assume
therefore that h is in standard position when studying I,,. The restriction of I, to
CX(G//K) can be interpreted as an element of 2'(G//K), let us call it I}, We set
(cf. subsection 3.4)

T,=(;)" (heG semisimple). (4.4)

Our interest is really in these distributions T,. But their study depends on that of
the I, which is essentially the Harish-Chandra theory of the invariant integral
on G. For full details concerning this theory see Varadarajan [42].

4.3. The Invariant Integral. Let L be a 0-stable CSG and [ the corresponding
CSA. We put L, =LnK, [;=Inf, Lp=explg where [g=Ins; then L=L, L ~L,
x Lg. For any root a of (g,,[.) we write &, for the corresponding global root, this
being the homomorphism according to which L acts on the root space g, ,. Let
m, be the centralizer of I in g. The roots of (m, 1) are precisely those roots of
(g.,[,) which are purely imaginary on I. We select a positive system P, of roots of
(m, ., ) and define the functions '4;, 4 and 4, on L as follows;

4;= [}1 (1-¢ ) 4,=| HP (I=E_ )% 4,="4,4,. (4.52)
aePy ta¢Pr
we have
4, (h)y=|det((1 —Ad(h“))g/ml)l%. (4.5b)

Following Harish-Chandra we shall define, for any fe C?(G),

'F(hy=4,(h) | f(xhx=Ydx* (heL); 4.6)

G/Lr

here L is the set of regular points in L and dx* is the G-invariant measure on
G/Lg such that dx=dx*d,b, d,b being the Haar measure defined on Ly by
{.,.». We then have

(=4, I(f: h)  (feC(G),heL). 4.7)

Furthermore, for use in explicit calculation, we have the following easily proved
result.

Lemma 4.4. There are positive systems P of roots of (g,,1,) such that P,< P and
P\ P, is stable under complex conjugation. Fix such a P and write

6}’:%2“; o=% ZO‘; {p=0p—9.

acP ae Py

Then, for h=h;exp HgeL, with h,eL,, Hyel,, and for fe CF(G), we have
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4, (h=gg(h) > = T (1-¢_,(h);

x&P\Py

’Ff(h)=8R(h)e§"(HR’ Ap(W)I(f:h), (4.8)
where

egp(h)=sgn fll (1-C_,(h) (hel); 'Ap=f£(1—éﬂ)- (4.9)

areal

Now 'F,e C*(L) for any fe C?(G); moreover, if heL is singular and ueU (1)
(=subalgebra of U(g,) generated by 1 and 1), lim (u 'F,) (k') will exist as long as i’
h'—h ’

approaches h, ultimately in one connected component of L. In general, different
choices of these connected components will lead to different limiting distri-
butions. If, however, u="v, with

‘p=e P opoe®, (4.10)
where veU(l) and v**= —v for all xeP satisfying &,(h)=1, then 'v'F; extends to

a continuous function in a ngbd of A. In particular, if

P={o:aeP,é (=1}, w,=[]H, (4.11)
aePy,

then it follows that f+—('w,'F/)(h) (fe CX(G)) is a well-defined invariant distribu-
tion on G.

4.4. Limit Formulae. Let heG be an element in standard position and let L be a
f-stable CSG of G. We say that L is aligned to h if the Lie algebra [ of L is
fundamental in g,, ie., (g, 1) has no real roots. Clearly we can find 6-stable
CSG’s L containing h and aligned to h; and any two such L are conjugate under
KnG)p. It was proved by Harish-Chandra [21, Lemma 23] that for a suitable
constant c(h)+0 we have, for all fe CX(G),

I(f:h)y=ch) (w,'F)(h) (L aligned to h). (4.12)

By carefully keeping track of the constants in Harish-Chandra’s proof of (4.12)
we can determine the precise value of c(h). To this end we proceed as follows.

Let 3 be a reductive Lie algebra over R with connected adjoint group Z, and
let Ux=Z be a maximal compact subgroup with Lie algebra u. Let h be a
fundamental CSA of 3. We define (cf. Harish-Chandra [22, §37])

k@) =(—1Q2m) 27" o,(3,)" ' w(Z/Z)|" " y(Z)~*,

4.13)
q=3(dimZ/U—-rkZ+rk U); s=dimZ/U~rkZ/U. (

Here w,(8,) is defined in the obvious way using a positive system of roots for a
CSA of u; Z, is the centralizer of ) in Z and w(Z/Z,) is the normalizer of h in Z
modulo Z; and y(Z) is the constant given by (3.60) for the group Z. With this
notation, we get, for the constant ¢(h) in (4.12), (cf. Lemma 4.4)

c(h)=r(gy) eg(h)e=crtosm T (1—¢_,(h)~" (4.14)

asP\Py
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Remark 4.5. (1) The presence of the constant x(g;) in the formula (4.14) for ¢(h) is
due to the fact that this computation is ultimately reduced to an analogous one
on g,. The constant k(g,) is then the constant that enters the Harish-Chandra
limit formula for g,. In fact, let P, be a positive system of roots of (3., b,) and let

n,= [T @,= || H,; let the invariant integral § on 3 be defined by

azel’3 azePa

v (Hy=n(H) | g(H)dz* (geC2(3), Heb).

2Ly

Then d(m,) §, extends to a continuous function on all of b, and the constant x(3)
is defined by the limit formula

g0)=x@) - Q@) ¥ )0) (geCI (). (4.15)
The explicit value given in (4.13) for x(3) is a result of Harish-Chandra [22,

§§36,37] (cf. also Varadarajan [42, 11, Section 17]).
If Z is compact, the function H— [ g(H?®)dz* is itsell C* and one obtains

ZIZ,
the explicit value (cf. Harish-Chandra [1%, Lemma 16])
k(3)=(0(w,)n)"". (4.16)

[t is to be observed that w, and =, are homogeneous of the same degree and so
d(w) m, is indeed a constant which is easily seen to be +0.

(i1) The formula (4.12) with h=e is one of the main steps in Harish-Chandra’s
derivation of the Plancherel formula for G. If G has a single conjugacy class of
CSG’s, then the limit formula is essentially equivalent to the Plancherel formula
(Harish-Chandra [15], [17]).

Let us now assume for the moment that G has a single conjugacy class of
CSG’s and examine (4.12) for spherical f, ie., feCP(G//K). A straightforward
calculation shows that (cf. (3.7) and (3.34)),

'Fr(h)y="4,(h)( f)(hg)  (heL,h=h;hg). (4.17)
On taking hy=exp H,, hy=exp Hy with H,el,, Hyelg=aqa, we get

oP1H1) 'Fo(h)= Y e(s)(e'® L f) (Hy,exp Hy),

Sewy

where w, is the subgroup of w(g, [) generated by the s, (a€P;). Now, for sew; and
w=w,, we have

e(s)mo e =8 H (H;  + (o) + Ha,R)-

aeP

So, writing ‘w, = [](H, g +<8,, a)), we find

acP
(v F)e)=Iw|{w, o [)1)
=w;| | # f() (w)(—v)dv.

Fr
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Using (3.19) we then obtain

B(v)=x(g)|w| [w,| @, (5;) HP (=v(H, g +<{0;0)) (veF)).
acP\Py
To get an explicit formula for f we can now proceed in either of two ways. We
can appeal to Lemma 3.11; or else we can use the explicit formulae for k(g) and
1(G) together with Lemma 4 of §37 in Harish-Chandra [22]. In either case we
must use the fact that n (2a)=0 for all aed™ * (cf. Araki [1, Propositions 2.4 and
2.3]). The final formula is

p)=1(p)* JI KPP +<e6,>)  (vesF). (4.18)
ae(P\Pr)/conj
Here we must note that no root of P\ P, is real and the product on the right

hand side of (4.18) is over a complete set of mutually non-conjugate roots in
P\PF,.

4.5. The Distributions T,. Recalling the definition of T, (cf. (4.4)), we formulate

Proposition 4.6. Let heG be a semisimple element. Then there exists a unique
distribution T,€9'(A)® such that

L(f)= | flchx Ydi=<T,, s f) (feCX(G//K)). (4.19)

G/Gy
T, is tempered and T,=T,,.- ., for all yeG.

It is possible to say more about the distributions T,, provided we exploit the
relation between the invariant integral on G and the invariant integral on M|,
the Levi component of a parabolic subgroup Q associated to lg, i.e., M, is the
centralizer of I, in G. If Q=ML,N"* is the Langlands decomposition of Q, n™*
=Lie algebra of N* and dy(m,)=|det(Ad(m,),.)|}, we have the following result
(see Varadarajan [42, I1. 10. Proposition 6]).

Proposition 4.7. For any fe CZ(G), let fe C*(G) and f,e C*(M,) be defined by

feo=[flkxk=")dk(xeG);  fim)=dy(m,) | fm,n)don(m eM).
K N*
Then, for h=h;hgeL with hyeL,, hgeLg,

"Fp(h)=y(G)y(M)~" 4, (hy) | fr(mhym™ hy)dm. (4.20)
M

Observe that in general M is neither connected nor semi-simple; however, all
the foregoing theory applies to it as it is a group of the so-called Harish-
Chandra class © (Harish-Chandra [22, § 37, Varadarajan [42, 11, Section 1]).

For any fe C*(G//K) and any aeL,, we define f; e C>(M//K,) by Si..(m)
=f,(ma) (me M), where K,; = K n M. Denoting by .«/y; the Abel transform on M
and setting

L=ANM, 4.21)
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we obtain, from the definitions of the Abel transforms,

(St f1.)B) =7 (D) PG~ (L f)ba) (aeLy,be*L). (422)
If *I denotes the Lie algebra of *L, we obviously have

A=*LLp~*L xLg; a=*@lg; *ILlIl;. 4.23)

Consider now the group M and its compact CSG L, =K. Applying Pro-
position 4.6, we have for each h'eL;, the set of elements in L; which are regular
in M, a unique tempered distribution ¥, on *L, invariant under the Weyl group
w,; {of the symmetric space M/Kj;) such that, for ge C*(M//K i),

'Az(h’)AIIg(mh'm“)dm=<Vh»&/n7g> (4.24)

So, using (4.20), (4.24) and (4.22), we get
Fr(h)=<V,,® 0., f>. (4.25)

Here ® is with respect to the identification A~*L x Lp; and 0, is the Dirac
measure at hg. So

T,=4,())7'(V,,®6,,)  (h=hyhzel), (4.26)

where the bar ~ indicates averaging with respect to w.
Suppose now h is singular and L aligned to h. Writing

W= ), w v, (ueU(l, ), 0,eU(lg,),

1sjspn

it follows from formula (4.12) and (4.25) that, if h=h;hgzeL,

T,=c( Y u;V, ®v;6,) . (4.27)
1)< pn
Here
u;V, = lim w;V, (L% is a connected component of L)).
Lok —hy

In deriving (4.27) we must remember that the theory of the invariant integral
guarantees that V,, is C* in b’ and that the derivatives of V. in &’ have limits as
I’ approaches singular points, as long as the approach i’ — h; is eventually in a
connected component of wn L, for some open ngbd w of k; in L,;. However, in
calculating the limit, the connected component in (4.27) should be the same for
all j. These formulae lead immediately to the following theorem.

Theorem 4.8. Let heG be a semisimple element in standard position and let L
=L, L, be a 8-stable CSA containing h such that L is aligned to h and Lpc A.
Let *L=M A so that *LLy~*L x Ly. Then T, is given by (4.27) and

supp(T,)<= () s+ (*Lhyg). (4.28)

SEw
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Remark 4.9. Because of the differentiations v; in (4.27) (which are transversal to
*L) we cannot say that T, lives on the union of the affine cosets s-(*Lhyg). This is
the case however if hy is regular in Lg, i.e, if & (hg)#1 for all ae P\ F,. In this
case the roots of (g, .,1,) are in + P, so that ‘w,eU(l; ). The formula (4.27) then
becomes

T,=cth) (@,V, ®3d,,.) . (4.29)

Corollary 4.10. Suppose that Lp=A and that heL is such that hy is regular in L.
Then

Ty=4, () (wl-' Y o,). (4.30)

SEW

In this case, M =M, P, P;: and if M, (resp. m, ) is the centralizer of , in
M (resp. m),

G,=M, A, g,=m, +a. 4.31)

We now observe that the distribution ¥, is the constant 4,(h;). Moreover, a
simple calculation shows that

(@, '4,)(h)=( H (Ha,l+ {a,6,). A(hy)

ae Py

=@@)m)- ] (1—&_,h).

ae Pr\Py

Hence, by (4.29), (4.14) and (4.8) we find that

Ty=a(h)|w|~' 3 8y,

Semw

where a(h) is the constant given by
athy=@(@,)m) x(a,) 4, (B)~ 1.

On the other hand, as the group M, is compact, y(M,,)=1 and we get
K(gy)=r(my,)=(0(@,)m) "'

in view of Remark 4.5. (i). Hence we find that a(h)=4_ (h)~', which gives (4.30).

Corollary 4.11. The formula (4.30) is valid if tk(G/K)=1, for any element helL
which is not elliptic, 1.e., for which hg+e.

4.6. The distributions T, for regular h. We shall conclude section4 by proving the
following theorem.

Theorem 4.12. Let h be a regular element of L=L;Ly. Then T, is a C® function
on | J s-(*Lhyg), viz., there is a C* function a, on *Lhg such that, for all ge C(A),

SEW

(T,g>=Iw| "1 3 | g*(bhp) (b} do b.

sew *L
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It is clear from (4.26) that for proving this we may assume Lp={1}. We need
the following

Lemma 4.13. Let L<K be a CSG of G (so that tk(G)=rk(K)) and let heL. Then
the projection map @: G— A x N which sends kan to (a,n), restricts to a proper
submersion of [h]; onto AxN. In particular, the restriction to [h]g of the
projection n: G— A (cf. subsection3.2) is everywhere submersive and maps [h],
onto A.

Let g be the restriction to [h]; of ¢. If xeG, the tangent space to [h]; at
xhx~! can be canonically identified with Ad(x)(Ad(h—')—1)(g); as h is regular,
(Ad(h—Y—1)(g)=1* (L is orthogonal complement with respect to <.,.>) so that
this becomes ([*)*. So to prove that ¢ is submersive we should check that t+(I*)*
=g, or 7' +[*=q. Taking orthogonal complements this reduces to proving
that (¥ ') n1=(0). But clearly Ins* ' =(0); for, if Hel, ad H has only purely
imaginary eigenvalues while, for any Xes* ', ad X has real eigenvalues. The fact
that ¢~ !(w) is compact for compact w=4 x N is obvious. Since ¢ is submersive,
a([h]¢) is open in A x N, while the fact that it is proper shows that o([#];) is
closed in A x N. So, by connectedness of 4 x N, ¢ is surjective.

We can now prove Theorem4.12. We have T,=U" with U= (cf. (4.4)). If
b>0 is arbitrary and ¥, is an element of CP(G//K) which is 1 on KA(b)K, it
follows from (3.22) and the relation (U, gd=(U,«/"'g), that (Ut g>
={(y,U)',g> for all ge C*(A(b))™. So it is enough to prove that (y U)'e C*(4)
for any yeCX(G//K). In view of (3.24) this reduces to proving that
n, (y U)e C*(A). This is obvious; for, Yy U is a C* density with compact support
on the manifold [h];, and =:[h]; — A4 is a surjective map which is everywhere
submersive (cf. Varadarajan [42, 1.2. Lemma 1].

5. Periodic Geodesics in X and Their Connection with the Spectrum of X

5.1. The Distributions T, and the Poisson formula for X. We now return to the
framework of G, I', and X =I'\G/K. Let €(I') be the set of all I'-conjugacy
classes of elements of I'. If ce%(I'), the tempered distribution T, on A and the
number v, >0 are defined by

T.=T,v.=vol(IL\G,) (yec). (5.1)

¥y e

Here T, is defined by (4.4) or (4.19), and vol{(I’)\G,) is calculated using the Haar
measure dx, on G, introduced in section4. T, and v, do not depend on the
choice of yec; and T, depends only on the G-conjugacy class [y]; containing y.

The procedure for determining T, is as follows. We select he[c];=[7]g in
standard position and a 8-stable CSG L containing h such that L= 4 and L is
aligned to h; then T,=T, is calculated using (4.27). Let *L be defined by (4.21)
and let

*A()=\J s-(*Lhg),  lc)=|log hg]. (5.2)

SEW
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It is clear that *A(c) and [(c) depend only on [c],, and that I(c) >0 if and only if
the elements of [c]; are not elliptic. The trace formula and the results of
Section 4 then lead to the following formula:

Theorem 5.1 (Poisson formula for X ). The spectral multiplicities m(1) and the
distributions T, are related by the following identity of distributions:

Yomn,= Y oT, (5.3)
AeA ceg(l)
Here

Y n2a) , o
V=2 "2 ()" tvoly(X); T, =hw|~"B.

Moreover,
n,=e*"*% and B is the Fourier transform of B defined by (B, g>= { gBdv

;
(ge CI(A)). T, is tempered and its support is contained in *A(c). The numblers I(c)
are bounded away from 0 for c=%[e] and so there is an open neighborhood of 1 in
A that does not meet the support of any of the T,(c+[e]}).

Let Y be a conjugacy class in G of semisimple elements. We say that Y is
regular if its elements are regular in G. If L is a O-stable CSG of G with Ly c 4,
we say that Y is of type L if there is he Y such that L contains h and is aligned to
h. It is clear that such an L always exists and is unique up to conjugacy by K. If
Yis of type L with L= A, we say Y is of Iwasawa type. If we can find heY such
that 4 is in standard position and hy is a regular element of A4 (i.e., loghzea and
(o, loghy> +0Vaecd™), then Y is certainly of Iwasawa type. We then say that Y is
of real regular Iwasawa type. If tk(S)=1 and Y=+[e],, this is always the case. If
ce¥(I') we say that c is regular, type L, etc. if [¢]; has the corresponding
property. It follows from a result of Mostow [33] (see also Prasad-Raghunathan
[36]) that ¥(I') contains infinitely many classes of any type, and for the Iwasawa
type, infinitely many that are real regular (indeed such elements are even
“projectively dense”; see Mostow [34, Lemma&8.3]). We can now restate the
results of section4 as follows.

Theorem 5.2. T, is a smooth density on *A(c) if ¢ is regular. If ¢ is of real regular
Iwasawa type (in particular for all c+[e]; if rk(S)=1),

T.=4,(h) "(w|=' 3 d,.) (5.4)

Sew
where h is any element of [¢]¢ in standard position with hye A.

The distributions T, and their supports *4(c) are intimately related to the
manifolds of periodic geodesics in X. This circumstance makes it possible to

carry out a detailed comparison with the results of Duistermaat-Guillemin 6]
oC

. o . . . s 1/m A .
on the singularities of the distribution } e~'% '=6(t), 1,,4,,... being the
j=1
eigenvalues of a positive elliptic differential operator on X of even order m that
comes from a G-invariant differential operator on S§. We now turn to a

discussion of this aspect of our problem.
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5.2. y-periodicity in the Tangent Bundle TS. For any C*® manifold Y we denote
by T,Y the tangent space to Y at yeY, and by TY the tangent bundle of Y. If a
Lie group acts on Y, this action lifts to a natural action on TY. Let Y be a
complete Riemannian manifold, and let {¢'=d): — oo <t <o} be the geodesic
flow on TY.If the metric of Y is invariant under a Lie group H acting on Y, the
flow &' will commute with the action of H. Given yeH, we say that a point
zeTY is y-periodic if y(z)=®(z2) ie., if z is a fixed point of the Poincaré map 2,
=y~ Yol The tangent map

dZ),=P, ,: T(TY) > T(TY) (5.9

is then called the linear Poincaré map at z. We denote by F(y) the set of y-
periodic points of TY. If H, is a discrete subgroup of H that acts freely and
properly discontinuously on ¥, we can form the manifold Y, =H \Y. The map
Y- Y, lifts to a map TY—>TY, and TY,~H \TY. If yeH,, then a point z
=(p,v)eTY is y-periodic if and only if the geodesic ¢ on Y defined by z is the lift
of a periodic geodesic of period 1 in Y, and satisfies ¢c(0)=p, ¢(1}=7-p. More-
over, the image z, of z in TY, is a fixed point for @} ; and the tangent map
T.(TY)— T, (TY)) intertwines P, , with the tangent map of @} at z,.

These definitions and remarks are applicable to the case when Y=S=G/K,
H=G, H,=T, Y,=X=TI\S. The natural map G— S is denoted by =, and its
tangent map at x is denoted by 7,:9— T,,,S; in what follows, the elements of g
are regarded as left invariant vector fields on G and the tangent spaces T.G are
canonically identified with g for all xeG. The tangent map 7, is an isomorphism
of s with T, S, and the Riemannian metric of § is the G-invariant one that
restricts on T, S to the image of the Killing form on s by 7,. The geodesics on
S through =n(e) are the curves

cy ton(exptX) {(teR, Xes) (5.6)
We have
cy(0)=n(e), (4{0)=2X, (5.7)

while for any xeG, the geodesics through n(x) are given by
Cx ) =n(xexpt X)=x-cx(t) (teR). (5.8)

For some computational purposes it is convenient to introduce the sub-
manifold

S=exps (5.9)

of G. It is well-known that S is a closed submanifold of G and that exp is a
diffeomorphism of s with S. We denote by log(S—s) the inverse of exp(s— S).
We now define the transposition antiautomorphism x+x" of G(resp X — X’ of
g) by

X =0(x"1), X'=—0(X) (xeG, Xeg). (5.10)
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We then have an action of G on itself given by

(g x)—glx]=gxg" (8 x€G) (5.11)
For any xeG we have its Cartan decomposition

x=xyxg=xgexplog(xgy) (xgeK, xz€8, log(xg)es),

using which it is easily seen that S is the orbit of e under the action (5.11) and
that

(:in(@)—gg (ge0) (5.12)

is a diffeomorphism of § with S that commutes with G and takes n(e) to e. We
shall use this diffeomorphism to go from S to S and vice versa. If seS we define
s* by

st=exp(ilogs) (s€S); (5.13)

it is the unique element of S whose square is s, and s+—s? is a diffeomorphism of
S onto itself.

We have TS < TG. The action of G on TG induced by (5.11) is given by

g (x,X)=(g[x], Ad(g) (X)) (5.14a)
In particular,
T,.S=s, T,S=Ad(s~%)(s). (5.14b)

To write down the geodesic flow in TS we note first that { induces the
diffeomorphism

(m(x), 7t (X)) (x X, 2X7 ) (5.152)

(xeG, Xes) of TS with TS. Since the geodesic flow @\=¢" on TS is given by
(with xeG, Xes)

B (1(x), 7,(X)) = (R(x XD £ X), 7y yp0x(X) (5.15b)
it follows from these formulae that the geodesic flow @' = &% on TS is given by

(s, Y)=(sexptY,Y) (s€S, YeT.S). (5.16a)
This is the restriction to TS of the flow ¥' on TG given by

¥i(y,Y)=(vexpt Y, Y) (yeg@, Yeg). (5.16b)
Comparing (5.14) and (5.16) we see that for yeG, (s,, Y)e TS,

(59, Y) is y-periodic <>y s,y =sqexp ¥, Y=Y7. (5.17a)
Hence, for such z=(s,, Y)e TS, the Poincaré map 2, is given by

P, (s, X)— (" 'sexpXy~LXY) (s, X)eTS). (5.17b)
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Proposition 5.3. (i) If z is y-periodic in TS then g-z is gy g~ '-periodic in TS. (ii)
There are y-periodic points in TS if and only if y is semisimple. (iii) If Yes, (resp.
Zes) (e, Y) is y-periodic in TS (resp. (n(e), #,(Z)) is y-periodic in TS) if and only if
yx and yg commute and

logyg=1Y(resp. logys=Z), (5.18)

that is, if and only if v is semisimple, in standard position and Y=2logy(resp. Z
=logys).

The assertion (i) follows from the fact that G commutes with ¢'. From
(5.17a), for Yes, (e, Y) is y-periodic if and only if y7'=exp?Y, Y=Y, Let X
=logys so that y=7y,expX. Then yy =exp2X'* so that Y=2X"%; and YV
=(QX'®)"=2X" =2X =Y. Hence X’*=X, showing that y is semisimple, in
standard position, and that Y=2X"% (cf. Lemma4.1). Conversely, if y is semi-
simple and in standard position, we define Y=2logys and verify (5.17a) for
(e, Y). This proves (iii); in view of (i), this gives (ii) also.

Let yeG be semisimple. Define

F(y)=set of y-periodic points in TS (F(y)< TS) (5.19
S(y)=projection of F(y) in S (S(y) < S). 1)
Proposition 5.4. Let yeG be semisimple. Then F(y) and S(y) are connected smooth
manifolds, stable under G _; and the projection F(y)— S(y) is bijective. Moreover, G,
acts transitively on F(y), the stabilizer in G, of points of F(y) are maximal compact
subgroups of G, and F(y) is a symmetric space. If y is in standard position, G and
g, are O-stable, K =G nK is a maximal compact subgroup of G, and
G,~exp(s,) K, where 5, =g, Ns.

Since G is transitive over S, we may assume that y is in standard position.
Formula (5.18) shows that when n(e)eS(y), there is exactly one point in F(y)
above n{e}. Moreover, (i) of Proposition 5.3 shows that F(y) (and hence S(y)) are
G,-stable. Suppose now that rn(e)eS(y)} and peS(y). Let Zes be the unique
element such that p=mn(exp Z) and let y=exp(—Z). Then n(e)=y peS(yyy ).
So §=yyy~! is in standard position. If Fyo=yy,y~', Js=yysy~ ', then §
=(Px(P)s=7Tx 7s- Now all elements in sight are semisimple; moreover, () and
(7)s commute (because § is in standard position) while §; and §g commute also
(because y, and yg commute). So, by the uniqueness of the decomposition of
semisimple elements into a product of commuting semisimple elements one of
which is elliptic and the other hyperbolic we have

Yy =0k Yy =05
Applying ’ to the first and 0 to the second of these relations we find that y?
=exp(—2Z) commutes with y, and y. Hence Z commutes with y; and ys, i.e,
Zeg, or p=exp(Z)~n(e)eG3'n(e). The statements of the proposition easily
follow from this.
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Remark 5.5. Let y be in standard position and write Y=logyg. It follows from
(5.18) that

F(y)={(n(g), 1,(Y)): geG }.
It is clear from this description that the manifold F(y) is horizontal with respect

to the Levi-Civita connection.

5.3. The y-displacement Function. For an arbitrary element yeG, the y-displace-
ment function f® is defined on S by

fPp)=dist(p,y-p)  (peS), (5.20)

where dist is the distance function on S. Actually it is more convenient to work
with g?=3(f 2. Clearly, if x=x, xg, then

g (p)=7llog(y™ V)5 (p=expX,Xes). (5.21)
So g is an analytic nonnegative function. Clearly f&7* (x- p)=f(p).

Proposition 5.6. ¢ has a nonempty set of critical points if and only if y is
semisimple. In this case, the set of critical points of g is precisely S(y).

Using the transitivity of G on §, this comes down to proving that n(e) is a
critical point of g if and only if y is semisimple and in standard position.
Writing

exp(—tX)yexpt X =k(t)expZ(t) (X, Z(t)es), (5.22)

with k(0)=7,., Z(0)=logys=Z say, we find that g"(r(exptX))=1|Z(t)|.
Hence n(e) is a critical point of g if and only if (Z(0), Z> =0 for all X €s. We now
differentiate (5.22) at t=0 (in this computation, the tangent spaces to K and s
are identified as usual with f and s respectively). Rewriting (5.22) as

exp (— tX" exptX =y5 (v ' k(1) ys(exp(—Z) exp Z(t))

and using the well-known formula for the tangent map of the exponential (cf.
Helgason [24], p. 36) we find

N
X = Ad(™ )X = Ad(5 ) KO)+ —=—(2(0) (5.23)
or,
N
Ad(9) X — Ad(rg ) X =K(©O) + 2(0)). (5.24)

adZ
We now take the component in smod f of both sides. This gives

sinhadZ

cosh(ad Z)(X)— Ad(yg ) X = ( adZ

) (Z(0)). (5.25)

Take scalar products with Z on both sides and note that {(ad Z)"(Z"), Z)> =0 for
any m=land any Z', We then obtain
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(X,Z)—<(Ad(yg") X, 2> =<Z(0),Z)
or
(Z(0),Z)=(X,Z—Z"). (5.26)

If this is O for all Xes, then, as Z—Z"%es, we find that Z=2Z"%. So y and yq
commute, and we are through.

Proposition 5.7. Let yeG be semisimple. Then on the critical set S(y) the function
SO takes the same value m(y). Moreover, m(y) is the minimum value of £ and S(y)
is the set O '(m(y)). If v is in standard position, then m(y)= [lTogysll.

We may assume that y is in standard position. Then, as G, is transitive on
S(y) and f© is G -invariant, it is a constant on S(y), say equal to m(y). Let m
=inff™. If m is actually attained at some point, then that point must be
stationary for g” and so lies in S(y), proving m=m(y). To prove that m is
attained, it is enough to show that there is a minimizing sequence which is
bounded in S. As @ is G -invariant, this will be done if we show that for any
number c¢>0, there is a compact subset Q<S§ such that

E={p: peS, fP(p)=c} =G, Q. (5.27)

If p=x-n(e), then f7'(p)Sc if and only if x~ ! yx=kexpZ where ||Z| = c. Hence,
there is a compact set £, =G such that x-w(e)eE if and only if x 'yxeQ,.
Now, the conjugacy class [y]; is closed and so the map x+—x~'yx induces a
homeomorphism of G,\G onto [y];. Hence the preimage in G,\G of the set Q,
under this map is compact. So, there is a compact set Q,<G such that
x“'yxeQ, if and only if xeG,Q,. Then E=G,Q, n(e)=G,Q where Q
=0, 7(e).

Remark 5.7. The above results on the displacement function are known (see
Ozols [35]). Ozols’ proof makes use of a second derivative calculation to

conclude that the function t+—g®(c(1))(teIR) is convex for each geodesic ¢, ie.,
2

d
e g”(c(t))20 for all t. This would then imply directly that the set of critical

points of g is totally geodesic and transitively acted on by G,. Our proof has
the advantage of avoiding second derivative calculations and, in keeping with
the theme of this article, is group theoretic in character. The convexity is itself a
special case of the more general result that for any two geodesics ¢ ,c,, the
function g: t+—dist(c,(t), c,(t)) (t€R) is convex.

1t can also be shown that the critical set S(y) of g is clean, i.e., that at each
point peS(y), the Hessian form is nondegenerate transversal to S(y) (see Ozols
{35]). This is however not needed for our purposes.

5.4. The Linear Poincaré Map at a y-periodic Point in TS. Let us consider the
point Z=(e, Y)eTS where Y=2logys, y being semisimple and in standard
position. To determine the linear Poincaré map at Z we use the trivialization
TS~s x 5 given by the map (cf. (5.14b))

7:(X, Z)>(exp X, ZP X2 (X, Zes). (5.27)
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So, using (5.17b), we obtain for the Poincaré map in s x s the formula

P (X, Z)—(V,W) (X,Z,V,Wes), (5.28)
where

expV=y"texpX/2expZexpX/2y " ';

(5.29)
W:eadV/Z Ad('))’) efad X/Z(Z).

The derivative (d2), y, of £ at (0, Y) can then be calculated from this expression
for 2. Regarded as an endomorphism of s @s, it is given by the following 2 x 2
matrix whose entries are endomorphisms of s:

cosh(}adY) sinh(¥ad Y)/(}adY)

Py =(dP)g = Ad(y5] (
0.1 =(@P)ory=Adlx) sinh(3ad Y)oiad Y cosh(zad Y)

). (5.30)

It is easy to determine the spectral decomposition of P(0 y) from this formula. Let
us write g, for the eigenspace of +ad Y in g for the eigenvalue a. Then g is the
direct sum of g, and the g, , (a>0) For any a>0,0(g,—g_,)} is an isomorphism
and s,=(g,®g_,) s is the eigenspace of (Fad Y)2l5 for the eigenvalue a?; g, is
0-stable and we put s,=g,ns. Then s is the direct sum of the s, (a=0), dim(s,)

=dim(g,,) (a>0), and the s, (a=0) are all Ad(yg)-stable. It follows from this
that

Pomluon>AdGE) (51 0 ) XA ey, (@>0)
(5.31)
Ponkoow=AdGEY (o 7).
Since g, =gy, the centralizer of Y, the first relation gives
Poylerasr 2(AAG™ gy, (%= D s.). (532

a>0

From the second relation it is moreover clear that the eigenvalues of Py vl 4,
are precisely those of Ad(yz') on s,. We note that

so=gyNs, Ad(™ ), =Ad@rk ), (5.33)

If ¢ is an eigenvalue of Ad(y~')l,,, U, the corresponding spectral subspace (in
C-s,), then,

I 1
Pio.ply, ou, ~¢ (0 I) (5.34)

Since Yes,, we see at once that P, y, has a nontrivial unipotent component.
Indeed, if g, is the centralizer of y in g, then s =g, s is the subspace of s, fixed
by Ad(yg') and so we get

Ker(I-P, r)=1{(X,0): Xes }=Range (I - Py, y))|5v®§v) (5.35)
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Proposition 5.8. For any semisimple element yeG, 2, has the clean fixed point set
E(y), ie, F(y) is smooth and for any zeF(y), T,(F(y))=Ker(I—-P, ), P, . being the
tangent map of 2, , at z.

We may take z to be above m(e). y is then in standard position and
dim(Ker(I - P, ,))=dim(s )=dim(F(y)) by (5.35). Since T,(F(y))cKer(I—P,.) in
any case, we are done.

Remark 5.9. The formula (5.35) again shows that F(y) is horizontal with respect
to the Levi-Civita connection.

It is useful to write down the information contained in (5.31)<5.34) in terms
of roots. We select a 0-stable CSG L containing 7. Let [ be the corresponding
CSA; we have [ gy. We now consider the roots of (gy ., [,). For any such root «,
we have fa=—&, &,(7) =&, (7 (1 =E,(y7"). The spanof g, . ,, §,, + 5 is stable
both under 8 and complex conjugation; we put b, for the intersection of this
span with g. If § is another root but + t«, + +4, then b; and b, are linearly
independent. We consider the following special cases.

o neither real nor pure imaginary. The four roots +a, +& are distinct. So on
C-b,, Ad(yg") has the eigenvalues ¢, (y~') with multiplicity 2. On the other
hand, b,ns has dimension 2 and is spanned by X, ,—0X, .. Indeed, if X, ,
—-0X,,=0, we would have a=0q; if X,—60X, is a multiple of X —-6X_,
then £2|;, =1, ie, « is real. Thus Ad(yx ')ly, ., has the eigenvalues &, ,(y~ '), with
multiplicity 1.

a real.b, is now two dimensional. Ad(yg ') has the eigenvalue & ,(y~ )= +1 with
multiplicity 2. b,ns (resp. b,n{) is one dimensional and spanned by X ,—0X,
(resp. X,+60X ) (as au=—a, X ,+0X ,+0). So, on b_ns, Ad(yg") has the
eigenvalues ¢ _(y~ ') with multiplicity 1.

o purely imaginary. fa is now « while b, is two dimensional as in the preceding
case. For the root vector X, we have either X ,e(fngyj, or X e(sngy),; o is
called compact or noncompact accordingly. If o is compact, b, ns=0 and there is
no contribution to P, .. If « is noncompact, b,cs, and Ad(yg s, has the
eigenvalues &, (y~'), each with multiplicity one.

Since the imaginary roots of (g, I.) are already roots of (gy ., f.), we get

Proposition 5.10. Let y be semisimple and in standard position. Let zeF(y) be
above m(e) and let L be any 0-stable CSG containing y. Then, with A as an
indeterminate, and « running over the roots of (g,,1.),

det(AI—P, )=(A— 1>t [T A-¢ ) [T (A-¢_.0)% (5.36)

anot % imaginary
imaginary noncompact

From (5.35) we see that I — P, , induces an isomorphism
(I-P,)*: RIN>R/N, (5.37)

where R=Range (I - P, ), N=Ker(I —P, ,); we refer to this as the reduced linear
Poincaré map. From (5.36) we get



Spectra of Compact Locally Symmetric Manifolds of Negative Curvature 67

Corollary 5.11. We have

det(I=P, )" = [] (1=¢.,0) [l (1-& 0% (5.38)
&+l En*1
a not & 1maginary
imaginary noncompact

If L is of Iwasawa type, i.e., Ly=A, then

det(I—P,)*= [ (1—&_,(). (5.39)
Ll
) a not
imaginary
Corollary 5.12. Assume that Lp=4, ie, L is of Iwasawa type and that yg is
regular in A. Then

ldet(I =P, )** =4, (7). (5.40)

For (5.39) we must remember that there are no imaginary noncompact roots
for Iwasawa L; to get (5.40) we use (4.5b).

Remark 5.13. Formula (5.39) seems to have been first obtained by Kolk [28];
has method was more differential geometric.

5.5. Periodic Geodesics in X. The natural map p: S— X =I'\S gives rise to a
map p: TS —>TX =I'\TS. As S is simply connected, the mapping that assigns to
any yel the p-images of curves from y to y-y (yeS) induces a bijection ¢+ p(c)
from the set €(I') of I'-conjugacy classes to the set n,(X) of free homotopy
classes of closed curves in X. Since the elements of I' are all semisimple, it
follows that for any ce%(I') the homotopy class p(c) contains periodic geodesics
(of period 1), namely the p-images of all the y-periodic geodesics for any vyec,
now considered as curves in S rather than as points in TS. Regarding these
periodic geodesics as curves in TX we can identify the set of periodic geodesics
lying in the class p(c) with a subset F(c) of TX. Obviously

F(e)=p(F(y) (vece?(I). (5.41)

Since F(y) has been shown to be a symmetric space (cf. Proposition 5.4) it is
natural to expect that F(c) is a locally symmetric space (cf. Kolk [28], VI,
Theorem 6). This is indeed so, and the argument for proving it is essentially the
following elementary lemma.

Lemma 5.14. Let y, y'el', zeF(y), Z’€F(y'). Suppose p(z)=p(z'). Then there is a
unique Sl such that §-z=z'; and v =8y 6~ '. In particular, the F(y) are mutually
disjoint for distinct y; and for a given y in I', two points z, z in F(y) have the same
image in TX under p if and only if the element deI' such that -z=2" belongs to
r.

o

Since z can be moved to a position above n(e)eS, we may assume that the
base point of z is n(e). Then zeF(y) as well as F(6~ 'y 8). Let y, =61y’ 5. By
Proposition 5.3, both 7y and y, are in standard position and that z=(n(e),
7 (logys))=(n(e), 7 (log(y,)s)). So ys=(y,)s. Using the fact that yx and yg (resp.
(v1)x and (y,)s =7vs) commute, we find that

=00k 005 s vk =0k 7x€EK.
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As I contains no elliptic elements other than e, y, =7, or Y =y~ . So the first
assertion is proved. If zeF(y)nF(y'), we take d=e above to get y=y'; if z,
Z'eF(y) and z'=4-z for er’, then we take y'=y in the above result to get el

Proposition 5.15. Let ce4(I"). Then the set F(c) of periodic geodesics (lying in the
class p(c)) is a smooth compact submanifold of TX and is canonically isomorphic to
the compact locally symmetric space I'\G /U, where U, is any maximal compact
subgroup of G,. The elements of F(c) all have the same length I(c) (cf. (5.2)),
considered as curves in X ; and l(c) is the minimum of the lengths of the closed
curves in the homotopy class p(c). For ce %4 (I'), the F(c) are mutually disjoint; and
the l(c) form a discrete subset of the nonnegative reals with each value taken only
by finitely many c.

It is immediate from Lemma 5.14 that F(c)~ T \F(y) for yec, and that for c,
deg(I), Feyn F{c'y=@ whenever ¢=+c¢’. The compactness of F{c) is clear since
I'’\G,/U, is compact (cf. Lemma 2.5). Proposition 5.7 implies that all the geo-
desics in F(c) have the same length /(c) and that this length is the minimum of
the lengths of closed curves in the homotopy class p(c). The last statement
follows from the fact that inf I(¢)>0 (Theorem 5.1), and the fact that a

c¥[elr
compact subset of G meets only finitely many of the ¢’s (Lemma 2.5).

The set of positive numbers I(c) is of course the so-called length spectrum of
X. The identification of the space F(c) with I'\G,/U, suggests that the distri-
butions T, appearing in the Poisson formula for X should be intimately related
to the manifolds F(c). The following partial result is evidence of such a
relationship.

Proposition 5.16. Let ce4(I") be of real regular Iwasawa type (cf. subsection 5.1).
Let L be a 0O-stable CSG with Ly=A and let h=h,hy (h;eL;, hgeA’) be an
element of L in the G-conjugacy class of elements of c. Then

T.=|det(I—P)*|~ ¥ (Iw]~* } 8, (5.42a)

SEw

where we write det(I — P) for the common value of det(I —P,.) as y varies in ¢ and
z in F(y). Moreover, in this case, I, is isomorphic to Z'™*® for yeI'\{e}: F(c) is a
torus of dimension equal to 1k(S) for any c+[ely; and the volume of this torus
under the identifications F(c)~T \F(y)~I\G,/U, is precisely v (cf. (5.1)):

2, =vol(l,\G /U) =volo(T\G /U). (5.42b)

The statement concerning T, follows from (4.30) and (5.40). For the remain-
ing ones we may assume yeL so that y=y, 5, yr€4’". Then G,=M, A where
M, is the centralizer of y, in M. Since M, is compact, I, "M, ={e}. So, under
the projection homomorphism M, A— A, I, gets injectively mapped onto a
subgroup A” of A. The compactness of M, also implies that 4'” is discrete in
A. Since AN\A>~I'\M, A is compact, A is a lattice in A and so is
isomorphic to Z™; and F(c)~a torus of dimension equal to dim(4). Moreover,
since U,=M , , G~ U, x 4, so that dx =d,x, and

rr’

0, =Vol(I\G /U) =voly(T)\G ,/U,) =voly(4 ™\ 4).
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Suppose now that rk(S)=1. Then, for every c+{el,, (5.42a,b) are valid. By
the above result, the group I, (y=e) is infinite cyclic and so we can find yoerl’ )
such that y, generates I', and 7§ =7 for some integer m=1. It is obvious that ¢,
=[y0]r is uniquely determined by c; co(resp. {(cy)=1y(c)) is called the primitive
class (resp. primitive length) corresponding to c¢. Clearly

leg)=1ly(c)=m~ (¢ (5.42¢)
Theorem 5.17. (Poisson formula when rk(S)=1). We have

Y m(2) &t =2"20 1= D2 1(p)~ Lvoly(X)(5 f)

AeA

+5 Y (o) ldet(I —PYy* |7 ¥(3;+ 0 _ 1) (5.43)
ce€ (),
c¥[elr
as an identity of distributions on ax R, l,(c) being the primitive length correspond-
ing to c.

Remark 5.18. For a less precise version see Kolk ([28], formula (34), p.107).
When G =SL(2,IR), formula (5.43) specializes to results of Randol [37] and Lax-
Phillips [29].

5.6. Comparison with the Results of Duistermaat-Guillemin. The formula (5.43)
obtained above raises the question of the relation between the results of this
article and those of Duistermaat-Guillemin [6] on the singularities of the
Fourier transform of the spectrum of positive elliptic differential operators. In
this subsection we shall indicate briefly how this comparison can be made. In
what follows, we write 4 for the Laplace-Beltrami operator wg of (2.6).

We note that the Riemannian structure on S induces an isomorphism
TS - T*S. The Hamilton flow of the length function of the tangent vectors to
S(=the principal symbol of (—4)! pulled back to TS) coincides with the
geodesic flow @' on (T'S),, the unit sphere bundle of S. Multiplication by t >0 in
the fibers of T'S intertwines @' on (TS), (=the sphere bundle of vectors of length
) with @' on (T'S),. So, for any yeG we have an idendification of F(y) with the
set F,(y) of periodic (with respect to y) geodesics in (T'S),, of period |log ys|l.

If we pull back the canonical symplectic form of T*S at a point z above n(e)
to s@s via the identification T*S~T*§ and the trivialization 7 (cf. (5.27)), we
find that it is the symplectic form o, given by

o, (X, Y): (X, V)=V, X>—(X,¥>) (X,X Y Yes). (5.44)

However, as ker(I — P, ,)=T,(F()) is horizontal (cf. (5.35), it is isotropic for o,
so that our situation is opposite to that described in Lemma 4.4 of Duistermaat-
Guillemin [6] (another way of saying this is that I — P, _ has a nonzero nilpotent
component always); so, in order to calculate the canonical density on ker(I
—P, ) we must go back to its definition in loc. cit (4.1), (4.2).

. Let us temporarily write P=P, ,, N=T ,(S(y)) x {0} ~ker(I —P), L={0}
X T, (S(y)), W~ Range (I — P), V=s®s. Itis then clear from (5.31)«5.35) that V
=W@L and that I — P is an isomorphism: L— N. Let us also write, for any real
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vector space U with a scalar product, g, for its corresponding Euclidean density.
Then &, is equal to the canonical density on V defined by the symplectic form
o,. The canonical density u=cey on N defined in loc.cit (4.1), (4.2) is now
determined by the equation

(I=P),(ey/m)=2ey/c™ &y, (5.45)

where ¢~ ¢, is the density on V/W ~ L defined by the pairing between N and L
induced by ¢,. Now, &,/u=¢;ey/cey, (I—P), e =ey, so that (5.45) becomes
¢ ley(I = P), ey =Cty, OF

c=|detI —P)*|~ 1. (5.46)
We have thus proved:

Proposition 5.19. The density on F(y) obtained from the canonical density on the
corresponding manifold of periodic geodesics in (TX), =~(T*X), by Duistermaat-
Guillemin ([6], (4.1), (4.2)) is equal to |det(1—P,,)#|‘% times the density on F(y)
induced by using the Killing form and the identification of F(y) as G /U, where U,
is a maximal compact subgroup of G .

Let us now fix a number T >0 in the length spectrum of X. By Proposition
5.15, there are finitely many c;e4(I') (1 £j<k) such that I(c;)=T; the manifolds
Z; in (T*X), that correspond to the F(c;) under our identifications are then
disjoint, connected, compact, and their union is the set of periodic geodesics of
period T in (T*X),. Now, the subprincipal symbol of (—A4)* is equal to zero,
and so, by the above Proposition, the numbers o;, appearing in loc. cit.
Theorem 4.5 come out to be

#;0=2m) (I =P)* [} volo(I[,\G/U)  (yec, 1<j<h) (547)

Let us now return to the Poisson formula (5.3). Let P be a positive elliptic
differential operator of even order m on X arising from a G-invariant differential
operator on S. Then there exists a w-invariant polynomial p of degree m on a*
=4 such that the spectrum of P consists of the numbers p(A), le A,counted with
multiplicities. Let us write Q=P'™ g(u)=p(iw*™ for ueF. Then, for the
distribution (int) 6(t)=Tr(e~9) we find, remembering that the measure du on
F is the one dual to dyaq,

é(1)Y m(A)e i

Aed

=Y m(A) | [er e Wdpda
AeA Fr a

= Z v{T, J‘ g gmitaln gy
ce¥ (N Fr

as a distribution in t. To make the comparison with loc. cit. Theorem 4.5, we
introduce ye C°(R) with support in a small neighborhood of T >0 and equal to
1 in a small neighborhood of T, and investigate the asymptotic behaviour, as
T— 00, of
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)~ [T D a(t) r(r)de
= ) Qo 't (T, .f |t T ey (ydudr. (5.48)
R #r

1sjsk

If for some j, the class ¢; is of real regular Iwasawa type, we can use (5.42a) to
give an asymptotic expansion, for T— oo, of the corresponding term in (5.48),
provided the homogeneous part g, of ¢ of degree 1 is strictly convex, using the
substitution of variables u={v, q,(v)=1. For P=—4, the Laplacian, q,(u)
= |i#ll, and one obtains for such a class ¢;, using (5.42a, b}, the expansion

{€Da(e) y(r)dt

r—1
2

~2m)~ (I = P)*|~*voly(T\G /U) (L) (1+ y atkrk).
2ni = T

In view of the formula (5.47) for «; ,, this result agrees with loc. cit Theorem 4.5,
except for the factor i~ occuring in (4.7) loc. cit. Now, ¢; is equal to the Morse
index of the periodic geodesic as a stationary point for the length function on
the space of closed curves (see the end of loc. cit. Section 6). Therefore, ¢;=0 in
our case, because, the length function restricted to the homotopy class of the
periodic geodesic attains its minimum on the periodic geodesic, in view of
Proposition 5.15.

Of course, the treatment of t+— Tr(e~*?) for only one operator Q eliminates a
large part of the information in the Poisson formula (5.3); only when rk(S)=1,
the coefficients of the leading terms of the singularities of 1+ Tr(e~9) lead to a
full recovery of Y v, T,, and therefore of the whole spectrum A, as is clear (with P
= —A) from (5.47) and (543).

6. Spectral Asymptotics: Preliminaries

6.1. From now on our aim is to use the formula (3.28) to study the spectrum A of
X. Thus we get, with a replacing 4, and using (3.30):

Proposition 6.1. There is a w-invariant open neighborhood U of 0 in a which is
balanced (U= —U) and starlike at 0 (U cU for 0=t=<1) with the following
property: for any fe C¥(U),

Y m() f (i) :—‘,’v——( () B d; (6.1)

ieAd

#*

here, the series on the left converges absolutely, and f is the Fourier-Laplace
transform of f given by

fO={feH=[fH) &M dH  ((eF). (6.2)

6.2. We now begin the study of the equality (6.1). The basic idea is to construct
test functions with supports in U whose Fourier transform are =0 on A. Let
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conj be the conjugation in & defined by %, so that (Ex+&)i=¢,—
E(EreFr, e F)); and define, for any sew,

F()={¢: (e F,s- &= — &M} (6.3)

Lemma 6.2. Let U ca be as in Proposition 6.1 with the additional restriction that
|H|| <4 for all HeU. Suppose ge C®(U) is real non-negative symmetric (i.e. g(H)
=g(~H) for Hea), w-invariant, and [ gdH =2. Then its Fourier-Laplace trans-

Jorm g (cf. (6.2)) has the following propaerties:
() 8O =8(—8)=4(s- &) ((eF, sew).

(i1) g ™) =g(O)*M((eF).

(i) g(¢) is real if £ | ) F(s). In particular, §(2) is real if A€ A.

(iv) 18Iz 1 if eF and ||E| =1

The assertions (i) and (ii) are consequences of the assumptions that g is real,
symmetric and w-invariant. If sew and ée# satifies s-fj—- — geoni we find, using
(i) and (ii), that g(&)=g(—&)=g(—(s-&)*™)=g(—s- ™™ =g(£)**™. So § is real
on () #(s); and to complete the proof of (iii) we must recall that A< U Z(s),

sew SEW

according to Corollary 3.5. Suppose now €% with ||&]| £1. Then

g&) =1+~ 1) g(H)dH =2+ [ ("™~ 1) g(H)dH.
a U

But as |H|| <} for HeU, |E(H)| <% for HeU. Also, if zeC and |z|<4
lee— 1|z +]zl* +... =zl/1 —|z| £4.
Therefore (iv) follows now, using the estimate

If (e300~ 1) g(H)dH| S3f g dH = 1.
U a

We choose a balanced w-invariant open neighborhood U, of 0 in q, starlike
at 0, with U, + U, cU. Let ge C*(U,) and let us assume that g has the properties
described in Lemma 6.2. We define the functions h,g(¢: +) and h(t:*)}(¢>0) on a
by

h=gxg; g(t: Hy=t'g(tH)(Hea);  h(t:+)=g(t:*)*g(t: ). (6.4)

The Fourier transforms g(¢: *) and A(t: - ) then satisfy, for t >0 and éeF

g:0=8(7"¢);  h:9)=8:9* =4 &P =h(t"¢). (6.5)

Lemma 6.3. The functions h(t:<) and h(t:*)satisfy for t=1: (i) h(t:£)20, if
Eel) #(s), in particular h(t: )20 if AeA; (i) [h(t: )21 if EeF and & <t; (iii)
h(ts:e-m)e C>(U) is real symmetric and w-invariant; (iv) for each integer m=0 and
real number a>0 there is a constant ¢=c(m:a)>0 such that for all t>1 and e F
with (gl <a

h(t: OIS cem@+ N (6.6)
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For (i) use Lemma 6.2 (iii) and (6.5); for (ii), Lemma 6.2 (iv} and (6.5). For (iii)
observe that since t=1 and U, is starlike at 0, suppg(t:-)cU,; hence
supph(t:*)c U, + U, = U, and convolutions of real symmetric w-invariant func-
tions are likewise real symmetric and w-invariant. According to the Paley-
Wiener estimate given in formula (3.23), for each integer m=0, we can find a
constant ¢'=c,, >0 such that, for (e &,

I8 =/ (L+ 1181 ™ exp(liEglD
since |H| <1 for Hesupp(g). So
(&)l =1 QP S+ e mexp( &l t™!)  (EeF).
Now, as t=1, 1+t~ H|E] 2¢ (1 +]|&]); so we find that, if |&4] <a
(& < "L+ E) e

We can already obtain some crude results on the asymptotic behaviour of A
on the basis of the above lemmas. Thus we have

Proposition 6.4. There is a constant ¢ >0 such that, for all t=1,

Y o mAsct”  (n=dimG/K).
rea il =t
In view of Lemma 6.3(iii) we can take f=h(t: ) in (6.1). Since A(t: 1)=0 for
AeA and h(t:2)=1 for AeA with |A] £t by (i) and (i) of Lemma 6.3, we get,
with v=vol(X)/|w|,

m(A)< Y m(A) k(e 2)

AeA, Al £t ieAd

=v [ K peydv=o | A" v p)dv

Fi

=vt" | h(v)B(tv)dv,

the integral being convergent by the Paley-Wiener Theorem. By the growth
estimates for f§ given in (3.44), we have for t=1 and ve#;, B(tv)<constt" *(1
+jv]})"~". So the last expression on the right side above is majorized by

const£" | A(v)(1+ [v|)'~"dv,

Fi

giving the Proposition.
From this we get at once (cf. Proposition 3.6))

Corollary 6.5. A is a discrete set.
Moreover we have

Proposition 6.6. For any fe C*(a), the series

> mA) f(A=9)

AeA
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is normally convergent when & varies over compact subsets of # (in particular,
uniformly convergent on compacta in F ).

Select a constant ¢, >0 such that, for all ne#,

Il Sci(L+nl)="* P exp(b | ngl),

where b>0 is a constant such that supp(f)<{H:Heaq, |H| £b}. According to
Proposition 3.4 (iii), any AeA satisfies |1z < [pll; so if Q< F is a compactum,
we can find an integer p>0 such that (A —&)z <p and || Sp(leA, Q). Let
kzp be any integer. Then, for all ie A with k= ||A| <k+1 and feQ,

IFA=aiSe,(1+ A=) " P expb(A— ) S5 (1+k—p) =+,
¢,>0 a constant. According to Proposition 6.4, we have

m(A) = c(k+1)",

AeA kEHAN <k+ 1

hence we get

Y m(A)sup|f(A—¢&)

Aed, llAllzp e

=) Y mdey(l+k—p)
k=pleA, kS IAl <k+1

Scey Y, (L+k=p) "9k +1)" < 0.
kA

=p
The above method of estimating a sum like > m(4) f(A—¢&) by partitioning it

AeA
into subsums over various “shells” and estimating these individually, will be

occasionally used in our subsequent work.

6.3. These results, however, are too crude. What we need are analogous results
on the number of spectral points in balls around a variable point ne #;. So we
introduce the test functions

Bt wWy=h(t:-)e " (t>0,ues), 6.7)
where the h(z: - ) are given by (6.4). Clearly

hit:-: eCPU) (t=1, ues). (6.8)
Moreover, for the Fourier-Laplace transforms A(t:« : 4) we have

h: e py=h(t:6—p)  (t21,EeF, ue ). (6.9)

Lemma 6.7. For each integer m =0 there is a constant ¢ = c(m)>0 such that for all
t=1, led, pe#,

h(e: A~ Sct"(L+ | A—pl) ™. (6.10)
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This follows from (6.6) because any AeA satisfies | Azl = lipll and, since pe %,
(A—wr=1g. .
Let us now define fe C*(#)" by

Buy=§ (A+lv—pl) """ poydv  (ueF). (6.11)

F1
The majorant (3.44) for f# shows that § is well defined.
Proposition 6.8. (i) We have, for all t=1 and ue%,,

S mA)h(t: 2—py=vol(X)lw|~ " | A(t:v—p) B(v)dv, (6.12)

Aed Fi

where the series on the left converges absolutely. (i1} We can find a constant ¢
=c(h)>0 such that, for all t=1, ue %,

|y, mA) h(e: 2=l e By, (6.13)
AeA
Indeed, applying Proposition 6.1 with f=h(t: - : p), we find

S m(Ayh(t: 2wy =vol(X)lw| ! | A(t:v:p) p(v)dv

AeA F1
and assertion (i) follows from (6.9). (ii) follows from (i) and Lemma 6.7.

6.4. Estimates for p. Assertion (ii) of Proposition 6.8 makes it clear that the
growth properties of S are important for us. Let us recall the numbers
d(@)(xed**) defined in (3.41); we have ) d(a)=n—r. For any subset

xed*
®= A" we define d(P)=0 and the set T(P)<= %, by
=Y d@); (6.14)
acd
T(®)={pu: peF,{a,u>=0voe @}. (6.15)

Proposition 6.9. There is a constant ¢ >0 such that

Buw=se [ (+Ko )™ (ues), (6.16)

acAt ¥
and, for any subset ®= A+ and arbitrary ueT(®P).
B S c(L+ uf) 9. (6.17)
It follows from (3.37) and (3.40) that (v)=1(p)* [] H(x:v)"? (veF); so

aed*

according to (3.44) we have, for ueT(®) and ve#,,

Blu+vy=1(p) [T (e p+ w72 [T Mozp+v)=?

acd aedt T\D
Sop [T+ TT (4 Ko vd I+ Ko i@
acd acAT T\D

Se(t+viy T A+ Ka i)™,

aedt T\P
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where ¢, >0 may be selected to be independent of @, and v. Thus, for all
neT{®), (cf. (6.11)

Blw)y= [ (L+ v ="~ Blu+v)dv

F1

e, [T (+Kam)* [ (14[vi)="dv

aed” F\d 1

Formula (6.16) follows now by taking as @ the empty set, and (6.17) follows
using (6.14).
The inequality

A+IED T =A+HE=ENa+1ED" (& &eF) (6.18)

leads at once to the following:
BOYSA+v—nly*' B (v, ueF). (6.19)

The estimate (6.19) shows that f§ is of regular growth; if >0 is any fixed
constant, we have for a suitable constant c=c¢(b)>0

fwse | Pwdp  (veF). (6.20)

p—vll £

When making estimates it is convenient to work with functions of regular
growth; however, so far as integrals over bounded sets are concerned, f and j
have the same growth as we will show in the next proposition. Let & denote the
distance function in ;. We define, for any x>0 and any subset E — %},

E . ={v:ve#.,0(v.E)<s«}. (6.21)

Proposition 6.10. Given x>0, we can find constants a,,a, >0 depending on x, such
that, for any bounded Lebesgue measurable set E in #,,

aliﬁ(u)dxéfj 5(u)du§azbj Blu)dp. (6.22)

The proof of the first inequality in (6.22) is by observing that there is a constant
¢, =c¢,(x)>0 such that, for all E,

iﬁ(ﬂ)dﬂ§01 § { Bwavdy

E.llp—vlil S

<oy 1 ][ p=vl) o B) dvd

E.F;

Using formula (6.19) and the estimate (6.16), we get a constant ¢, =¢,(x}>0 such
that for any pe#;

Bwsc, inf By <c, inf [T (1+Ka i@ (623)

ffp-vil £x fp—vll £k aqed**

By choosing ¢(x) >0 small enough, we can find a constant ¢, =c;(x) >0 with the
property that for arbitrary ue#;,

vol({v:veZ, [u—v| =k, Ko, )| Ze(k)Vaed* ")z c;. (6.24)
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Now we apply (3.44a) and we obtain ¢, =c,(x) >0 satisfying

[T A+Ka v =c, B(v), (6.25)

aedAt *
if ve#; and Ko, v)|Z e(k) for all aeA* *. Combining (6.23)6.25) we get

Pwses [ Bmdv  (ueF),

Nu—vll =k

where ¢s=cs(k)=c,c, ¢35’ is independent of u. Therefore

Fj Bwdu<es | | Bvydvdu

Ecllu—vll £x

Sco | BV [ dudv=ay(i) | pwdu

Es,. flu—~vll Sk Ey

7. Local Spectral Asymptotics around a Variable Point ye.%,

7.1. Our aim in this section is to obtain precise estimates for sums of the form

mi)  (ueFptz1). (7.1)

AeA, Nl A—pll <t

These estimates will of course depend on both u and t. By analogy with
Proposition 6.8(ii) one would expect that the estimates will be in terms of ()
and powers of ¢. It turns out that high powers of t do not matter; this is because
t is bounded whenever we apply these estimates. However, the factor f(u) that
enters our estimate for (7.1} is critical; indeed, our main effort is to show that the
factor f(u) furnished by Proposition 6.8 is in fact the one needed to majorize
(7.1).

We begin with a way of partitioning the sum (7.1). Recall the definition of
the IR-linear spaces Z{(s) = % (sew), given in (6.3):

F(s)={l:EeF s &= —EoM), (7.2)

conj being the conjugation in # relative to %. Since A< | #(s), we can write

SEw

A= A(s) disjoint union); A(s)= ANF(s). (7.3)

Note that for s=1, F(1}=4;; thus A(1)< ;. More generally
FINF=F ={viveF,s-v=v} (sew). (7.4)

From (7.4) we see that if s+1 and peF(s)nF;, u is fixed by s=+1 so that, by a
well-known theorem of Chevalley (cf. Varadarajan [41, Lemma 4.15.15]), there is
aed™* with {a, u>=0:

skl pueF()INF = o, u>=0 for some aecd™". (7.5)
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We write [ for the number of short positive roots:
=4+ (7.6)
Using the notation of {6.15), we define the (finite) classes 7,(0=<k<!) and 7 by

To={T(@): @A+, |B|=k}; T=|) 7, (1.7)

0sksl
For any TeZ we introduce a partition of w given by
W=wyuwy; wprwr=f; wp={s:sew,s-u=pVueT}. (7.8)
We now consider the sum (7.1), with e %, and t=1. We have, for any Te and
any peT,
m(4)

AeA, N A—ull St
=Y Y MY Y m (79)

sewp AeA(sh Il A—pll £t sewrT AeAls), | A—ull <t

If sew, and A€ A(s), both A and u lie in #(s); hence A— ueZ(s). If we now recall
(Lemma 6.3) that the Fourier transforms h(z: &) are 20 for £eZ(s) and =1 in
absolute value for [[£]] <t, we get the estimate

Y omSY Y mhei-p

sewr AeA(s), | A—pll <t sewt A A(s)
=Y m)ht:A—w— Y Y m@yh(e: 2—p)
ed sewT AeA(s)
SIY mh@i-pi+ Y Y mA)he: A~ p).
AeA sewT deA(s)

Combining this with (7.9) we get the following proposition.
Proposition 7.1. Let 0<k <!, and Te7,. Then, for any ueT and any t =1, we have

Y mA=|Y mA) ke~ p)

reA M A—gll ¢ AeAd
+ Y S m@hti-pl+ Y y m(A). (7.10)
sewT AcA(s) sewT AeA(s), | A—pll St

We next prove the crucial fact that the sums involving w; can be estimated

in terms of Y m(7), where u, varies over T\eJ, with k, strictly
deA A— il Sty
greater than k, and t, =ct for a suitable constant ¢= 1. This allows downward

induction on k and will lead to the required estimates for (7.1).

Proposition 7.2. For TeJ,(0=<k<l) and sewy, let Ty=TnF ={v:veT.s-v=v}.
Then we have the following. (i) T, +T and there is k; with k<k, <l such that
T,e7,,. (ii) We can find a constant c=c(k)=1 with the following property: if ueT
is arbitrary and p, €T, is the orthogonal projection of y on T,, then, for any
UEF (s), one has

A=l Sclli—pl;  u—plScli—pl. (7.11)
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Note first of all that k<l. For, if k=1, then T=(0) and w}; =@. Next, #’p T,
so that T, +T. To prove that T\eZ, for some k, >k we must produce an
aed** such that « vanishes on T but not on T, ie., such that the reflexion s,
fixes all elements of T, but does not fix some elements of 7. Now s fixes each
element of T,. So, by a well-known theorem on finite reflexion groups (cf.
Varadarajan [41, Lemma4.15.15]) we can write s=s,,s,, ...s, , where o;,....a,
are in 4™ * and each of the s, fixes all elements of T,. If each of the s, fixes all
the elements of T, then s would fix all of T, which is contradictory to the
assumption that sew’.. So, for some i, s, does not fix all the elements of 7. We
are done. The proof of the second assertion is by noting that the linear map Z(s)
x T— T given by (&, v)— &+ v, is injective on the image of the linear map #(s)
x T— #(s) x T which sends (4, ¢} to (A—p;, 1, — ). Indeed, if A—pu, +u, —u=0,
then A=ueT;; so p=p, and thus A —u, =u, —p=0. But this implies at once the
existence of a constant ¢, =c,(T,s) such that

O<c, <1, [2—plZ e, (1A= pm |+ —pl) AeF (). peT),

and the assertion follows by the finiteness of , and w’.

We can now prove the main result of this section. We remark that the
applications of Theorem 7.3 do not require the explicit formula (7.13) below for
n(k); we give this form only for having clean proofs.

Theorem 7.3. Let | be as in (7.6). Then there is a constant ¢ >0 with the following
property. For any integer k with 0Sk<I, any Te7,, and arbitrary peT, t =1, we
have

m(A) < ct"® f(u), (7.12)

AeA I A—pull St
where fe C*(F,)" is defined in (6.11) and
n(k)=2(n+ 1) (I + 1 —k). (7.13)

We shall prove Theorem 7.3 by downward induction on k. We start with k

=1. 7, consists only of (0). So =0, and (7.12) becomes ) m(HSLc2r D,
ded, Al st

which is true, by Proposition 6.4. So consider 0=k <l. We assume (7.12) for

k, > k. The first step is to estimate the left side of (7.12) by (7.10). Let £, %, and
25 be the three terms appearing on the right side of (7.10). Then

MA)ST, +2,+2,. (7.14)

Aed, 1A—pll St

where peT,TeZ,, and t=1. We shall now obtain majorants for each of X, i
=1,2,3. ¥, is estimated by (6.13) of Proposition 6.8. We have

=1y m@Ayh(t: 2—mlSchye*" Bu) (7.15)

AeA

for all t=1, ueTe7,. £, and X are estimated with the help of Proposition 7.2
and the induction hypothesis. First we take up 2. Let notation be as in Pro-
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position 7.2. If sewy, AeA(s) and |A—u| =t, then, as AeZ(s), we have for ¢
=c(k)=1 as in (7.11),

[A—p | scli—p|=sct
So, we obtain

=) Y m() < Y m(A).

sewT AcAls), | A—ull St reA NA—pill Sct

Since u,€T,eJ,, where k, >k, the induction hypothesis applies, with a constant
¢, (k). Further by {(6.19) and (7.11) we have

Bla) S+ ll—p Iy B (L +coy fu), (7.16)
while n(k,)+n+1=n(k). So we find a constant c,(k)>0 such that
T2 (k) ()™ Blu)y S e,k e Blu), (7.17)

for all ueT, tz1. It remains to consider X,. We have

=% % mlhei )

20

=2 X ) m(A)h(t: 2 — ).

sewT j=0AcA(s), jSlA—pll <j+1

We use (6.10) to estimate |A(t: A— p)|. Select constants b,=b, (>0 (p=0,1,...)
such that, for 1A, W'eZ;, t=1, we have |A(t: A=) b, P(L+ A= )P
Then

5,<hr Y Y Y m(A)(+1)"".

sewT j=0 AeA(s), | A—pull £j+ 1

But, by Proposition 7.2, for a given j =0, using notation from the discussion of
2,

m(2) < D m(A)

sewT AeAs), lA— ull Sj+ 1 AeA, NA—putl Sc(j+ 1)

Sk + l)n(kl)ﬁ(ﬂl),

by the induction hypothesis, c,(k) >0 being independent of j. Hence, using (7.16),

2,Eb, P ey (1 +coy ! Blu) io (j+ 1)~ 2+ nten),

J

Take now p=n(k+1)+2 (cf. (7.13)), then p+n+1=n(k). So we get a constant
¢,(k) >0 such that

Z,Scyk) ™ B (ueT ezl (7.18)
Combining (7.14), (7.15), (7.17) and (7.18) we get (7.12).
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8. Estimates for the Complementary and Principal Spectra

8.1. We are now in a position to estimate both the complementary and principal
spectra. It turns out, however, that the principal spectrum A ,= AN%; cannot be
treated without first proving that the complementary spectrum A,=A\A4, is of
lower order of magnitude. So we begin this section with the study of A.. In

Theorem 8.3 we prove the estimate Y mA)=0(""""), t—+ oo, which is
AsAc Al £t
the best possible unless we impose further conditions on G and I' (see Exam-

ple 8.4). Here, with d(a) as in (3.41),

d= min d(x). (8.1)

aed*t

We have d>1, and according to (3.43) d=1 if and only if there is xed™ * such

that g*=s[(2,R); this is the case, for instance, if G=SL(n,R)(n=2). On the

other hand d =2, if G has a single conjugacy class of CSG’s (c¢f. Remark 4.5(ii)).
From Proposition 3.4(iii) and the formulae (7.3) and (7.5) we obtain:

Lemma 8.1. Suppose AeA,, then
() gl S lpll; (1) Jaed™ " such that {a,2;>=0.
Let 7 * denote the set of all linear subspaces of %, of the form T(®) (see
(6.15)) for nonempty @=A**. For any T=T(P)e7 * we now define (cf. (6.14))
A(T)y={i:leA,, 1,eT}; (8.2)
n(T)=n(P)=d(®) + codim (T). (8.3)
Proposition 8.2. There is a constant ¢>0 such that for all T=T(®)eT * and all

=1
mA)<ct" @, (8.4)

reA(T), WAl st

We begin the proof by fixing TeZ *. Let us choose a covering of the ball
{viveT ||v| £t} by closed balls of unit radius with centers in the original ball of
radius t. By elementary geometry we can arrange matters so that the number of
balls of unit radius needed is <c,t¥"™"), ¢, being a constant independent of t.
So

vveT st | {viveT|v—v =1}
1<jEMQ@)

2j=sM
with
veT v SULSSM@);  M@OSco ™M= 1), (8.5)
Then

m(2) = > m(A)

redc(T) Al =t redAg, AreT, llArll £t

< Y Y m(4).

LSjEMQ) dede AreT, lAr—v,ll =1
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But, for leA, |[Az[[=llp]l (Lemma8.1), so that [[A,—v;| <1 implies [|[A—v;[|=1
+ lpll. Hence

ms Y Y m(A). (8.6)

AedA AT Al st 1SjsM(t) Aed lla—-v i1+ lipll

Use now Theorem 7.3 and (6.17) to estimate the right side of (8.6). If T=T(®)
where @< A** has k=1 elements, there is a constant ¢, >0 such that, for
veT,uzx1,

mASe, e (L i,
ie A, lA—vliZu

So

m(A) S cy(L+ vy 4.
AeA A— v, S 1+ 1 pll

Summing over j=1,... M(t), and using the estimate (8.5) for M(¢), we get from
(8.6) the estimate

m(;t)<c0 cz tn—r—d((b)+ dimT
— A
AeA(T), Al ¢

which is (8.4).

Theorem 8.3. There is a constant ¢>0 such that, for all t =1,

m(i)sct=a-1, (8.7)

Aedq, A0 St

In fact, by Lemma 8.1, A, c u{A(T): TeJ *}. Hence

Y mA) ) Y m(A).

AsAg Al St TeF * Ae AT, WAl st
For T=T(®)eJ *,n(T)=d(P)+codim(T)=d + 1. So, by (8.4), for TeT *

m(2)=0(t"~ 1~ 9).

AeAAT), HAll ¢

Example 8.4. Let X ;=I'\G /K (1 £j<q) be compact quotients with correspond-

ing spectra A;=#; and multiplicities m;(4;) for 1;eA;. Then the product X

= I] x ; satisfies condition (2.9) again, while G, resp. K, I', # is equal to the
15j=

proaifc: of the G, resp. K, I, #;. Moreover the spectrum A of X is equal to the

product of the A;, with multiplicities m(1)=IIm(4;)(A€A). It is then clear that

A,=11(A}),, which implies

A= {J Ayx XA, }(A) X Ap X x A (8.8)

1£j=<q

According to Proposition 3.4(i) (Aj)cdzﬂ, and in Theorem 8.8 we shall prove

Y mA)~c;t¥, t—>+oo, where n;=dimX; This implies that there
%,EA,,Hlljilgt . .
is a constant ¢ >0 such that, with ny= min n;,
12j=q
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m()zce o= 1). (8.9)

Aede, 1Al £t

So A, is infinite if g¢>1. In particular, let rank X ;=1 (1 <j<q); then according
to Theorem 8.3, (4)), is finite (sic), and it is easily verified that, given TeJ *,

mA~ct* "Dt o0,
AeA (Th ANl 5t

So, in this case the estimates of Proposition 8.2 are sharp.
8.2. We now deal with the principal spectrum A,=An%;. We consider subsets

of #,. For any Qc %, we denote by 0Q its boundary and by Q' its comple-
ment

0Q = Closure(Q)\ Interior(Q); Q' =% \Q (8.10)
If 6 denotes the distance function in %,, we define, for any x>0,

0Q, ={viveZ, é(v,0Q) <k} (8.11)
Let dyv be the measure on %; coming from the Killing form.

Theorem 8.5. Given x>0, we can find a constant ¢=c(x)>0 such that for all
bounded Lebesgue measurable subsets Q < %, we have

| Y mA)—a(G)volo(X)lw|~* | f(dovISc [ f(v)dyv,
Q 00,

red, ApeQ

where voly(X) is as in (3.31), while (cf. (3.40)(3.42))

—r n2a)  —Ln+r _
6(G)=2""" .2 N T ). (8.12)

The starting point for the proof is the relation (i) in Proposition 6.8:

S m(Ah(A— ) =vol(X)w|~* | A(v—u)B(v)dv. (8.13)

ieA Fi

We integrate both sides of (8.13) over Q, and in view of Proposition 6.6 we are
allowed to interchange integration and summation; hence

Y m(4) jm wdp=vol(X)|lw/=* [ | A(v—p) B(v)dvdp. (8.14)

AeA QFy

It is now a question of relating Z m(A) to the left side of (8.14). To this end
Aed, AreQ
we rewrite the left of (8.14); we have

T (Bd—pdu= 5 ) | A=y

leA AeA, Aref

- Ym0 [R-pde+ T )R-k

leA,l,eQ ieA, Aref)’
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Since ur—h(¢—p) is the Fourier transform of the function Hre <) h(—H)
and since du is the measure dual to dH, we have | h(E - wdu=h0) (EeF). So
F

O m(a)= X m) [ A~ A S5,(@)

leA, ApeQ AeA

= T m) [ RG-pidus T m() G- wldn (8.15)

red, Aref? [0 red, Arefd’

On the other hand,
[ § Av=wpvydvdu

QFr

= [ A( v)d,udv+jjﬁ(v—,u)[3 (vydudv
on
={ { Av—p B dudv—{ § A(v—w) B(v)dudv
o F; oo
+ § J A= Bvydpdy
@0
=h(0) § By dv—{ | h(v—p) B(v)dpdv
2 oo
+ fﬁ(v——u)ﬂ(v)dudv.
90

So this implies that

I{ { A(v—p) B(v)dvdp—h(0) fB(V)dV|<Jz(Q)+Ja(Q)

LFr

=( [ 1hv—p)| v dpdv+ § | 1A(v—pwl B(vydpdv. (8.16)
(o X0 M 20

Now dv=(2n)~"d, v, while h(0)%0. So, from (8.14)-(8.16) we get

| Y mA)—2r) " vol(X)|w|~' | B(v)d, ]
Q

red, Are

Sh(0)~'(J,(Q)+1,(Q) +J5(Q).

To complete the proof of Theorem 8.5 it is therefore sufficient to establish the
following: (i) vol(X)=(2n) ¢(G)vol,(X), which is immediate from Corollary
3.13; and (ii)

3
Y J@)=c [ B dyv,
i=1 o,

where ¢>0 is a constant independent of Q. In view of Proposition 6.10 it is
sufficient to obtain (i) with § replaced by f; and we shall establish this in the
following technical lemma.

Lemma 8.6. Using the above notation,

J(Q)<cx) | Bvydyv  (15iL3).

[ilom
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We begin with some auxiliary estimates. For any integer p>r+1 we have,
using (6.6) constants ¢ =c(p) >0 such that |h(& — )| Sc(1+ 1 E—ul) P~ " (EeZ | &Rl

<|pl, ue#,). As a consequence we have, for any Q and ¢e# with |£;] <|pl
and ¢,eQ,

1A —pldus | (L& —pl)~?"du
Q Wer—~pll 20, 090)
<c [ (vl rrdvsSd(1+8(¢,,0Q)E.
lfvll 2 (&7, 002)

If we now define the functions @(p: Q:+)=¢(p:*) by

e(p:)=(1+0(¢;,0Q) P ((eF), (8.17)

we find constants ¢, =c¢,(p) >0 such that for any Q,

g!ﬁ(é—u)l duscio(p:d)  (CeF lIEel 2l ), (8.18a)

!3; hE—mldusc op:d)  (EeF, &l £lpl, ¢ eQ). (8.18D)

Further we claim that for a suitable constant ¢, =c,(x:p)>0, we have, for all
veZ, and £,

ep:v)Ec, | I+ v—ul) "du (8.19)

002,

Indeed, given any ve%;, we select v'edQ such that o(v, 0Q)=|v—+v'||. Then (8.19)
follows on considering the ball in %, around v' with radius x.

We are now in a position to estimate the J(€). In the case of J, we choose p
=n+1 and we have, for all Q, using (8.18b) and (8.19),

J2(9)=§“£ h(v—wldu prydv=c, !fzfp(n+11V)ﬁ(V)dv
sciep f [ (A+lv—pl)="""dupv)dv

F1 o,

=cey | f (T ly=pl) " By dvdye

002, F1

We argue similarly to estimate J5(£2), using (8.18a) and (8.19). We find thus a
constant ¢; =c,(k, p)>0 such that, for all Q,

J( @)=y | Bwdu  (i=2,3). (8.20)

82,

It remains to estimate J,(£2). Using (8.18a) and (8.18b) we find (cf. (8.15)) that

Ji(@)=sc; Y m(A)o(p: ).

AeA

We shall now estimate the sum on the right by dividing it into subsums over
ieA with 2,€Q(u)), where the Q(u;) (j=1,2,...) are closed cubes in #; with sides
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of length 2 and centered at points p;e#; whose coordinates are integral.
According to Theorem 7.3 we have, for some constant ¢ >0,

Y mh=chu) (=12..)

Aed, AreQuy)

So there exists a constant ¢, =¢,(p)>0 such that for Q
Ji(Q =y Y Blu)suplolp:&):Ee0(n)} (8.21)
i=1

If we now use (6.20) and the inequality @(p:&)<d(p) @(p: &) (£, &' eQ(u;)), where
d(p)>0 is independent of j, we find c¢; =c4(p) >0 such that, for j=1,2,...

Bluysup{op:&):EeQu)t <cs | B o(p:v)dy. (8.22)

Quy)

So using (8.21), (8.22) and (8.19) with p=n+r+2, we get ¢ =c4(x) >0 such that,
for all Q,

Jl(Q)éceoi BOY | (L+ly—ul)Pdudy

K

<co | B § A+{v—ul) ™" dvdy, (8.23)
Fr

20,
where we used (6.19). Hence, for a constant ¢, =c,(x) >0, we have, for all Q,

J(Q)=c, j B(ﬂ) du.

02y

This completes the proof of Lemma 8.6.
In order to see more clearly the fact that Theorem8.5 gives that A, grows
asymptotically like §, it might be illuminating to construct examples of families

of sets Q which go to infinity in such a way that | o(v)d,v is of smaller order of
082,
magnitude than the main term j",B(v) dyv. We recall (cf Lemma3.11) the
Q

definition of wg:

ag(v) =[] (o, "®  (veF). (8.24)

acd*

We are now interested in families (€2(2)),,, consisting of Lebesgue measurable
sets contained in %, which satisfy the following conditions:

{a) There are constants ¢, ¢, >0 such that, for all t>1,
ueQ(t)=[ull Sc t;voly{Qt) Zc, t.
(b) There is a constant x>0 such that

Vol (8Q(H)) =0~ 1), t — + oo, (8.25)



Spectra of Compact Locally Symmetric Manifolds of Negative Curvature 87

It is obvious that for such a family we can find constants d,,d, >0 such that

d, "< | logW)ldyvsdy et (t21).
o

Lemma 8.7. Let Q be any bounded open subset of #, such that 9 has finite (r —1)-

dimensional Hausdorff measure, i.e. limsup k= ' vol,(8Q2,) < cc. Let ue#, be fixed
and let K0

Q) =p+tQ(t=1). (8.26)

Then the family (€(t)), , satisfies conditions (a) and (b) of (8.25). In particular this
will be true if 0Q is smooth.

Theorem 8.8. Let (€(t)),,, be a family of subsets of #, satisfying the conditions
(a)(b) of (8.25). Then we have, in the notation of Theorem 8.5,

m(N)=a(G)voly(X)lw|~"' | p(dyv+0("™ "), t—+c0
AedpnR2(t) 2@
=22 2" " g(G) " voly(X)lw| =1 | |ws(WIdgv+0(t"" 1), t—+ 0.
o (8.27)

It is a consequence of Theorem 8.3 and condition (8.25a) that

Y o o mh= Y mA+0@ Y, - +oo. (8.28)

Aed, AreQ(t) AeApn2(1)

From Lemma 3.11 and (8.25a) again, we obtain easily

o (G)volo(X) [w| ' [ B(v)dgv
Q@)
=2¥ 7" a(G)” ' volg(X) [w|~ ! | lws(Mldov+0(" "), t— +o0.
Qwm (8.29)

Further formula (3.44) asserts that S(u)<c(1+{lul)""" (ke F); so by condition
(8.25a) we find a constant ¢>0 such that (v)<ct" ™", for all t=1, vedQ(t),. By
condition (8.25b) we get

[ Bdov=0("""), t—+4o0. (8.30)
802(t),e
The assertion follows now from Theorem 8.5 and (8.28)+8.30).
We shall now cast Theorem 8.8 in an alternative form. To this end we

proceed as follows. Recall that g=f+s; we denote by ¢* the dual of s. For any
set © in &, we define the subset Q.. in s* by

Q.={(—1)*Ad(k)-v: veQ, keK}. (8.31)

Employing as usual, standard Haar measures, we have the formula (cf. Helgason
[24, p.381]) valid for any feC_(s)

§1S)doS=lw|[~" [ TT a(HY"™| | f(Ad(k)H)do(kM)doH.

a asd* K/M
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Going over to s via the Killing form, the set Q.. goes to the set Q =
{{(—=D*Ad(k)H,: veQ,keK}, and so,

voly(Q,.) =voly(2,) = volo(K/M) |w|~* | [mgv)| dqv, (8.32)

Q

since doH corresponds with d,v. Using (8.32), we write the last term in (8.27) as
(2% 1"t 6(G)) " P voly(K/M)~ P voly(X) voly(2(0),) + 0" 1Y),  t— + 0.
So, using Proposition 3.12, Theorem 8.8 takes the following form.

Theorem 8.9. Let the family (Q(1)), , satisfy the conditions (a)~(b) cf. (8.25) and
define Q(t),. by (8.31). Then

m(A)=(2n) " voly(X) voly(Q(1)) + 0" 1Y), t— + .
iedpn QD)
Remark 8.10. Let us consider the Laplacian 4 =wg on X (cf. (2.6)); its eigenvalue
corresponding to an element AeA, is —(|A|?+]p|?) (cf. (3.17)). So applying the
Theorems 8.3 and 8.9 we obtain at once the Minakshisundaram-Pleijel result for

the number N(t) of eigenvalues of —A4 (counted with multiplicities) which are
<t, as

N@®=Qy7) T (g+ 1)7 volg(X) "2+ 0(¢"= V%), (> 4o, (8.33)

Indeed, Q(t),. is now the ball in s* of radius ¢ around the origin whose volume is

—1
v r <g+ 1) t", from which the above expression follows.

Remark 8.11. We observe that the deduction of the Minakshisundaram-Pleijel
formula from Theorem 8.8 used the expression for vol,(K/M) obtained in
Proposition 3.12. It is clear that conversely one can start with (8.33) and find this
formula for voly(K/M).

Remark 8.12. In fact, let P be a positive elliptic differential operator of order m
on X which comes from a G-invariant operator on G/K, ie. Pe&y(G//K) (cf.
(2.2)). The principal symbol of P can be regarded as an Ad(K)-invariant
homogeneous polynomial of degree m on s*, say p; and P being elliptic, we have
p(n=*0, if nes*\{0}. Using the Killing form, we consider p as a polynomial on
s. On the other hand, the Harish-Chandra homomorphism y (cf. Proposition 3.2)
maps P onto an element p,eU(a)® such that p| =p,,, with p . as the
homogeneous part of degree m of p,. The eigenvalues of P are given by 4 P(4)
=p,(4)20 (A€ ). Observing how A, asymptotically fills up F;, we get i" p()>0
if ne#x\{0}, which implies i" p(n) >0 if yes*\ {0}, as s* =Ad(K) - %;. So, if 4
=tp (Aed,, t>0, ues)), then the condition that p,(A) <™ is equivalent to
p(W)=<1+0(t'); and using Theorem 8.3 it follows from Theorem 8.9 that the
number M (P:t) of eigenvalues of P (counted with their multiplicities) which are
<t™ is given by

2m) " volg(X) voly(Qu) " +O0(E" 1), t— + o0,
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where Q={u: pe;, p(u)<1}. But voly(X) voly(Q.)=vol,(B*X) where B*X
={(x,n): xeX, nes* i"p(n)<1}. If we denote the principal symbol of P
regarded as a function on the cotangent bundle T*X also by p, then B*X
={(x,n): (x,meT*X, i"p(x,n) <1}, and voly(X) voly(Q,.) coincides with the
volume of B*X with respect to the canonical density in T*X. So we have
established M(P:¢)=(2n) "vol(B*X)t"+0(t" 1), t —» + oo which is a result of
Hormander [26].

Remark 8.13. Even for positive non-elliptic differential operators P of order m on
X with corresponding polynomial p on s* it is reasonable to expect that the

number of eigenvalues <™ is asymptotically given by a constant x | B(v)dv,
Q@

where Q(f)={u: pe &, p(p)<t"}. If p,, is the homogeneous part of deg;ee m of

p, then the Q(z) exhibit an unproportional stretching in the direction of the cone

{u: ues,, p,(w=0}. How drastically the asymptotic estimates for the spectrum

can change has been shown for a certain class of hypoelliptic operators on

arbitrary compact manifolds by Menikoff and Sjostrand [31].

9. Improved Error Estimates when rk(S) =1

9.1. In this section we shall suppose that r=rk(S)=1. From (5.43) and (5.40) we
get, for any feC*(a),

Yom =vol(X)% [ f(v) B(v)dv

(4 F(2)

Aed F1
Z o4, ()~ 3(f(H)+f(=H). 9.1
*e]

Here y=7y,exp H, is any element in [c]; in standard position, with y,€K, H, a

regular element in a; we have (cf. 4.8) and (5.42¢))

@SIH,;  4,(0) '=ege @ ] (1-¢_,0) " ©.2)

aeP\Pr
We will use the above formulae to obtain

Theorem 9.1. If tk(G/K)=1, we have

mA) =2 )" "F( +1)V010(X)t"+0(t" Yogt), t—+oo. (9.3)

AeAp Al St

We shall obtain this estimate by proving Proposition 9.2 below; it is the
equivalent of formula (60) in Bérard [2] when n>2, and stronger than (60) loc.
cit when n=2. Theorem 9.1 is then proved by imitating Bérard’s arguments as in
loc.cit pp. 264-265. We remark that when n=2 and thus g=sl (2,IR), the
estimate of Bérard in (60) loc.cit does not appear to give (61) loc.cit, and
consequently, the arguments of pp.264-265 loc.cit are not applicable; it is the
stronger estimate provided by Proposition 9.2 that leads to (61) loc.cit and
thence to Theorem 9.1. Moreover, if n=2, there is a proof of (9.3) using number
theoretic methods by Randol [38].
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We recall the test functions h(t:+)e CZ(a)® (t>0) which are constructed in
(6.4).

Proposition 9.2. We can find constants c,, c,,c;>0, depending on h, such that, for
all ¢ with 0<e=1 and pe sy,

Y, m(A)hie: A~ ) =h(O)vol(X)e 5 B(1) + E(e: p);

Aedp

94
E(e: <y e+ Iul) 3 +cp e, ©04)

In view of (9.1) we have, for any ue #; and ¢>0,

> m(l)ﬁ(s:l—u):%vol(X)i h(e: v—p) B(v)dv

Aedp
+ Y lad () e " eh(eH,)
c*¥lelr
+ Y m(Hhei-p= Y Oe:p.
ed. 1753

We shall now estimate the @,=0,(¢: 1) individually in terms of ¢ and u. We
treat @, first. Using the relation

supp(h(e:*))={H: Hea, |ulse™ '} (e>0), (9.6)

the estimate (3.23) and Lemma 8.1, we obtain a constant b, >0 such that |f(e: 4
—wI<b, " (6>0, Aed,, ped,). So, as A, is finite (see, for instance, Theo-
rem 8.3) there is a constant b, >0 such that

10,4(e: WIS Y mAle: A= )| Sby €' (60, peF)). 9.7)

ied,

To estimate @, we note that I(c)=|{H,| so that, by (9.6), the summation in @, is
over those c#[e]_ for which l{c)<e~ . Using (9.2), we get, for all ¢>0 and
HEF),

10, wiseby 3 [H, & TT 11-¢_ (7" 9.8)
lc(:‘):[segr"l acP\Pr

where the constant ;>0 is independent of ¢ and p. An elementary and well-
known measure theoretic argument gives the following estimate: there are
constants b,, b, >0 such that, for x>0,

Y lc)Sh, et (9.9)

ce¥I) lc)sx

Further, as the numbers I{c) (c%[e];) are bounded away from 0 (Theorem 5.1)
we find bg >0 such that, for all y,

[1 n=¢_.ml= 11 1&ep—e*®Nz ] [1-e @2 by (9.10)

acP\Py aecP\Py aeP\Py
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So combining (9.8)+9.10), we find, for any ¢>0 and pe %,
10, (e: )| Seby(bye?)e'rle bt <b, ebsh, ©.11)

The estimates (9.7) and (9.11) would then prove the proposition, provided we
establish the following result.

Proposition 9.3. There is a constant ¢>0 such that, for ye #, and 0<¢ <1,
§ Aerv—p) BO)dv=h(0)e B(w)+e F(w);  IF(l Sc(l+ ul)> (9.12)
Fi1
Let ne#, be a unit vector and let He(—1)* a be the (unique) dual basis

element. By a Taylor series expansion of order 2 for f(u+v) around p and by
Fourier inversion we get

fﬁa V—u v)dv—j" h(e= ' v) (u+v)dv
h(e:0) () +h(e: 0; —a(H)) Blu; 6(n))

+ § fA=0) v, nd? Bu+tv;o(n?)h(e " v)dvdr.

3

Ol——m—

-

By the symmetry of h, h{¢:0; —9(H))=0, and we find
l h(e:v— ) B(v)dv=5h(0) B(w)

+ (1—=1)e> v Blu+tev; d(n?) h(v)edvdr.

S
ey
Oty

In view of the Paley-Wiener estimates for / and the estimate 1 + |u+tev| <(1+
ful) X+ |lv])), we are done as soon as we can estimate the second derivative of .
Being in the rank-one situation this comes down to the (legitimate) differen-
tiation of the asymptotic expansion for f,, occurring supra (3.44). So (9.12)
follows (even for n=2, when g=s1(2, R)).
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