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I. Introduction 

Let S be a Riemannian symmetric space of noncompact  type, and let G be the 
group of motions of S. Then the algebra L-~ of G-invariant differential 
operators on  S is commutative,  and its spectrum A(S) can be canonically 
identified with ~/w where ~ is a complex vector space with dimension equal to 
the rank of S, and to is a finite subgroup of G L ( ~ )  generated by reflexions. Let 
P be a discrete subgroup of G that acts freely on S and let X = E \ S .  Then the 
members of  5~ may be regarded as differential operators on X. Let us now 
assume that X is compact  and define the spectrum A of X as the set of those 
elements of  A(S) for which one can find a nonzero eigenfunction defined on X. 
In this paper  we study the relationship of A to the geometry of X and determine 
the asymptotic growth of A as a subset of A(S). In subsequent papers we plan to 
study the asymptotic behaviour of the eigenfunctions and to examine the 
problem of obtaining improvements on the error estimates. 

It is well-known that G, which is transitive on S, is a connected real 
semisimple Lie group with trivial center, and that the stabilizers in G of the 
points of S are the maximal compact  subgroups of G. So we can take S = G/K, X 
=F\G/K, where K is a fixed maximal compact subgroup of G, and F is a 
discrete subgroup of G containing no elliptic elements (=  elements conjugate to 
an element of K) other than e, such that F\G is compact.  Let G = K A N  be an 
Iwasawa decomposit ion of G; let o be the Lie algebra of A; and let to be the 
Weyl group of (G, A). If we take ,~- to be the dual of  the complexification a c of a, 
then A ( S ) ~ / w  canonically. In what follows we shall commit  an abuse of 
notation and  identify A(S) with ,~, but with the proviso that points of ~ in the 
same w-orbit represent the same element of A(S). 
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For the LZ-eigenvalue problem on S determined by O,~Diff(S ) the spectrum is 
the N-linear subspace Y / = i a * ;  the spectral multiplicity is always 1; and the 
spectral measure is of the form fldv, where dv is a Lebesgue measure on ~ ,  and 
fl is a nonnegative w-invariant smooth function on ~ ,  which, together with each 
of its derivatives, is of at most polynomial growth on ~ .  However, for the 
spectrum A of X we always have A r ~ ;  this leads to a natural splitting of A as 
a union of the principal spectrum Ap= A c ~  and the complementary spectrum A c 
=A\,~. 

The main result of this paper may be divided naturally into two parts. The 
first part is concerned with the connection between A and the geometry of X, 
and is treated in Sections 2-5. To every F-conjugacy class c different from the 
class [e]r we associate in a natural manner a tempered w-invariant distribution 
T c on the vector group A; its construction is an application of Harish-Chandra's 
theory of harmonic analysis on semisimple Lie groups. We then prove (Theorem 
5.1) that the distributions T~ and the multiplicities m(2) (2eA) are related by the 
following identity of distributions: 

Z m(2)r/2__vol(X)lm I 1/~+ Z veTo. (1.1) 
2eA c t [ e ] r  

Here, q ; = e  z~176 l o g ( A ~ a )  being the inverse of exp(a--*A); fl is the Fourier 
transform of fl, and v c is the volume vol(F~,LG~,), where 7ec and G~. (resp. F~) is the 
centralizer of 7 in G (resp. F). It is clear that (1.1) is the analogue, for X, of the 
classical Poisson Summation formula; it is a consequence of the Selberg Trace 
formula and the Harish-Chandra theory of integrals over G-conjugacy classes. 

To the F-conjugacy class c + [e]r corresponds a free homotopy class of loops 
in X. The closed geodesics in this class all have the same length I(c) and form a 
compact manifold F(c) in the tangent bundle T(X)_~ T*(X); the distribution T, 
is intimately related to F(c). For instance, the support of T~ is contained in the 
union, of the images under w, of an affine subspace *L(c) of A, at a distance l(c) 
from 1 ; if the elements of c are regular in G, T c is even a smooth function on 
U s. *L(c) (Theorem 5.2). When c is such that the G-conjugacy class in which it 

sEtt~ 
is contained passes through an element of MA with component h n in A which is 
regular in A, F(c) reduces to a torus, and T~ comes out to be equal to the sum of 
Dirac measures 

Ira[ -1 ldet(I-P~)"l  ~ • 6shR, (1.2) 
sEtt~ 

where ~ is the linear Poincar6 map along the element ~ of c (Proposition 5.16). 
It is clear from these remarks that the distributions T c are closely related to 

the singularities of the distribution ~ studied by Duistermaat-Guillemin [6]. The 
precise contribution of the T~ to the asymptotic expansions in Theorem 4.5 of 
Duistermaat-Guillemin (for the Laplace-Beltrami operator on X) can be de- 
termined easily once F(c) and the singularities of T~ are analysed in detail. In 
Section 5 we do this completely for the classes c of the type mentioned above; 
for other classes we indicate some partial results. We hope to treat the general 
case in a subsequent article. 
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In the special case when rk (S )= l ,  all classes c+[e]r are of the type 
mentioned earlier; then F(c) reduces to a single geodesic of length l(c), and the 
Poisson formula (1.1) then takes the form, with A-~ IR, 

m(2) e) = �89 vol( X) fl 
~,eA 

+1 ~ lo(c)ldet(i_p,,.)e _~ (1.3) [ (~,l,,l+ a_~cl), 
c*[elr 

here lo(C) is the primitive length corresponding to c (Theorem 5.17). If we take G 
= SL(2, IR) so that S is the upper-half plane, this specializes to a formula of Lax- 
Phillips [29] and Randol [37]. 

We now turn to a description of the second part  of our results. Our aim here 
is a determination of the asymptotic growth of A; and the results that we get are 
in Sections 7 and 8. The starting point is the remark that there is some 
neighborhood of 1 in A that does not meet the support of any of the distri- 
butions T c. Consequently the Poisson formula (1.1) becomes 

m(2)f(2)=vol(X) tm1-1 (fl, f ) ,  (1.4) 
; t e a  

for all feC{(V) ,  V being a sufficiently small m-invariant neighborhood of 1 in 
A. 

Roughly speaking, formula (1.4) says that the measure vol(X)Ira[ 1 tidy and 
the spectral measure which assigns to 2~A its multiplicity m(2), have "Fourier  
transforms" that coincide around the origin. General principles of Fourier 
analysis would then lead us to expect that these two measures should be 
asymptotically equal to each other at infinity on ~ .  However, it does not seem 
easy to deduce such a result from classical Tauberian theorems; not only are we 
dealing with a multidimensional case here, but the situation is further com- 
plicated by the presence of the complementary spectrum A c = A \ , ~ .  

A basic step in our treatment of this problem is to obtain an estimate for the 
number (counted with multiplicities) of points of A lying in a ball of radius t in 

with center at a variable point /~e~l. We do this by using in (1.4) test 
functions f whose Fourier transforms are > 0  on A and whose absolute values 
are > 1 on large balls in ~.. The resulting estimate is contained in Theorem 7.3 
and asserts that the number in question is majorized by const t ~'/~(/*) where/~ is 
a "smoothed out" version of fl defined by (6.1l). Now, as IlktlL ~ + oo,/~(#) is 
O(Ij/~]l" ~) ( n = d i m X ,  r = d i m  A); but i f / t  varies only on a subspace of ~ r  where 
m positive roots vanish, /}(#)=O(])t]l . . . .  ), basically because fl vanishes to the 
order m at such ~t. Since the imaginary parts of the points of A~ are of this type, 
it is not too difficult to argue that the number of points of A~ in a ball in 
around the origin of radius t is O(t"-a-~), where d is a certain integer > 1. 
Without extra conditions, this estimate is sharp and it makes precise the 
heuristic remark that A c is negligible in comparison with Ap, because known 
results on the Laplace-Beltrami operator already imply that the number  of 
points of A in a ball in .~- of radius t around the origin is ~ const t". 

One can now deal with the principal spectrum. Our main results are 
Theorems 8.5 and 8.8. Theorem 8.5 is a very general one which asserts that for 
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any bounded measurable subset Q in ~ the number of spectral points 2 with 
2 i e ~  can be approximated by a constant • ~ fl(v)dv, with an error that is 

majorized by the integral of fl over a neighborhood of the boundary of O, of 
arbitrary but fixed size. We regard this result as a definitive formulation of the 
spectral information which is contained in formula (1.4). However, in this result 
the error term cannot be made small relative to the main term ~ fl(v)dv, unless O 
is "big and fat". 

Theorem 8.8 describes one particular result of this type. It follows from this 
theorem that if f2 is any bounded open subset of ~ i  with smooth boundary, 

m(2)=const  ~ fl(v)dv+O(t" 1) (t--* +OO). (1,5) 
AEAp n (t~) t ~  

Here the constant, which depends only on X and not on ~, can be explicitly 
determined; and the main term in (1.5) is ~cons t  t". 

In the last section we take a closer look at the case when rk(S)= 1. In this 
case, the simplicity of the Poisson formula (1.3) makes it possible to work with it 
rather than the truncated version (1.4). As a result we are able to show that the 
error term in (1.5) is even O(t" l/logt), when t ~  + ~  (Theorem9.1) (cf. also 
Kolk [27, Proposition 5]). It must be remarked however that when rk(S)= 1, 
~oiff(S) is the algebra generated by the Laplace-Bertrami operator A, and the 
above result can be obtained also by putting together the results of B6rard [2], 
Hejhal [23] and Randol [38]. 

In order to carry out the proofs of the results described above it is necessary 
to make full use of the theory of harmonic analysis on semisimple Lie groups. 
Sections 2 4  describe briefly the aspects of this theory that are needed for our 
purposes, with some variations at suitable places. 

We wish to point out that the suggestion for considering higher dimensional 
spectra of algebras of differential operators on compact locally symmetric spaces 
of negative curvature, and for studying it in the group theoretic framework, 
seems to have appeared first in Selberg's article [40] (p. 68), and later, in more 
detail, in the Stockholm address of Gel'fand [11]. This address also contained 
the indication that the spectrum of X grew just like fl at infinity. The first 
systematic use of the Harish-Chandra theory in this problem goes back to 
Gangolli [7] who treated the asymptotics of the Laplace-Beltrami operator on 
X, but worked under the additional assumption that the group G was actually 
complex. Since then various authors have taken up the group theoretic view, but 
always only for the Laplace operator, cf. De George-Wallach [5], Gangolli [9], 
Gangolli-Warner [10], Wallach [43], [44]. The first multidimensional treatment 
is due to Kolk in his Utrecht dissertation [28]. Kolk's results, which were 
announced in the note [27], form the point of departure for the present work. 
For multidimensional spectra in another context see the recent work of Colin de 
Verdi6re [4]. 

We have made a real effort throughout this paper to calculate explicitly all 
the constants that appear in the various formulae. In addition to providing 
various internal checks, this has made possible a very detailed comparison of 
our theory with other known results. 
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2. Eigenfunctions and Spectra for Locally Homogeneous Spaces 

In this section and the next we introduce our basic framework. Almost all the 
results presented here are well-known and, in the context of semisimple Lie 
groups, due essentially to Harish-Chandra. However, as our point of view 
emphasizes distributions rather than representation theory, it will be convenient 
to describe these results in the context and form most suitable for us. 

2.1. Generalities. For any C '~ manifold M we topologize the spaces of test 
functions C~(M) and C~J(M) in the usual manner. The space ~ ' (M)  (resp.8'(M)) 
of distributions (resp. with compact supports) is the dual of C~(M) (resp. 
C~(M)). The diffeomorphisms of M act on these spaces by transport of 
structure. 

Let G be a Lie group with bi-invariant Haar measure dx. As usual we 
identify a locally integrable function f on G with the distribution fdx. Let l(x) 
(resp. r(x)) be the left (resp. right) translation by x~G and let v be the involution 
x~-~x-l(x~G). For f, g~C~(G), f , g  denotes their convolution. We extend the 
convolution by duality to apply to (suitably restricted) distributions on G; in 
particular, T ,  U is meaningful whenever either T or U belongs to g'(G). ~'(G) is 
an algebra under �9 with 6e, the Dirac measure at the identity e of G, as its unit. 
If H c G is a closed subgroup, we write ~ ( G )  for the subalgebra of distributions 
on G whose supports are compact and contained in H. 

We identify g'(G) with the algebra 2#(G) of all continuous endomorphisms of 
C~ that commute with all left translations, by the correspondence 
T~-~r (~r f=f*  7"). This isomorphism maps o~(G) onto the algebra of all left 
invariant differential operators on G. The latter algebra is identified as usual 
with the universal enveloping algebra U(g~) of .q~, the complexification of the Lie 
algebra g of G. 

For any closed subgroup H c G we have the embedding C ~ (G/H) ~ C ~ (G); 
and if H=K is compact, we also have the projection P~: C~'(G)-~C~~ 
given by (P~f)(x)=~f(xk)dk (xeG). Here dk is the Haar measure on K 

K 
normalized by ~ dk= 1. Let 2#(G/K) be the algebra of continuous endomor- 

K 
phisms of C~(G/K) that commute with the action of G; then 7J ~--, ~P o PK gives an 
embedding 2# (G/K)-+ f (G). Clearly 

2# (G/K) ~ ~'(G//K), (2.1) 

where g'(G//K) is the subring of all T~N'(G) which are K-bi-invariant. or 
contains 

C~(G//K), resp. ~:(G//K) (2.2) 

which correspond to the subring in 2#(G/K) of smoothing operators, resp. the 
subalgebra of differential operators. Denoting the latter by 2#oiff(G/K), there is a 
natural homomorphism 

U(gc) K ---~ 2#Diff(G/K) ~ : ( G / / K ) .  (2.3) 
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It is actually surjective and, if f denotes the Lie algebra of K, its kernel is 

U(gS  a (U(9c)l~)= U(g S ~( f  U(g~)). (2.4) 

If ~ is any Ad(K)-stable subspace of g complementary to [, and if 2 is the usual 
symmetrizer map that goes from the symmetric algebra S(g~) to U(gc), it is not 
difficult to verify that (2.3) is a linear bijection of U(gSn2(S(~))  onto 
~Diff(t~/K). 

We make with Oel'fand the following classical assumption: O has a closed 
Abelian subgroup A and an involutive automorphism 0 such that 

G = K A K ;  A ~  a~ (2.5) 

Under these circumstances T=T~ and so ,~'(G//K) is a com- 
mutative algebra. 

,~'(G//K) acts on ~ ' ( G / K ) ( - ~ ' ( G )  "(K)) by convolution from the right. Ob- 
serve that ~Diff(G/K) contains nonzero elliptic elements; in fact, if (.,.) is a 
positive definite Ad(K)-invariant scalar product on ~, then, for any orthonormal 
basis {Z1}l<i< . of ~, 

~o s =Z~ + . . .  +Z2~ U(g S (2.6) 

defines such an element via (2.3). o~ s induces the Laplace-Beltrami operator on 
G/K, assuming the Riemannian structure induced by (.,.). 

Proposition 2.1. (i) Let ue~'(G/K) and Z a homomorphism g~(G//K)~ ~E such that 
u ,  T=z(T)u(T~o~:(G//K)), then u is an analytic function. (ii) Suppose that A is 
connected. I f  ZK: r is any homomorphism, the subspace 
F(ZK)= C~ of all q~ such that ~o * T=xK(T)~0 for all Teg~(G//K) is at most 
onedimensional. It has dimension 1 if and only if ZK extends to a continuous 
homomorphism Z: g ' (G/ /K) - -~;  such an extension is necessarily unique, and the 
elements of F(Zx) remain eigenfunctions for g'(G//K) with Z as the corresponding 
eigenhomomorphism. 

Assertion (i) is clear using (2.6) and the classical Regularity Theorem. We 
note that the map ~o~q~(e) is injective on F(XK) (cf. Varadarajan [42, II, 
Proposition 8.2(ii)]). Suppose q~F(zK) and q~(e)=l, then zK(T)=(~o, 7")(e) so 
that g/~ is continuous. If now f~Cc~(G//K), Teg~(G//K), then ~0 , f ,  T=~0 �9 T , f ,  
which implies ~o,f~F(z~). Hence q~,f=~(f)~0 for some g ( f ) ~ .  Z is con- 
tinuous on C~(G//K), and so extends to a continuous homomorphism Z: 
g'(G//K)-~E which is an extension of g~. Since C~ is reflexive there is a 
unique @~C~(G//K) such that z (T)=(T,~) (T~g ' (G/ /K)) ,  while tp(e)=(dk, ~)  
=g(dk)=l.  It is not hard to prove that ~p=~0, using the onedimensionality of 
F(Z~). If ~' is another continuous homomorphism of g'(G//K) into ~E that 
extends Z~ and ~b' e C~176 (G//K) is such that z'(T) = ( T, ~9') (T~g' (G//K)), a similar 
argument gives ~ ' =  ~0, and thus g '=  g. 

Write S =G/K and define the formal spherical spectrum A(S) of S (or G) by 

A(S) = {Z: Z continuous homomorphism: r - ~ } .  (2.7) 
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F rom Proposi t ion 2.1(ii) we get a bijection Z~-~o~ between A(S) and the set of 
all ~p = ~pxe C a (G//K) satisfying 

cp(e)= 1; z(T)  = (T, cp), (p �9 T = z(T)  (p (Ted2'(G//K)). (2.8) 

2.2. Let F ~  G be a discrete subgroup.  We assume always that  F acts freely on 
G/K, so that  

X = F \ G / K = F \ S  (2.9) 

is a manifold. The  measures  dx on G, dk on K and the count ing measure  on F 
induce a measure  d,~ on X, and we write L2(X) for LZ(X,d~). Since 
~ ' ( X ) ~ ' ( G / K )  f(r), g '(G//K) acts on ~ ' (X) .  From now on we assume that X is 
compact, and we have the following wel l -known result. 

Proposition 2.2. (i) For any f e  CoY (G//K), R ( f ) :  u ~ u , ] ' (ueI ) (X) ) ,  is an integral 
operator in Ifl(X) whose kernel K I ~ C ~ ( X  x X) is given by 

Ky(X, ff')-- ~ f ( x  -1 7x') (x,x' 6G, Yc=F x K , ~ ' = F  x' K). (2.10) 
y~F 

(ii) All the R ( f )  are operators of trace class, and 

t r ( R ( / ) )  = ~ Kj(,2, ~) dye ( f~  C~ (G//K)). (2.11) 
X 

(iii) I f  f ( x ) = f ( x )  c~ then R(.~)=R(,f)  ~ (* denotes adjoint). The identity operator 
lies in the strong closure of R(C~(G//K)). 

As before any eigendistr ibution on X for #'(G//K) is an analytic function 
and the e i g e n h o m o m o r p h i s m  is continuous.  We put  

A = A ( X ) = { Z :  ZeA(S), 3 nonzero  eigenfunction on X for ~(}. (2.12) 

For any xsA,  let C~(X:z )  be the corresponding space of eigenfunctions. 

Proposition 2.3. (i) A is nonempty, viz., !f e (T)=(T ,  1) (T~g'(G//K)), then eeA and 
C~(X:e )=~E �9 1. (ii) For each Z6A, the space C~'(X:z) of u~C~(X)  satisfying 
u ,  T : z (T )u (T~g ' (G / /K) )  is finite dimensional. The subspaces C ~ ( X : z )  are mu- 
tually orthogonal in LZ(X) and Ifl(X) is the orthogonal direct sum of the C~(X:  g). 
In particular, A is at most denumerable. 

Assert ion (i) is obvious.  Ad(ii), we decompose  L2(X) for the act ion of 
C~(G//K) by means  of Propos i t ion2 .2  (iii). The  e i g e n h o m o m o r p h i s m s  
~:C~(G//K)--~(E are extendible to e igenhomomorph i sms  X : g ' ( G / / K ) - ~  by 
continuity, and they are cont inuous themselves. 

Proposition 2.4. For any z e A  we have: (i) Z(7")=z(T)~~ ~=(~)co"J); 
(ii) ~0 = ~ox(cf. (2.8)) is positive definite, i.e., ( T ,  T, q~) >0 (T~ ' (G)) .  In particular, 

O =- ~o; Iq)(x)l _-__ 1 (xeG). (2.13) 

For  proving (ii) we go over to L2(F\G). The act ion of G on L2(F\G) extends 
to an act ion of C~(G) (f~-~R(f)). Suppose  now that  z6A and choose  
ueC~)(X:z) such that  (u ,u)= 1, and regard u as in LZ(F\G). Then 
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~ G  ,~(f)u,u)=(f,q)>(f~C,. ( ) ) .  (2.14) 

This follows from the easily established fact that the distribution 
4~:f~--~(R(f)u,u> on G satisfies eb,~=z(h)~(h6C~(G//K)). But (2.14) implies 

< f , f ,  (p> =( /~( f ) /~( f ) t  u, u)= II/{(f)* U[]2~ 0, for allfeC~(G). 

2.3. A Trace Formula. In rough terms we can say that our interest is in studying 
the distribution of the points of A (cf. (2.12)) within A(S) (cf. (2.7)). Our basic tool 
for this purpose is the Selberg Trace Formula. 

Let f~C~(G//K), and let R(f) be the operator defined in Proposition2.2 (i). 
Then R(f) acts on C~(X:z)  as the scalar x(f).  So, if 

n(z) =d im (CO~ X: Z)) (z~A), (2.15) 

then t r ( R ( f ) ) =  ~ n(/3-~(f),  the series being absolutely convergent. On the 
z~A 

other hand, using Proposition 2.2, 

tr(R(f))= ~ Kj.(Y,~)dY= ~ ~ J'(x - ~ y x)d~, 
X F\G ~,'eF 

where d.'~ is the G-invariant measure on F\G. The integral on the right can be 
further simplified following Selberg's classical argument. First we have the 
following lemma (see Mostow [33, Lemma8.1]). 

Lemma 2.5. (i) For any 7~F, the G-conjugacy class [7]G is closed. More generally, 
for any subset F 'cF,  ~) [7]~ is a closed subset of G. (ii) If, for 7~F, we write G;. 

7~F' 

(resp. Et) Jot the centralizer of ? in G (resp. F), then F~\G~ is compact. (iii) A 
compactum in G meets only finitely many [?]G. 

Let us now make the assumption that for each 7~F, G 7 is unimodular. Since 
we have fixed a Haar measure dx on G, it Follows that once a Haar measure on 
G~ is chosen, we have a uniquely determined G-invariant measure d}. X on Gy\G, 
and a G.#invariant measure on F~.\G~, the Haar  measure on Fy being the 
counting measure. Define now, for f~  Co(G), 

jT(f)=vol(q\G,~) ~ f (x  '?x)d~.Y~. (2.16) 
Gy\G 

Since [7](; is closed by Lemma2.5 (i), the function G~x~-~J'(x-17 x) lies in 
C~(G~,\G) and so the right side of (2.16) is well-defined; moreover, the remarks 
preceding (2.16) show that j;.(f) is independent of the choice of the Haar 
measure on G~.. It follows from this thatj~,(f)=j~,,~,, , ( f ) (7 '~F,  f~Cc(G)). Let us 
now define ~(F) to be the set of all F-conjugacy classes of elements of F. Then 
these remarks make it clear that for any ce~(F), the map J~:f~-~J~(f)=j~,(f) 
(7~c) is a well defined Borel measure on G, invariant under the inner automor- 
phisms of G. Selberg's formula, with the conjugacy class [e]r separated from the 
others as usual, can now be formulated as follows. 

Proposition 2.6. Let n(z ) be defined by (2.15). Then, for all f~C~(G//K), 

n(z)z(f)=vol(F\G)f(e)+ ~ J~(f), (2.17) 
z~A c t [e]v 
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where 

S,,(f)=vol(E.\G;,) ~ f ( x  t 
G~/\G 

7 x) d>. M7 e c). (2.18) 

It is now interesting to note that  to a first approx imat ion  we can ignore the 
Jc, c 4: [e]r. We have 

L e m m a  2.7. There is an open nbhdU of e satisfying: 

(a) U=U m=KUK; (b) U~[7](; =O, /f ;,eF and T+e. 

Let F'=F\{e}.  Then f2= U [TJc is closed in G by L e m m a 2 . 5  (i); so Kf2K is 
7~1" 

closed in G. We claim that  eCKf2K. For, if e = k x T x  lk', for some k,k'eK, 
3,~F', xeG, we see that  7 = x  t(k t k' 1)x lies in x ~Kxc~F. So 7 fixes the coset 
x tK~G/K, showing 7 = <  since F acts freely on G/K; contradiction.  So we can 
find an open nbhd V=V ; o r e  such that  Vc~K~2K=O. We set now U=KVK.  

Proposition 2.8. Let U be any open nbhd of e with properties (a) and (b) of Lemma 
2.7. Then, jor all feC~(G//K) such that s u p p ( f ) c  U, we get 

n(z) z ( f )=  vol(F\ G) f (e). (2.19) 
z~A 

This is obvious now. 

2.4. Eigenfunction Expansions in I~(G//K). The Plancherel Measure. Let us now 
define the t r ansorm f of any feLt(G//K) by 

f (z)  = z ( f )  = ( , f  q~z) (zeA(S)). (2.20) 

Since A(S) is a closed subset of the separable Frachet space C*(G//K) it may be 
regarded as a standard Borel space (Mackey E30]) and the functions f are Borel 
on A(S). If A + (S) is the subset of A(S) of all Z for which q0 z is positive definite (cf. 
Proposi t ion 2.4), then A+(S) is a Borel subset of  A(S) and 

If(z)[ = < [If I[ 1 (zeA(S),feLt(G//K)) . (2.21) 

Let 2 be the *-representat ion,  of  the commuta t ive  Banach algebra LI(G//K) 
with involut ion ~ ,  in the Hi lber t  space L2(G//K), the act ion being via left 
convolution.  It is then possible to prove  the existence of a unique project ion 
valued measure  IP on A+(S) (in L2(G//K)) such that  

2 ( f ) =  ~ f(z)d]P(z) (fELl(G//K)). (2.22) 
A + (S) 

One can moreove r  prove  the existence of  a unique a-finite measure  (o on A+(S), 
the so-called Plancherel measure, such that  

(IP(E) g, g) = ~ I~(z)12 d,o(z) (g~ Cc(G//K)) (2.23) 
E 

for all Borel sets EcA+(S). Taking  E=A+(S) we get the Plancherel  formula,  
valid for all geCc(G//K): 
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~. ig(x)12 dx= f, {~(Z)12d~o(Z). (2.24) 
G A + (S)  

Further, one has the inversion formula, valid for g6 C~(G//K), Cr 

g(x)= j" ~(z)q)x(x)dco(~) (xeG). (2.25) 
A + (S)  

If ~l is the algebra which is the closure of 2(I2(G//K)) and 2; is the Gel'fand 
spectrum of ~I, the above results can be established on Z, with the Gel'fand 

transform ~,(J')~ in place o f f  But now there is a canonical map a~-'X~ of Z into 
A+(S), which is a Borel isomorphism of S onto a Borel subset Av(S) of A+(S), 
such that 2(~)(a)=f(z~)  for all aeS, f~LI(G//K); the results (2.22)-(2.25) are 
then obtained by transferring from S to A+(S). In particular this gives 

dIP=0, ~ d~o =0. (2.26) 
A + ( S ) \ A p ( S )  A + ( S ) \ A p ( S )  

Let S o be the N-algebra of all formally self-adjoint elements of 2oifr(G/K). 
Then, for any z~A(S) we may regard ~0 z as the unique solution to the eigenvalue 
problem 

u(p=X(u)(p(ue2o), q)~C~~ ~o(e) = 1. (2.27) 

Now, for any u~2 o, it is well known that u is an essentially self-adjoint operator 
on the (Gfirding) subspace Cj(G//K),L?(G//K); if 2(u) denotes the unique self- 
adjoint operator in LZ(G//K) thus obtained, it can be shown that 

2(u)= ~ Z(u)dlP(z) (UeBo). (2.28) 
A + (S) 

We may therefore interpret IP as the spectral measure of the commuting system 
of self-adjoint differential operators 2(u), Ue2o; (2.24) and (2.25) are then 
respectively the Plancherel and eigenfunction expansion formulae for the prob- 
lem (2.26). 

The IR-algebra go is finitely generated. If u i( l<j<l ) is a system of gen- 
erators, the map Z~.---,(X(ul) . . . . .  Z(ul) ) sets up a Borel isomorphism of A(S) with a 
Borel subset of IW. The eigenvalue problem (2.27) as well as the measures IP and 
co may then be transferred to IW to give the Plancherel and eigenfunction 
expansion formulae for the simultaneous eigenvalue problem 

usc p =tj(p(1 <j<l), r176176 (p(e)= 1. (2.29) 

Let us now consider the spectrum A=A(X)  of X. Since it is possible that 
Av(S)#A+(S ) and A~Av(S), we may define the principal and complementary 
spectra Av and A c of X by Av=A~Av(S ), Ac=A\A v. The trace formula (2.19) 
now becomes 

n(7,)f(z)=vol(F\G) ~. f(x)dco(Z) (2.30) 
z E A  A p ( S )  



Spectra of Compact Locally Symmetric Manifolds of Negative Curvature 37 

valid for all feC['(G//K) with s u p p ( f ) c  U, It is this relation that suggests that, 
asymptotically, Av grows like ~o and A~ is negligible in comparison with A~. 

The results mentioned in this paragraph are all essentially known; they may 
be proved by suitably adapting to our context the arguments of Harish-Chandra 
([143). 

3. In Which G is Semisimple 

3.1. Notation. From now on we shall assume that G is connected semisimple 
and that it has a finite center; other notation is as in Section 2; so dx is a fixed 
Haar  measure on G. K is a maximal compact subgroup of G and is the set of 
fixed points of an involutive automorphism 0 of G. We have g = [ G ~  where ~ is 
the orthogonal complement of ~ with respect to the Killing form; ( ' , . )  is 
positive definite on ~. a is a maximal Abelian subspace of ~; A the set of roots of 
(g,a). We choose a positive system of roots A + and write g=l~OaQt~, G=KAN, 
for the corresponding Iwasawa decompositions; here, as usual, A = e x p a ,  N 
= exp n. Let m be the Weyl group of (g, a). For c~e A, g, is the corresponding root 
space. We put p= �89  ~ dim(g~)~, p(H)=�89 Let ~" be the dual of 

the complexification n~ of a. The Weyl group m acts naturally on ~ .  We denote by 
.~  (resp. '~-R) the N-linear subspace of ~ of all elements that take only purely 
imaginary (resp. real) values on a. ~-i and ~-R are m-stable. Then g = ~-~| ~R; 
for any ~ = ~ l + ~ R ,  ~__~oo,j = _ ~ i + ~  R is then the conjugation in ~ induced by 
o~ g. The Killing form restricted to a x a is nondegenerate and positive definite. 
We extend it to a complex bilinear form ( . , . )  on n~ x n~. Using the isomorphism 
a ~  induced by it we transfer it to a nondegenerate complex bilinear form 
( . , . )  on ~ x ~ .  For ~ we write H~ for its image in a~; then, for ~,~'~o~, 
<H~, H~,> : <~, ~'> = ~(H~,)= ~'(H~). The Hermitian form ~, ~' ~--~ <~, ~ . . . .  J> is then 
positive definite and converts ~ into a Hilbert space. We write II'lt for the 
corresponding norm; I] ~ I] z = II ~R II 2 + II ~ II 2. We denote by log: A -+ a the inverse 
of exp: a---, A. For any ~ o ~  we denote by r/~ the quasicharacter of A given by 

r/~(a)=e ~~ (a~A); (3.1) 

q~ is a character (i.e., unitary) if and only if ~eo~. One can select Haar  measures 
da on A and dn on N and fix dx by 

dx=rGodkdadn (x=kan). (3.2) 

For our subsequent needs it is convenient to use a specific normalization of dn. To 
choose dn, l e t / ~ = 0 ( N )  and let dn=O(dfi), with dfi the Haar  measure on N such 
that ~ ~/_ ~o(a(~))d~ = 1 (cf. Harish-Chandra [18, Lemma 44]). The polar decom- 

position formulae 

G=KAK; A~ a~ -~ (aeA), (3.3) 

show that we are in the framework discussed in Section 2. 
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3.2. The Abel Transform. The central fact of the theory for semisimple G is the 
existence of the Abel transform that is an algebra isomorphism of g'(G//K) with 
o~'(A) w (cf. Harish-Chandra [18], Gel'fand and Graev [12]). To define it, write, 
for any element xeG, x =k(x)a(x)n(x)(k(x)eK, a(x)eA, n(x)~N), H(x)=log a(x). 
n: x~-,a(x) is an analytic map of G onto A. Let ~* be the pullback map n*: 
C~(A)~  C~(G). By duality, this gives the push-forward map n,:  g"(G)-*o~'(A). 
n ,  is continuous map of C~(G) into C{'(A), and is given by (use (3.2)) 

(n, f)(a) = rl2o(a) S f (k  a n) dk dn(f~ C~(G), a~A). (3.4) 
K •  

We introduce the spherical pull-back n ~ =  PK ~ n*: C~176 C~176 so that, 
for any heC~(A), x~G, 

(~ h)(x) = S (~* h)(x k) dk = S h(a(x k)) dk, (3.S) 
K K 

and correspondingly the spherical push-forward r%: g'(G//K) -,(f'(A). It is then 
clear that ~ , ( r ) = r c , ( r ) ( T e g ' ( G / / K ) ) .  For f~C2(G/ /K  ), (3.4) reduces to 

(n, f)(a)=~l=o(a) ~ f(an)dn (aeA). (3.6) 
N 

Following Harish-Chandra we define the Abel transform 

s~'=r/_o o ~z , : N'(G//K)---,•'(A). (3.7) 

The basic fact is that d is a homomorphism of algebras. Of course, n# is already 
a homomorphism; the shift by q_p is introduced so that ~4 commutes with -. It 
is well-known (cf. Varadarajan E42, II. Proposition 8.7]) that for any 
f c  C~(G//K), ~ f ~ C ~  (A)~; and so ~IT~g'(A) ~ for T~g'(G//K). We thus have 

Proposition 3.1. d is a continuous homomorphism of g'(G//K) into (~'(A) ~ that 
commutes with ~ and ~, i.e., ~-~=,;,r ( t iT)  v =dT(T6g'(G//K)) .  

It follows easily from the definition of ~, that supp0z,(T))crt(supp(T)), for 
T~g'(G). Hence supp(sCT)cTz(supp(T)) (T~o~'(G//K)). In particular, if 
Teg'K(G//K ) (cf. (2.2)), supp(s# T)c  { 1 } and hence ~ '  T can be identified with an 
element of U(a~) which is to-invariant. So, by (2.3) we obtain a homomorphism 
7: U ( g S ~  U(a~) ~. From the definition of ~ ,  and the various identifications 
used above we get, for any he C~'(A), q~U(g~) ~ that h(1;7(q))=(Tz*(r/_p h))(1;q). 
It follows from this that, if 7'(q) is the unique element in U(ac) such that 

q = ~'(q) mod(f U(g~) + U(g,.) u), (3.8) 

then 

7(q)=rlp~176 (q~U(9S). (3.9) 

7 is thus Harish-Chandra's homomorphism U ( g J ~ U ( a ~ )  ~ (cf. Varadarajan, 
[42, II, subsection 8.33). We describe these results in 

Proposition 3.2. The restriction of s~' to ~'K(G//K) is a homomorphism into o~'1 (A) ~~ 
The homomorphism that one obtains from this via natural identifications, from 
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U(9 S to U(ac) w is none other than the Harish-Chandra homomorphism ~: 
U(gc)K-~ U(ac) w. In particular, the restriction of d to ~'K(G//K) is an isomorphism 
of E'K(G//K ) onto U(ac) w. 

3.3. The Structure of A(S). Formula for the Functions (Pz" We denote  by A the 
Four ier-Laplace  transform on ~~ Thus 

'F(2) = (T, tl~ ) (Tr 2E@). (3.10) 

The composi t ion of A with the Abel t ransform is the Har ish-Chandra  t ransform 

( ~  T ) ( 2 ) = d  T(2) = ( ~ '  T, qa) (Teg'(G//K), 2e~) .  (3.11) 

Since ~vf is a homomorphism,  for each 2e~- ,  the specialization 

Z~: d'(G//K)-~(E; / x (T)=dfT(2)  (TsN'(G//K)) (3.12) 

is a cont inuous homomorphism.  Let qo~=~oz~ be the corresponding eigenfunc- 
tion in C~'(G//K) as in (2.8). Since ( T, (p~) = z~(T) = ( t i T ,  q~) = ( T, ~r* r/k__ o) for 
all Teo~'(G//K), we recover, using (3.5), Harish-Chandra 's  famous formula 

q0~(x) = ~ ~la_v(a(x k))dk (2e~, xeG). (3.13) 
K 

From (3.11) and the fact that d commutes  with v and ~ (Proposi t ion 3.1), we 
get 

(Yf "F) (2) = (y{~ T) ( - 2); (3f~ T)(2) = ( j r  T)( - 2 r176 ) (Teg~ 

If we now use these relations in conjunct ion with dC~T().)=(Z~p~), it follows 
that 

5~=~o ~; qS~=q~ z~o~ j (2~,~-). (3.14) 

Proposition 3.3. The ;~z(2eff) are precisely all the continuous homomorphisms of 
d'(G//K)) into C; and )G=)~,<=~m-2=m.2 ' .  For any 2cd~ the corresponding 
eigenfunction q~x=(pz ~C~:'(G//K) is given by (3.13); it satisfies the system of 
equations 

q0~ , 7 " =  3,i ~ T(2) qo x (TeN"(G//K)); q%.(e) = 1; (3.15) 

and is the unique solution in C ~'(G//K) for this system. In particular, 

q q0~ = ?(q)(2) q)~ (2~q~U(,q,.)K); qa~ = qa~,,~-m. 2 = m- 2'. 

We recall that  as a is Abelian, U(ac) is canonically isomorphic  to the 
symmetric algebra S(G ) and hence to all polynomial  functions on ~.  The 
present Proposi t ion follows without much difficulty from the Proposi t ions 2.1 
and 3.2 in conjunct ion with the well-known result that the homomorph i sms  of 
U(a~) ~ into II~ are canonically parametr ized in the usual way by the m-orbits in 

(cf. Helgason [24, X, Lemma  6.9]). 
It is clear that from this point  of view, the Abel t ransform is the fundamental  

object. The  fact that  both the integral map (3.6) and the differential map (3.9) 
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given by the Har ish-Chandra  homomorphism,  are specializations of ~ '  is one of 
the major  unifying features of the Abel transform. 

It follows from Proposi t ion 3.3 that, in the nota t ion of (2.7), A(S)~ /vo;  we 
shall commit  a mild abuse of nota t ion and write A ( S ) = Y .  Similarly we write 
(cf. (2.12)) 

.A={2:  2 e ~ ,  C~(X: Za)+(0)}. (3.16) 

Proposition 3.4. (i) peA; (ii) A=( -A) r176  (iii) q ) , ( # e ~ )  is bounded if and only if 
#R lies in the convex hull of the points s. p (sew). In particular, II2gJ I < IlPll if 2eA. 

Assertion (i) follows from Proposi t ion 2.3(i) as q)p = 1 (cf. (3.13)) whereas (ii) is 
obtained from (2.13) and (3.14). The first assertion in (iii) is a result of Helgason 
and Johnson 1-24, Theorem 2.1]. By (2.13) q)z is bounded  if 2eA. Since ][s'plb 
= IIp[I and since the set { ~ : / z e f f  R, II/~11 < HpI[} is convex we see that % bounded  
implies II~Rbl _-< Ilpll. 

Corollary 3.5. For every sew, let ~ ( s )  = {#: /Leo ~, s . / h  = Pl, s- #R = -- #R}" Then 
o~(1)=o~  and A c  U ~,~(s). 

S E W  

Finally let us recall the Laplace-Beltrami opera tor  co s on S(cf.(2.6)). The q~). 
are eigenfunctions for cos and a simple calculation shows that 

cos r = (()., 2)  - (p ,  p))  r ( 2e f t ) .  

If 2~A, then ( 2 , 2 ) - ( p , p )  is real and < 0  and we have 

cos ~0x =(II,~Rll 2 -  IlPll 2 -  l[2x[I z) q~z (2cA). (3.17) 

The classical example is: G=SL(2,1R), K =SO(2,  •) and S the Poincar6 upper 

half_plane; then with z=x+iyeS(y>O), we have 2cos=y2 ( ~2 (?2) 

3.4. The Analytic Theory of the Harish-Chandra Transform. The Theorems of 
Harish-Chandra and Gangolli. For  any f e  C~(G//K) the restriction to ~ of the 
Har i sh-Chandra  t ransform ~ f  lies in the Schwartz space 5 ~ ( ~ ) ;  so we can 
regard 9 f  as a cont inuous map  C[(G//K)--~SP(o~I)W. Observe that this map 
depends on our  choice of dx. The  Plancheret measure for the Har i sh-Chandra  
t ransform is then a measure fldv where ( a ) f l eC~(~ / )~ ;  f l > 0 ;  (b) fl and all its 
derivatives grow at most  polynomial ly;  (c) if dv is the Lebesgue measure on ,~/ 
dual to the Haa r  measure da on A, 

f(x) = Ito[-i ~ (9f f)(v) ~o,(x) r176 fl(v)dv(fe C~ (G//K), xeG) (3.18) 

In particular, for f~ C~ (G//K), 

f(e)=]ml-' ~ (W f)(v)fl(v)dv=(fl,~c f ) .  (3.19) 

We note  that fl makes sense as a tempered distr ibution on ~ in view of (b). It is 
known that fl exists and is uniquely determined by (a)-(c); and that  supp(fl) 
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= ~ .  There is in addition an explicit formula for fl, due to Gindikin and 
Karpelevi~ [13]; see Section 3.8 infra for a more detailed discussion of ft. 
Moreover, the map f~---~Yff extends to a unitary isomorphism (also denoted by 
9f() between I3(G//K) and L2(~ ,  tidy) w so that ~(C~(G//K)) is dense in 
L2(~ ,  fl dr) w, and, for all fe  C~(G//K), 

If(x)l 2 dx = Iml 1 ~ I~f(v)12 fl(v) dr. (3.20) 
a ~z 

The Fourier-Laplace transform (cf. (3.10)) is an algebra isomorphism of 
C~(A) with the algebra ~ ( f f )  of entire functions on o~, satisfying the well- 
known conditions of the Paley-Wiener Theorem. As ~,vff=dJ~ we have a 
commutative diagram 

C2(G//K) ~r ~(ff )w (3.21) 
\ \ \  / 

,~r ? / I  ourler-Laplace 
"G~ , / 

It was proved by Gangolli [8] that in this diagram both d and J f  are 
isomorphisms for the structure of topological algebras. Moreover, he established 
the following more refined result: Let A (b) denote, for any b > 0, the subset of all 
a~A such that lllogalP <b;  then A(b) is w-invariant and 

supp(~C-l h)cKA(b)K (hEC~(A(b))'). (3.22) 

For convenience of later use we note here that for any h~C~(A(b)) ~, 

f(2)l <era exp(b 1]2R]I)(1 + 112]1)-" ( 2 ~  m=0,  1 .. . .  ), (3.23) 

where c,, = cm(h) are constants >0. 
The Harish-Chandra and the Abel transforms are actually defined on the 

(spherical) Schwartz space Cg(G//K) of Harish-Chandra (cf. [21, p. 46]); and 
Harish-Chandra's fundamental theorem asserts that the following diagram, 
where f fdeno tes  Fourier transform, 

~#(6 / /K) -  ~ , j ( ~ , ) "  

,~t ",, / ~  
~ ,  / /  

~f(A)" 

is commutative, all the arrows being linear topological isomorphisms. 
It follows from the theorems of Gangolli and Harish-Chandra that for any 

U~@'(G//K) (resp. U~cd'(G//K)) there is a unique Utc~'(A) ~ (resp. utE3~'(A) ~) 
such that 

( U , f ) = ( U t ,  d f )  (feC~(G//K), resp. ~(G//K)); 
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and further that Uw-,U* is an isomorphism of ~'(G//K) with ~'(A) w (resp. 
cg'(G//K) with ,~'(A)W). It is not hard to show that if T =  ~'(G//K), the tempered 
distribution T* on A is given by 

T*=lml -~o  ~ l o/~o~,~oJl_prc , T. (3.24) 

In fact, iffeC~'(G//K), we find, on using the Plancherel formula (3.20) for G 
as well as the usual Plancherel formula for A, that, for all geC~'(G//K), 

( f , g}  = ( Iml- '  y - 1  o/~ o ~-o ~ ' f ,  ~ g} ; 

since d f = q _ o ~ , f  (cf. (3.6)) we get (3.24) in this case. For an arbitrary 
Teg'(G//K), (3.24) follows by a density argument. 

3.5. The Principal and Complementary Spectra of X. Let F o G  be as in sub- 
section 2.2. The requirement that F acts freely on G/K is not too serious a 
condition. Indeed, according to Borel [3], if F o G  is a discrete subgroup with 
compact quotient F\G, there exists a normal subgroup F ' c F  of finite index, 
without elliptic elements other than the identity. If ?eF,  [?]G is closed according 
to Lemma 2.5(i); this implies that 7 is a semisimple element (cf. Varadarajan [42, 
II, Theorem 2.17]). The centralizer G~ is then reductive and so, in particular, is a 
unimodular group. The results of subsection 2.3 are thus available. 

We define the spectrum A of X by (3.16), and the subsets Ap and A c are now 
defined by 

A p = A n ~ ;  A~=A\Ap. 

Ap (resp. Ac) is called the principal (resp. complementary) spectrum. A~ is 
nonempty by Proposition 3.4(i). Both Ap and A~ are m-stable. This separation of 
A into principal and complementary spectrum seems to be justified in view of 
the fact (cf. (3.20)) that o~ is the spherical L2-spectrum of S. The occurrence of 
the complementary spectrum is however a distinctly nonclassical phenomenon. 
It appears to be related to the "degeneracies" in the Plancherel density /L 
Indeed,/~ has zeros in ~,~, the points of A \ ~  always have their imaginary parts 
located at these zeros, and the complementary spectrum seems to emerge as a 
"compensating factor". 

3.6. The Trace Formulae. Since we are treating ~- and not o~/m as the spectrum 
A(S), we should modify our definition of the multiplicities of the points of the 
spectrum of X. We do it in the obvious manner: for 2cA we define its 
multiplicity m(2) in L2(X) by (cf. (2.15)) 

m(2) = m(s. 2) = Iw" 21-1 n(zz) (sere). (3.25) 

Proposition 3.6. A is a discrete subset of o~ There are a constant c>O and an 
integer M > 0 such that 

Z m(2) <=ctm (t=> 1). (3.26) 
2~A, [1211 <t  
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We use the Laplace-Bel t rami  opera to r  co s. For  any t>=l, let N(t) be the 
numbe r  of  eigenvalues (with multiplicities) of  -~o s in L2(X) which are < t .  We 
then see from (3.17) and Proposit ion3.4(i i i )  that  ~" m(2)<N(t2+llpH2); so 

),EA, 
1121] =<t 

(3.26) follows from s tandard  results on elliptic opera tors  on compac t  manifolds 
(cf. Duis te rmaa t -Gui l l emin  [6, formula  (1.13)]). 

The trace formulae of Section 2.3 now take a much  better  form since the 
Theorems  of Gangol l i  and Har i sh -Chandra  give definitive informat ion on the 
t ransforms of the test functions. 

Proposition 3.7. For any he C{'(A) ~ 

m(2) ~'(2) = Iml- a v o l ( F \ G )  .I nr(v)/~(v) dv + ~ Jc(~4 -~ h), (3.27) 
2 E A  , ~  I c =~[e] l  ' 

where the series on the left converges absolutely, the J~ are as in (2.18) and d t .  
C~ (A)W-~ C~(G//K) is the inverse Abel transfi)rm. 

Proposition 3.8. (i) For any he C{ (A) the series ~ m(2)/~(2) converges absolutely. 
2 ~ A  

(ii) There exists an open neighborhood V of 1 in A satisfying: (a) V =  V -  1 and V is 
to-stable," ( b ) fo r  all heC{~(V) we have 

m(2)h~(2)=lwl l v o l ( r \ G )  ~ fi(v)[3(v)dv. (3.28) 
.q.EA ,~I 

Since 112all < IIPll for 2eA,  the Paley-Wiener  est imate (3.23) gives assert ion (i) 
when combined  with (3.26). Let V = { a :  aeA, II logaH<b},  b > 0  being small 
enough so that  A(b) is contained in the nbhd U given by Proposi t ion  2.8. Then 
KA(b) K c U, and (3.22) in combina t ion  with Proposi t ion 2.8 gives (3.28) for all 
beCk(V)  ~~ Let now a be the measure  on ~- which assigns the mass m(2) to 2eA 
and define the measure  r on o~ as Im1-1 vol(F\G)~dv.  Then a and r are both  
m-invariant ;  and for any beCk(A),  Flies  in both  LI (~ ,  or) and L 1 ( ~  v).Since to is 
finite we can average over  m to get, with IS=Iml 1 ~ h ~, (or, h)  =(cr ,  h ) = ( z , h )  

3.7. The Volume of X. It has to be observed that  v o l ( F \ G )  depends on our choice 
of the H a a r  measure  dx. We fix dx, or what  amoun t s  to the same, da, in the 
following manner .  We note  that  (X, Y)= - ( X ,  0 Y)  (X, Yeg) provides g with the 
structure of  a Hi lber t  space. For  any subspace I c 9, d01 is the s tandard  Lebesgue 
measure  on l (with (" ' ) l  induced by (.,.)); and let us write dol also for the 
exterior differential form that  gives rise to the measure  d01 (after I has been 
oriented). I f  L is a closed subgroup  of G corresponding to I, there is a unique left 
invariant  exterior differential form on L that  corresponds  to dol at eeL; this 
form and the corresponding H a a r  measure  on L are denoted by do l. If  L is 
compact ,  we write volo(L ) = vo(L ) = ~ d o I. We now fix dx by 

L 

dx=q2odkdoadn (x =kan).  (3.29) 
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Here we recall that dk and dn are defined in Section3.1. Let vol(X) and 
vol (F \G)  denote the volumes on X and F\G defined by dx, then 

vol(X) = vol(F\G).  (3.30) 

On the other hand, the form (.,.) gives rise to a left invariant metric on G which 
is right-K-invariant. On G/K it induces the same metric as ( . , . ) .  So vol0(X), the 
volume of X defined by the Riemannian metric on S coming from the Killing 
form, is evaluated by means of dox , and we have 

volo (X) = vo lo(F \G ) vo(K )- 1. (3.31) 

If d(G)>0 is the constant such that dx=d(G)d o x, it follows that 

vol(X) 
- -  - d(G) vo(K ). (3.32) 
volo(X) 

We wish to find a more explicit expression for d(G); such a formula would 
enable us to compare our results on the asymptotic behaviour of the spectrum 
with classical ones (for instance, Minakshisundaram-Pleijel [32], Duistermaat- 
Guillemin [6]). 

According to Harish-Chandra [22, w 37, Lemma 2] (see also Varadarajan [42, 
II, Section 17]) we have, with n=dim(G/K) and r = d i m  A, 

dox = 2-("-r)/2 /70 (K)/~2p dk d o a don; (3.33) 

and therefore d(G) is known if we determine the constant y = ?(G)> 0 satisfying 

dn=Ydon; d~=Td0fi. (3.34) 

For the normalization of dfi we have the result of Harish-Chandra [18, Lemma 
44] according to which the map ~O: N x  M--+K given by qJ(~,m)=mk(h) ( ~ N ,  
m~M, the centralizer of a in K) is a diffeomorphism onto an open subset of K 
whose complement has measure zero, and has the property that dk goes over to 
the measure rl_2p(a(~t))d~dm, if S din= 1. Let m be the Lie algebra of M. 

M 

Lemma 3.9. (i) I f  ~:(d~)(1,1), then 7J(X, Y ) = X  +OX + Y (X~fi, Y~m). (ii) Let q 
= n - r  and X 1 ..... Xq be an orthonormal basis for fi with respect to (.,.). Then 
2-~(XI +OXI),...,2-�89 is an orthonormal basis for f o n t ,  the ortho- 
complement of m in [. 

Obviously 7~(X, Y)= tP(X, 0)+ (P(0, Y)= ~(X, 0)+ Y(X eft, YGm). Now 
q'(X, 0) is the projection of X on [ according to 9 = f + a + n, which is X + OX, 
since X = ( X + O X ) + O + ( - O X ) .  Regarding (ii), observe that X~--,X+OX (XGfi) 
defines a bijection between ff and fQm.  So it is a question of calculating 
scalar products. Now (Xi+OXI,Xj+OXj)=26ij+(Xi ,  OXj)+(OXi, Xj)=26ij 
-2(X~,Xj )=26i~ ,  since (fi, f i )=0 .  

Let the form ~Oo(res p.o9) on N • M denote the pull-back under ~9 of the 
differential form dok (resp. dk). Then (COo)(1,1)=vo(K)~o(L1) and ~o(~,1 ~ 
=(dffdm)(L 1). If Y1 . . . . .  Y~ is an orthonormal basis for m, we get, using 
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L e m m a  3.9, that  (Oo((X1,0),. . . ,(Xq,0),(0, Y1),-.-,(0, Y,) )=dok(X 1 +OXj  . . . .  ,Xq 
+OXq, Y1 . . . . .  Yt)= +2 t"-r)/2. It follows that  (~Oo)(1 1)= + 2 ( " - ' / 2 d o h d o m ,  and we 
obtain  2 ("-r)/z d o ~d o m = vo(K ) dh din. But then after integrat ion over  M, we get 

2 ~ , - r l  volo(M ) do h = volo(K ) d~, 

from which we obtain  

dn = 2 ~ " -  r)volo(K/M )-  1 do n. (3.35) 

Since ~ e -  2p(HIh)) d~ = 1, we get 
N 

vo lo (K /m  ) = 2 ~l" ~) ~ e-  2p(H(h)) do ~, (3.36) 

Combin ing  (3.32)-(3.36) we obtain  

L e m m a  3.10. With notation as above we have 

vol(X) 
2"-r vo lo (K/m ) -  1 ; vo lo (K /m  ) = 2 ~ " -  ~) ~ e -  2p(n(,)) do h. 

volo(X) N 

It must  be r emembered  that  vo lo(K/M ) is to be calculated with respect to the 
exterior differential form coming from the Killing form of .q and not of L 

In w we shall compute  vo lo (K/M ) explicitly, following the technique of 
Gindikin-Karpelevi~  [-13]. This method,  which consists of  reduct ion to rank one 
groups,  was originally devised by them to evaluate integrals of the form 

e ~-~)~n(~)) d~ ( v ~ g )  
N 

that appear  in the expression for the Plancherel  density ft. Since the propert ies  
of fl are extremely impor tan t  for us we shall now turn to a brief discussion of 
them. 

3.8. The Plancherel Density fl and Its Behavior at Infinity. The start ing point  is 
Har i sh -Chandra ' s  formula  [19, p. 611, Corol lary  2] 

/~(v)= I~,(v)l-~ (ve~) (3.37) 

Here c is the m e r o m o r p h i c  function on ~ which is given on the domain  

{v: v e ~ ,  (VR,~)  > 0VcteA + } (3.38 a) 

by the convergent  integral 

c (v )=  ~ e-t~+')(n("))dh; (3.38b) 
N 

while the H a a r  measure  dfi is normal ized  by 

e -  2om~,)) d~ = 1. (3.39) 
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The integral (3.38b) does not converge for v E ~ ,  and so it is necessary to 
interpret  (3.37) using analytic continuation.  

Let A + + be the set of short positive roots, namely the set of roots s e a  + such 
that  �89 is not a root. Then Gindikin and Karpelevi~ proved (loc. cit.) that 

c(v)- I(v) I(v)= [ ]  I(e: v) (v6Y)  (3.40) 
I(p)' 

where the functions I(e: . )  are given by the following formulae. If 

n(e) = dim(g~); n(27) = dim(g2~); d(e) = n(~) + n(2e) (3.41) 

for sEA + +(n(e)>0,  n(2~)>0),  and if F is the classical G a m m a  function, then 

((v,c() ] 1 1 r\<~,~)! r(~n(~)+ 5 (~,~>!<v'~)] 
I(~: v) = (~, ~) - �89 eta> (3.42) 

r ( ~  . ( v , . ) \  1 1 (v ,~ )  F(~n(2e)+~n(e) 1 

To each seA ++ one can canonically associate the connected semisimple 
group G ~ c G  whose Lie algebra g ~ c g  is the algebra generated by the root  
spaces g+~ and .%+2= (if the latter are nonzero). G ~ and cl ~ are 0-stable and the 
symmetric  space associated with G = has rank one. The function 1(c~:.) is 
essentially the c-function of the group GL Note  that (cf. (3.41)) 

d(~) = 1 ,*:> g~-- ~ 0(2, 1) ~ ~ 1(2, IR). (3.43) 

We also remark  that c (p )=  1 by (3.40); this is just the normalizat ion condit ion 
(3.39). 

The formulae (3.40)-(3.42) can be used to determine how c behaves at 
infinity. We begin with the following well-known asymptot ic  expansion for the 
F-function:  

F(z) =Czl~ <5' eZ<~+ ~-~) dz 

~ e  z l ~  - -  1 - [ -  ~" akz -k , 

\ k=l  

which is valid for R e z > 0 ,  I z l - + + ~ .  The proof  is by applying the method of 
steepest descent to the above integral which has been written in a convenient  
form for this purpose. F rom this we obtain II(0c v)l-2 =f~((~, v))(~eA + +, ve,~), 
where f ,  is a function on ( - 1 ) + R  satisfying, for suitable constants G, kelR, k 
= 1 , 2 . . . ,  

f,(z)~ 2-n(2">lzld(a' (1 + ~ C~t, klZ1-2k), 1.71----+-{- OO. 
k=l 

Therefore  we can find constants c', c > 0  such that, for s e a  + + and v e , ~ ,  

II(~: v)l - z  <c'(1 + I(c(, v)l)a(~'> < c(1 + Ilvl3a(=); 
fl(v)<c(1 + ]lull) "-~. (3.44) 
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It must  be observed that, a l though the .f~(z) have a full asymptot ic  expansion 
in terms of decreasing negative powers  of Iz[, /3(v) has no corresponding 
asymptot ic  expansion in terms which are O(Hv[I-k), k --~ + 0% except for the case 
that  G has a single conjugacy class of Car tan  subgroups  (cf. formula  (4.18) below). 
However ,  we obtain 

L e m m a  3.11. We have, fi~r v e ~  I and Ilvll -~ + ~ ,  

/~(v) = l ( p ) 2  2-=~,~. ,12~! i~s(v) I + O(H v il . . . .  ~). 

Here 

~Vs(V)= H (~,v)~ �9 
~z~ A + 

Moreover ,  there exists ~sA + + such that  ( ~ , v ) = O  if v e , ~  satisfies fl(v)=O. 
We use this to prove  that, given ~; > O, there is a constant  c = c(~)> 0 such that  

w~.~,l(~,v)l__>e, V ~ A  ++ ~ c  [ I  ( l+ l (c~ ,v) l )am</3(0 .  (3.44a) 
~ E A  + + 

Let S ( ~ )  be the symmetr ic  algebra over ~ ;  for any u ~ S ( g ) ,  ?(u) is the 
corresponding differential opera to r  acting in ~ i .  We set 

d =  rain d(c 0. (3.45) 
~ A [ +  + 

Let m be an integer with O<m<_d and ueS(,N) an element which is homo-  
geneous and of degree m. Then  we can find a constant  c = c(u)> 0 such that 

Ifl(v; (?(u))l < c(1 + H v II) . . . . .  ( v ~ / ) .  (3.44 b) 

3.9. Computation o f vo lo (K/M ). To the best of  our knowledge the explicit values 
d 0 H 

for ~ or volo(K/M ) are not available in the literature. The de terminat ion  

of these numbers  is the same as evaluat ing 

J(v) = S e-I~+Pl(m~)) doff (3.46) 
N 

for v satisfying (3.38a). Of  course the method  to be used is that  of Gindikin-  
Karpelevid (loc. cit). However ,  we need to keep t rack of the var ious constants  
that  come up during the course of  the evaluat ion;  this precaut ion  was not 
necessary for the calculat ion of f(v) because one can always use the normal -  
ization c(p) = 1 at the end. This also explains the form of the expression (3.40) for 
c ( . )  as a ratio. 

We shall briefly sketch the modif icat ions that  are needed to adapt  the 
Gindik in-Karpelevi~  a rgument  to our  present  need. Actually it is more  con- 
venient to follow Schiffmann [39] (pp. 10-18). For  any element w of the Weyl 
group w let 
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J(w: v)= ~ e-~+P)~m")) do ~ (veC(w)), (3.47) 
Nc~w- l Nw 

where, with A + ( w ) = A + ~ w - I ( - A + ) ,  

C(w) = {v: v e ~ ,  (vR, c~) > OVc~e A + (w)}. 

The basic result is that the integral (3.47) is absolutely convergent for ve C(w) 
and satisfies the following functional equation: 

J(w: v)= J(w' : w" . v)J(w":v), (3.48) 

whenever 

veC(w), w = w '  w"(w',w" eto) with l(w)=l(w')+l(w").  (3.49) 

Here l(.) is the length function on to corresponding to A + + and one should 
remember that 

A +(w) = A + ( w " ) u w " -  '(A + (w')), (3.50) 

so, for veC(w), we get veC(w") and w". veC(w'). Formula (3.48) is the same as 
Schiffmann's formula (1.6.3). In deriving it we simply follow Schiffmann. Howev- 
er Schiffmann's calculations depend on the following fact: if we set N S 
= N ~ s - 1  Ns  for any seto, then, under the analytic isomorphism (of varieties) 

l~w,  X N w , ,  ~ ]~, w 

(~,,~,,)~w,,-l ~,w,,.~" 

the Haar  measures on ~7 w, x Nw,, and Nw correspond to each other (see (1.4.10) of 
Schiffmann's article). But, a simple calculation, based on the fact that the 
elements of to have representatives in K, shows that the Haar measures 
do~'do~" and d 0fi also correspond under the above diffeomorphism. So we 
obtain (3.48). 

The transition from (3.48) to a product formula for J is carried out in the 
usual manner. If 27 is the set of simple roots of A + + and 

w=s~ s . . . .  ... s~, (o~i~X , l (w)=m) (3.51) 

is a reduced expression of w, then 

J(w: v)=J(s= : v)J(s= : s= .v) . . .J(s~ : s . . . .  ...s= .v). (3.52) 

Moreover, if c~27, ~7, =exp(g_~Og_2=) so that the integrals J(s=: .) need, for 
their explicit evaluation, only information from the groups G" of real rank one. 

Let us now fix c~eX and consider J(s=: "). For simplicity, let us write ]q==A~ . 
Then 

J(s~: v)= ~ e-~+P~)m~)) do ~, (3.53) 
N~ 

where 

p, = �89 + 2n(2 c~)) c~. 
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We are allowed to replace p by p, since H(~) is a multiple of H a when ~e~7,. For 
brevity, let us put 

p=n(~), q=n(2c 0. 

We shall now use Schiffmann's calculations for evaluating (3.53) (Schiffmann 
[39, Proposition 2.1]). Let H = 2(~, ~ ) - I H ,  so that c~(H)=2; and let 

4B~(X, OX) 
Q ( x )  - ( x  e ~ = ~_  ~ | ~_  2 ~) 

B,(H, OH) 

where B~ is the Killing form of g~. Then Schiffmann's formula for H(~) is given 
by the following: if ~--exp(Y+Z),  Y6g_c,, Z6q_2a, 

H(~)=xH, with e4~'=(I+�89 

We now remark that the Killing form of g restricts on g~ to a nonzero multiple 
of the Killing form of g~ so that 

Q(X) = (c~, ~)IIX[I 2 ( X e ~  ~, [IXl12 = - ( x ,  Ox)). 

A simple calculation then gives the formula 

e-~V+P'~aq{n)) = [(1 +�89 ~)II Y]lZ)2 + 2(~, c~)IIZ}12]; 

1 (v,c~) 1 1 (3.54) 
- 

2 (c~,@ 4P-2  q" 

Since d0h corresponds to doYdoZ under the map ~F-~(Y,Z), (3.53) can now be 
explicitly evaluated. The result is 

J(s~: v)=2 d(=)/2-n(2~) 7'c d(a)/2 I(~: v), (3.55) 

where I(~: .) is given by (3.42). It only remains to substitute these formulae in 
(3.52). Let us write fla= s~, s~ . . .  s=,_, aj. Then, if we observe that 

( ~ ,  % , s, ,_ ...  % .  v> = ( # j ,  v) ,  

<flj,[~j>=<~j,O~j>, n(~j)=tl(flj), n(2a)=n(2fl), 

and recall (Varadarajan, [41] Theorem 4.15.10) that 

is an exact enumeration of the elements of A++~w-I(-A++)=A++(w), we 
obtain finally the following expression for J(w: v): 

(�89 n(2~ll ~ ~ d(~) 
J(w: v)=2 ....... n ........ l-I l(c~:v). (3.56) 

~eA + +(w) 

Consider now the element WoetO with the property that woA+=-A +. 
Clearly (cf. (3.46)) J(v)=J(wo: v) while A + +(Wo)= A + +. Hence we obtain from 
(3.56) the formula 



50 J.J. Duistermaat et al. 

(3.57) 

In view of Lemma3.10 we get 

Proposition 3.12. We have, with I ( . )  as in (3.40) and (3.42), 

VOlo~t~/M ) = ~ ~,.+ rt ~p). (3.58) 

For later use we derive the following corollary of this Proposition and 
Lemma 3.10: 

Corollary 3.13. We have 

vol (X)  = 2 . . . .  re- ~"-  ~) l (p) -  1 vol0(X). (3.591 

d n  
Moreover, if the constant ~ = 7' ( G ) = ~  is as in (3.34) 

aon 

7 ( G ) :  2-)(n-r)+ o~ ~ nl2~) K-�89 I(p)- 1 
(3.60) 

Formula (3.60) is obvious from (3.35) and (3.58). 

Remark. One can use Harish -Chandra ' s  results [22, w Lemma 4] to evaluate 
volo(K ) and vol0(M), thence volo(K/M),  in terms of the root structures of K and 
M. Such a formula for volo(K/M) is not adequate for our purposes since we 
need an expression for volo(K/M)  that is in terms of the data supplied by the 
symmetric space S = G/K. 

4. Orbital Integrals of Spherical Functions 

4.1. For further development of the trace formula (3.27) it is necessary to study 
the integrals Jc more closely. Since the closed conjugacy classes of G are the 
semisimple ones (Varadarajan [42, II, Theorem2.17]) we may, in view of 
Lemma 2.5 (i), consider the distributions 

f~---~ ~ f ( x h x - l ) d s  ( f 6C~(G/ /K) ) ,  (4.1) 
GIGh 

where h~G is semisimple (i.e. Ad(h) diagonalizable over ~), G h is the centralizer 
of h in G and d~ is a G-invariant measure on GIG h. 

The fundamental results on these distributions (applied to not necessarily 
spherical f )  are due to Harish-Chandra [20], [21] (see also Varadarajan [42]). 
Our main observations are straightforward consequences of Harish-Chandra's 
theory, except for some variations. 

4.2. We shall begin with the normalization of the measure d~ on GIG h. For G 
itself we have chosen the Haar measure (cf. subsection 3.7) 

d x = r l 2 p d k d o a d n  (x = k a n ) .  (4.2) 
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Suppose now that  Z is a 0-stable closed subgroup  of G such that  [Z:  Z ~ < ~ .  If 
3̀ is the Lie algebra of Z, 0(`3)= 3, and so 3 is reductive in g. It is then clear that  
the restrictions to 3 x 3̀ of ( . , . )  and ( . , . )  inherit the same propert ies  vis-/t-vis ,3 
as ( . , . )  and ( . , . )  have relative to g. We may  consequently speak of the H a a r  
measure  dz ~ on Z ~ We define the H a a r  measure  dz on Z to be the H a a r  
measure  that  coincides with [Z:  Z~  -1 dz ~ on Z ~ This normal iza t ion  ensures 
that  the maximal  compac t  subgroups  of Z have vo lume 1. If k e K ,  the H a a r  
measure  on Z k corresponds  to dz under  the conjugat ion induced by k. 

Let hEG be semisimple and Gh(res p. gh) be its centralizer in G(resp. g). It is 
known that  [G,:  G ~ < ~ .  We say that  h is in standard position if Oh is 0-stable. 

L e m m a  4.1. The following conditions on h are equivalent: (i) h is in standard 
position; (ii) h can be imbedded in a O-stable CSGI :  (iii)if h = k exp X (k~ K, X ~ ) ,  
then k centralizes X;  (iv) G h is O-stable. 

The impl icat ion ( i v )~ ( i )  is trivial. Fo r  ( i )~( i i )  we note that  there are 0- 
stable CSA's  of  9 that  are conta ined in gh, since 9h is 0-stable and rk(gh)=rk(9) ;  
h is then in the corresponding C S G  which is 0-stable. Since (ii) ~( i i i )  is obvious,  
we are left with ( i i i )~( iv) .  It is enough to prove that  Gh=GkC~Gx where G k 
(resp. Gx) is the centralizer of k(resp. X) in G, since both  of these are 0-stable. If 
y~G h, we use the uniqueness of the decompos i t ion  of a semisimple element of 
GL(.q) as a product  of two commut ing  semisimple elements in GL(g)  with 
eigenvalues respectively real and of absolute  value 1, to conclude that Ad(y) 
commutes  with Ad(k) and e aax. Hence  X~'=X,  giving YeGkC~G x. Since 
Gkc~GxcG h, we are done. 

L e m m a  4.2. Any semisimple element o f  G is conjugate to one in standard position. 
I f  hi,  h 2 ~ G are semisimple and in standard position, the3, are conjugate under G if 
and only if they are conjugate under K. 

We assume for the second assert ion that  h i = k ~ e x p X  ~ with ki6K,  X~ea, X~' 
=X~. Let y h ~ y  1=h2,  so that  y k ~ y - ~ = k 2  and X ] = X 2 ; s o ,  using a result of 
Har i sh -Chandra  ([22], w L e m m a  1), we may  assume that X a = X z ( = X  say). If 
we write y = v e x p Y  where v~K,  Yes ,  then e x p 2 Y  =O(y-~)y  commutes  with k 1 
so that  y k , = y .  Hence  k z = v k l v  -1. Moreover ,  as G x is 0-stable and y e G x ,  
exp 2 Y e G x ;  this gives [Y,X]  =0.  But then X = X ~ = X  '', giving vh 1 v -1 = h  2. 

It follows f rom the remarks  made  at the beginning of this subsection that  for 
any semisimple h in s tandard  posit ion it makes  sense to speak of the measure  
dx h on G h. We define the measure  dff on G/G h by d2 dx  h = dx. If  h is semisimple 
but otherwise arbi trary,  we choose y~G such that  h l = y h y  -1 is in s tandard  
position, and define dx h on G h to be the pul l -back of the H a a r  measure  dXh~ on 
Gh~ through the conjugat ion by y; and as before, dff is defined on GIG h by d~Ydx h 
=dx .  Lemmas4 .1  and 4.2 show that  these definitions do not depend on the 
choice of y, and that  the following result is true. 

L e m m a  4.3. Let  h, h' ~G be semisimple elements and h' = y h y  ~ for  some y~G. Then 
conjugation by y carries dx  h and dY; to the corresponding measures dx  h, and d2' on 
G h, and GIG h, respectively. 

CSG-  Cartan subgroup, CSA = Cartan subalgebra 
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We now define, for any feC~(G) and any semisimple heG, 

I(f: h)=Ih(f)= ~ f(xhx-X)d.,2. (4.3) 
G/Gh 

It is clear from Lemma4.3 that I ( f : h ) = I ( f : y h y  -1) (yeG); we may assume 
therefore that h is in standard position when studying I h. The restriction of I h t o  

C~(G//K) can be interpreted as an element of ~'(G//K), let us call it I~. We set 
(cf. subsection 3.4) 

Th=(lh*)* (heG semisimple). (4.4) 

Our interest is really in these distributions T h. But their study depends on that of 
the I h which is essentially the Harish-Chandra theory of the invariant integral 
on G. For  full details concerning this theory see Varadarajan [42]. 

4.3. The Invariant Integral. Let L be a 0-stable CSG and 1 the corresponding 
CSA. We put Lt=Lc~K, lt=lc~f, Lg=expl a where l g = l ~ ;  then L=LILR'-~LI 
• L R. For any root ~ of (go, It) we write r for the corresponding global root, this 

being the homomorphism according to which L acts on the root space .qc.,. Let 
m x be the centralizer of I R in g. The roots of (taLc , Ic) are precisely those roots of 
(g~, 1~) which are purely imaginary on 1. We select a positive system Px of roots of 
(ml,c, lc) and define the functions 'At, A+ and A 1 on L as follows; 

'At= 1-1 (1--~_~); A+=[  I~ (1-~-~)[~; AI='AtA+ �9 (4.5a) 
~eV t +aCPt 

we have 

A + (h)= [det ((1 - Ad(h- '))g/~,,)l ~. (4.5 b) 

Following Harish-Chandra we shall define, for any feC~(G), 

'Fi(h)=Aa(h ) ~ f ( x h x - ~ ) d x  * (heE); (4.6) 
G/LR 

here E is the set of regular points in L and dx* is the G-invariant measure on 
G/L a such that dx=dx*dob, dob being the Haar measure defined on L R by 
( . , . ) .  We then have 

'Ff(h)=A~(h)I(f: h) (f~C~(G),h~E). (4.7) 

Furthermore, for use in explicit calculation, we have the following easily proved 
result. 

Lemma 4.4. There are positive systems P of roots of (go, lc) such that PI ~ P and 
P\P~ is stable under complex conjugation. Fix such a P and write 

o~eP crePt 

Then, for h = h I exp H aeE, with hi eLl, H g e lR, and for f e C[ (G), we have 
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A+(h)=ea(h) e;'(H~) H ( 1 - ~  ~(h)); 
~eP\P~ 

'Ff(h) = eR(h) e r 'alp(h) I ( f  : h), 

where 

~R(h)=sgn Iv[ (1-~_~(h))  (h~E); 
ot~P, 
a rea l  

(4.8) 

'A v = [I(1 - ~_ ~). (4.9) 
~tEP 

Now 'Ff~ C"~(E) for any f ~  C~(G); moreover, if h6L is singular and uE U (1~) 
(=subalgebra of U(g~) generated by 1 and l), lira (u 'Fr)(h') will exist as long as h' 

h ' ~ h  

approaches h, ultimately in one connected component of E. In general, different 
choices of these connected components will lead to different limiting distri- 
butions. If, however, u ='v, with 

'v = e  - ~  o voe 6', (4.10) 

where v~U(lc) and v~'= - v  for all c(~P satisfying ~ ( h ) =  1, then 'v'Ff extends to 
a continuous function in a ngbd of h. In particular, if 

Ph={O~:o~6P,~(h)=l}, t~= ~I H,, 
~ P h  

(4.11) 

then it follows that fw-~('%'Ff)(h) ( fe  C~(G)) is a well-defined invariant distribu- 
tion on G. 

4.4. Limit Formulae. Let beg be an element in standard position and let L be a 
0-stable CSG of G. We say that L is aligned to h if the Lie algebra l of L is 
fundamental in gh, i.e., (gh,c, lc) has no real roots. Clearly we can find 0-stable 
CSG's L containing h and aligned to h; and any two such L are conjugate under 
K ~ G  ~ It was proved by Harish-Chandra [-21, Lemma 23] that for a suitable 
constant c(h)4:O we have, for all feC~(G), 

l(f:h)=c(h) ('r~h'Fr)(h) (L aligned to h). (4.12) 

By carefully keeping track of the constants in Harish-Chandra's proof of (4.12) 
we can determine the precise value of c(h). To this end we proceed as follows. 

Let 3 be a reductive Lie algebra over R with connected adjoint group Z, and 
let U c Z  be a maximal compact subgroup with Lie algebra u. Let l) be a 
fundamental CSA of 3. We define (cf. Harish-Chandra [22, w 37]) 

~c(3 ) = ( -  1)q(2 ~z)-q 2 -s/2 ~,,(6,)- ']w(Z/Z~)I-I 7(Z)-~, 

q = } ( d i m Z / U - r k Z + r k  U); s = d i m Z / U - r k Z / U .  
(4.13) 

Here tv,(6,) is defined in the obvious way using a positive system of roots for a 
CSA of n; Z~ is the centralizer of b in Z and w(Z/Zb) is the normalizer of b in Z 
modulo Z~; and 7(Z) is the constant given by (3.60) for the group Z. With this 
notation, we get, for the constant c(h) in (4.12), (cf. Lemma 4.4) 

c(h)=~:(gh)eR(h)e-~PCl~ 11 (1-- ~-~(h)) -1 (4.14) 
~ P \ P h  
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Remark 4.5. (i)The presence of the constant K(gh) in the formula (4.14) for c(h) is 
due to the fact that this computation is ultimately reduced to an analogous one 
on gh' The constant ~C(gh) is then the constant that enters the Harish-Chandra 
limit formula for gh" In fact, let P~ be a positive system of roots of (3,, b,) and let 
% =  I-[ ~, w~= I ]  Ha; let the invariant integral ~ on 3 be defined by 

~eP~ ~EP 3 

Og(H)=rr~(H) S g(HZ) dz* (g~C2(3),Hel)')" 
Z / Z  b 

Then (3(~) ~g extends to a continuous function on all of t), and the constant ~c(5) 
is defined by the limit formula 

g(O) = K(~). (a(~)  ~,~)(0) (ge c ~  (3)). (4.15) 

The explicit value given in (4.13) for K(~) is a result of Harish-Chandra [22, 
w167 36, 37] (cf. also Varadarajan [42, II, Section 17]). 

If Z is compact, the function H~----, ~ g(H z) dz* is itself C ~ and one obtains 
Z / Z  b 

the explicit value (cf. Harish-Chandra [16, Lemma 16]) 

K(3) = ( a ( ~ )  7r3)- 1. (4.16) 

I t  is to be observed that m~ and x 3 are homogeneous of the s a m e  degree and so 
3(m3)rt ~ is indeed a constant which is easily seen to be 40.  

(ii) The formula (4.12) with h = e is one of the main steps in Harish-Chandra's 
derivation of the Plancherel formula for G. If G has a single conjugacy class of 
CSG's, then the limit formula is essentially equivalent to the Plancherel formula 
(Harish-Chandra [15], [17]). 

Let us now assume for the moment that G has a single conjugacy class of 
CSG's and examine (4.12) for spherical f i.e., feC~(G//K) .  A straightforward 
calculation shows that (cf. (3.7) and (3.34)), 

'Ff(h)= 'A1(hi)(ag f ) (h , )  (h~E,h=hwhR). (4.17) 

On taking h~=expHl ,  hR=expH R with Hx~It, HREIR=a, we get 

e ~*~n'l'Fz(h) = ~ e(s) (e~ ' |  exp HR) , 
s~ro I 

where m I is the subgroup of m(g,l) generated by the s~ (c~ePi). Now, for s~m I and 
/D'=/77e, we have 

e(s) ~ o e "~' = e ~ r l  (H~,I + (6l, ~) + H~,R). 
~tEP 

So, writing 'w ,=  l-I(H,,g+ (6~, ~)), we find 

('to 'Ff)(e) = trot{ ('to, af  f)(1) 

=[m/[ 5 a f f ( v ) . ( '~~  
0% 
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Using (3.19) we then obtain  

P(v)=~c(~)lwl Im~loJ,(6/) ~I  (--v(H~,R)+QSI,C~>) (ve~1)" 
a~P\Pr  

To get an explicit formula  for fl we can now proceed in either of two ways. We 
can appeal  to L e m m a  3.11; or else we can use the explicit formulae for K(9 ) and 
7(G) together  with L e m m a  4 of w 37 in Ha r i sh -Chandra  [22]. In either case we 
must  use the fact that  n ( 2 e ) = 0  for all eeA + + (cf. Araki  [1, Proposi t ions  2.4 and 
2.3]). The final formula  is 

fl(v) = I(p) 2 1-I (l<~, v>l 2 + <c~, 6I)2) (ve~ (4.18) 
ae(P\PD/conj  

Here  we must  note  that  no root  of  P\P~ is real and the produc t  on the right 
hand side of  (4.18) is over  a complete  set of  mutual ly  non-conjugate  roots  in 
P\P~.  

4.5. The Distributions "F h. Recalling the definition of T h (cf. (4.4)), we formulate  

Proposition 4.6. Let h~G be a semisimple element. Then there exists a unique 
distribution TheY'(A) w such that 

Ih(f)= ~ f ( xhx -1 )dX=(Th ,~4 f>  (f~C~'(G//K)). (4.19) 
G/Gh 

T h is tempered and T h = Tyhy 1, for all yeG. 

It is possible to say more  about  the distr ibutions T h, provided we exploit the 
relat ion between the invariant  integral on G and the invariant  integral on M~, 
the Levi componen t  of  a parabol ic  subgroup  Q associated to lg, i.e., M 1 is the 
centralizer of 1 n in G. If Q=MLR N+ is the Langlands  decompos i t ion  of Q, n + 
= Lie algebra of  N + and dQ(ml)=  [det(Ad(mi),+)] ~, we have the following result 
(see Varadara jan  [42, II. 10. Proposi t ion  6]). 

Proposit ion 4.7. For any fE  C~(G), let f e  Cf(G) and fl  E C{'(M1) be defined by 

f ( x ) = ~ f ( k x k - 1 ) d k ( x ~ G ) ;  fa(ml)=dQ(mO ~ f(mln)don(ml~M). 
K N + 

Then, for h=hlhR6E with hieL1, hReLR, 

'Ff(h) = 7(G) 7 ( M ) - '  'A,(h~) ~ f~(m h I m - ~ hR) dm. (4.20) 
M 

Observe  that  in general M is neither connected nor  semi-simple;  however ,  all 
the foregoing theory applies to it as it is a group of the so-called Har ish-  
Chandra  class .~ (Har i sh -Chandra  [22, w 3], Varadara jan  [42, II, Section 1]). 

For  any f~C~.'(G//K) and any a~L R, we define fL ,~C~(M//K~)  by fLa(m) 
=fl(ma) (msM), where KM=Kc~M. Denot ing  by ~r the Abel t ransform on M 
and setting 

*L = A c~ M,  (4.21) 
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we obtain, from the definitions of the Abel transforms, 

(~gf l .a) (b)  = 7(-M) 7(G)- l(.~r f ) (b  a) (a~LR, be*L).  (4.22) 

If  *1 denotes the Lie algebra of *L, we obviously have 

A = * L L R ~ - - * L X L R ;  a=*lO1R;  *I-1-1R . (4.23) 

Consider now the group M and its compact C S G L  I c K ~ .  Applying Pro- 
position 4.6, we have for each h'sE1, the set of elements in L I which are regular 
in M, a unique tempered distribution V h, on *L, invariant under the Weyl group 
m~ (of the symmetric space M / K ~ )  such that, for g~ C~ (M//K~),  

'Ar(h') S g(m h' m -  1) dm = ( Vh,, ~ g)  (4.24) 
M 

So, using (4.20), (4.24) and (4.22), we get 

'Ff(h) = ( ghr @ Oh, , d f ) .  (4.25) 

Here | is with respect to the identification A~-*L  X LR; and 6hR is the Dirac 
measure at h R . So 

Th=A~(h)-l(Vh,|  - ( h = h l h R S E ) ,  (4.26) 

where the bar - indicates averaging with respect to to. 
Suppose now h is singular and L aligned to h. Writing 

'Nh = ~, Uj Vj (ujeU(lt,~),vjeU(lR,~)), 
l <j<ph 

it follows from formula (4.12) and (4.25) that, if h =hlhR~L,  

Th =c(h) ( ~ UjVhI@Vj(~hR)--. (4.27) 
1 <J<=ph 

Here 

uj Vh, = lim uj V h, (L + is a connected component  of/21). 
L~h'~hl  

In deriving (4.27) we must remember that the theory of the invariant integral 
guarantees that V h, is C ~ in h' and that the derivatives of V h, in h' have limits as 
h' approaches singular points, as long as the approach h'--,  h I is eventually in a 
connected component  of cooke I for some open ngbd o) of h I in L I. However, in 
calculating the limit, the connected component  in (4.27) should be the same for 
all j. These formulae lead immediately to the following theorem. 

Theorem 4.8. Let  h~G be a semisimple element in standard position and let L 
= L I L  R be a O-stable CSA containing h such that L is aligned to h and L R C A .  
Let  *L = M ~ A so that *LL~ ~- *L x L R. Then T h is given by (4.27) and 

supp(Th) C ~ s. (*LhR). (4.28) 
s ~ t l ~  
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Remark 4.9. Because of the differentiations vj in (4.27) (which are transversal to 
*L) we cannot say that T h lives on the union of the affine cosets s. (*Lha). This is 
the case however if h R is regular in LR, i.e., if ~,(ha)# 1 for all c~EP\P I. In this 
case the roots of (gh,c, lc) are in +P~ so that '~heU(lt,c). The formula (4.27) then 
becomes 

T h = c (h) ('~h Vh, | 6h,~) -. (4.29) 

Corollary 4.10. Suppose that L R = A and that h e L  is such that h R is regular in L R. 
Then 

Th= A + (h)- l (lvo1-1 ~ 6 ~h,). (4.30) 
x f f w  

In this case, M = M ,  PacPI:  and if Mh~(res p. mh~ ) is the centralizer of h I in 
M(resp. m), 

G h = M h A ,  gh=m~,+a.  (4.31) 

We now observe that the distribution Vh, is the constant 'At(hf). Moreover, a 
simple calculation shows that 

('to h ~d~)(h~)=( [ I  (H~,I + (~, ~I))' 21I)(hi) 
otEPh 

= ( c ~ ( ~ ) ~ ) .  1-I ( 1 - ~ _ ~ ( h ) ) .  
~ P r \ P h  

Hence, by (4.29), (4.14) and (4.8) we find that 

Th=a(h)lw1-1 ~ CS~h,, 
S E W  

where a(h) is the constant given by 

a(h) = (c? (m,,) ~zh) ~r A + (h)- 1. 

On the other hand, as the group Mh, is compact, ?(Mh~)= 1 and we get 

~(~) = ~(m~,) = (~ (~) ~)- 1 

in view of Remark 4.5. (i). Hence we find that a(h)= A +(h)-1, which gives (4.30). 

Corollary 4.11. The formula (4.30) is valid if  r k ( G / K ) =  1, for  any element h 6 L  
which is not elliptic, i.e.,for which h u #-e. 

4.6. The distributions Thfor regular h. We shall conclude section 4 by proving the 
following theorem. 

Theorem 4.12. Let  h be a regular element of  L = L I L  R. Then T h is a C ~ function 
on ~ s . (*Lhg)  , viz., there is a C~ function ~h on *Lh R such that, for  all g~C~(A), 

s~vo 

(rh,g)=lm1-1 ~ IgS(bhR)~h(b)do b" 
s e r e  * L  
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It is clear from (4.26) that for proving this we may assume L a = { 1 }. We need 
the following 

Lemma 4.13. Let L c K  be a CSG of G (so that rk(G)=rk(K)) and let h6E. Then 
the projection map (p: G--~ A • N which sends k a n to (a, n), restricts to a proper 
submersion of [h]o onto A x N. In particular, the restriction to [h]o of the 
projection ~z: G ~ A  (cf. subsection3.2) is everywhere submersive and maps [h]G 
onto A. 

Let a be the restriction to [h]G of q~. If x~G, the tangent space to [h]a at 
x h x -  l can be canonically identified with Ad(x) (Ad(h- a)_ 1) (g); as h is regular, 
(Ad(h-1)_  1)(g)=l • (_1_ is orthogonal complement with respect to ( . , . ) )  so that 
this becomes (l• ~. So to prove that cr is submersive we should check that [ + (I• ~ 
=g, or [~-~ + l •  Taking orthogonal complements this reduces to proving 
t h a t ( ~ - ' ) ~ l = ( 0 ) .  But clearly l n ~ - ' = ( 0 ) ;  for, if H~I, ad H  has only purely 
imaginary eigenvalues while, for any Xe~ ~-', adX has real eigenvalues. The fact 
that o-1(co) is compact for compact o ) c A  x N is obvious. Since o is submersive, 
a([h]o ) is open in A x N, while the fact that it is proper shows that a([h]~) is 
closed in A x N. So, by connectedness of A x N, cr is surjective. 

We can now prove Theorem4.12. We have Th= U t with U = I ~  (cf. (4.4)). If 
b > 0  is arbitrary and ~b b is an element of C~(G//K) which is 1 on KA(b)K, it 
follows from (3.22) and the relation ( U * , g ) = ( U , . ~ /  lg ) ,  that (Ut ,  g) 
=((ObU)t ,g)  for all g~C,~,(A(b)) ~. So it is enough to prove that (tpU)*eC~'(A) 
for any O6C~'(G//K). In view of (3.24) this reduces to proving that 
rc.(O U)6C~(A). This is obvious; for, ~ U is a C ~ density with compact support 
on the manifold [h]~, and ~z: [h]~--~A is a surjective map which is everywhere 
submersive (cf. Varadarajan [42, 1.2. Lemma 1]. 

5. Periodic Geodesics in X and Their Connection with the Spectrum of X 

5.1. The Distributions Tc and the Poisson formula fi)r X.  We now return to the 
framework of G, F, and X = F \ G / K .  Let ~(F) be the set of all F-conjugacy 
classes of elements of F. If cs~(F), the tempered distribution T~ on A and the 
number v c > 0 are defined by 

Tc=T ~, vc = vol(F~\G~) (Tec). (5.1) 

Here T~ is defined by (4.4) or (4.19), and vol(F~\G~) is calculated using the Haar  
measure dxr on G~ introduced in section4. T,. and v c do not depend on the 
choice of 7~c; and T c depends only on the G-conjugacy class [7]~ containing 7. 

The procedure for determining T c is as follows. We select he[c]o=[7] G in 
standard position and a 0-stable CSG L containing h such that L R c A and L is 
aligned to h; then T~= T h is calculated using (4.27). Let *L be defined by (4.21) 
and let 

*A(c)= ~ s.(*Lha), l(c)= IlloghRII. (5.2) 
S E W  
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It is clear that *A(c) and l(c) depend only on [c](~, and that l(c)>0 if and only if 
the elements of [c] G are not elliptic. The trace formula and the results of 
Section 4 then lead to the following formula: 

Theorem 5.1 (Poisson formula for X ). The spectral multiplicities m(2) and the 
distributions T~ are related by the following identity of distributions: 

m()~)~= ~ v~T,. (5.3) 
2e A ce~(I ' )  

Here 

VMr=2~o~""12~ln-(n-r)/21(p)-lVOlo(X); T M r = l m l - t  ft. 

Moreover, 

q~=e ;~176 and fl is the Fourier transform of fl defined by ( s  ~ ~fldv 

(ge C~(A)). T~ is tempered and its support is contained in *A(c). The numbers l(c) 
are bounded away from O for c ~e [el r and so there is an open neighborhood of 1 in 
A that does not meet the support of any of the T,(c~= [e]r  ). 

Let Y be a conjugacy class in G of semisimple elements. We say that Y is 
regular if its elements are regular in G. If L is a 0-stable CSG of G with L R ~ A, 
we say that Y is of type L if there is he Y such that L contains h and is aligned to 
h. It is clear that such an L always exists and is unique up to conjugacy by K. If 
Y is of type L with LR=A, we say Y is of Iwasawa type. If we can find he Y such 
that h is in standard position and h g is a regular element of A (i.e., loghRea and 
(e, loghg)+0Vc(~A +), then Y is certainly of Iwasawa type. We then say that Y is 
of real regular lwasawa type. If rk(S)= 1 and Y+[e]~, this is always the case. If 
ceC6'(F) we say that c is regular, type L, etc. if [c]G has the corresponding 
property. It follows from a result of Mostow [33] (see also Prasad-Raghunathan 
[36]) that W(F) contains infinitely many classes of any type, and for the Iwasawa 
type, infinitely many that are real regular (indeed such elements are even 
"projectively dense"; see Mostow [34, Lemma8.3]). We can now restate the 
results of section 4 as follows. 

Theorem 5.2. T,, is a smooth density on *A(c) (f c is regular. 1.f c is of real regular 
Iwasawa type (in particular fi)r all c + [e]G (f rk(S)= 1), 

T~=A+(h)-X(Iwl -~ ~ ~h~), (5.4) 
SEW 

where h is any element of [C]v in standard position with hReA. 

The distributions T~ and their supports *A(c) are intimately related to the 
manifolds of periodic geodesics in X. This circumstance makes it possible to 
carry out a detailed comparison with the results of Duistermaat-Guillemin [6] 

on the singularities of the distribution ~ e -'~,'/~ =d(t), 21,22 .. . .  being the 
j =  l 

eigenvalues of a positive elliptic differential operator on X of even order m that 
comes from a G-invariant differential operator on S. We now turn to a 
discussion of this aspect of our problem. 
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5.2. 7-periodicity in the Tangent Bundle TS. For  any C ~ manifold Y we denote  
by Ty Y the tangent  space to Y at y e  Y, and by TY the tangent bundle of  Y. If  a 
Lie group  acts on Y, this act ion lifts to a natural  act ion on TY. Let  Y be a 
complete  Riemannian  manifold,  and let {q~'= 4~'r: - o o  < t <  oe} be the geodesic 
flow on TY. If the metric  of Y is invariant  under  a Lie group H acting on Y,, the 
flow 4~' will c o m m u t e  with the act ion of H. Given 7EH, we say that  a point  
z e T Y  is 7-periodic if 7(z)=q~X(z) i.e., if z is a fixed point  of  the Poincar6 m a p ~ ,  
=7-1or  x. The  tangent map  

(d~,)= = P,,z : Tz(TY) ~ Tz(TY) (5.5) 

is then called the linear Poincar~ map at z. We denote  by F(7) the set of  7- 
periodic points of TE If  H 1 is a discrete subgroup  of  H that  acts freely and 
proper ly  discont inuously on Y, we can form the manifold Y1 = H x \ Y .  The m a p  
Y-+Y1 lifts to a m a p  T Y ~ T Y  1 and TYI~-HI \TY .  If  7~H1,  then a point  z 
=(p,  v)eTY is 7-periodic if and only if the geodesic c on Y defined by z is the lift 
of  a periodic geodesic of  per iod 1 in Yx, and satisfies c(O)=p,c(1)=7.p. More-  
over, the image z a of  z in TY 1 is a fixed point  for 4)~,; and the tangent  m a p  
Tz(TY)-~ T~,(TY1) intertwines P~, ~ with the tangent  m a p  of q~ar, at z I . 

These  definitions and  remarks  are appl icable to the case when Y= S = G/K, 
H=G,  Ha=F,  Y I = X = F \ S .  The natural  m a p  G-~S  is denoted by n, and its 
tangent  map  at  x is denoted by ri~: g--~ T~)S;  in what  follows, the elements of g 
are regarded as left invar iant  vector  fields on G and the tangent  spaces T~G are 
canonical ly identified with g for all xeG. The tangent  m a p  ~e is an i somorph i sm 
of ~ with T~(e)S, and the Riemannian  metr ic  of  S is the G-invariant  one that  
restricts on T,~te)S to the image of the Killing form on ~ by r~ e. The geodesics on 
S through n(e) are the curves 

Cx: t ~-~n(exp tX)  (telR, Xe~). (5.6) 

We have  

cx(O ) = n(e), Ox(O) = X, (5.7) 

while for any xeG, the geodesics through n(x) are given by 

Cx, ~(x)(t) = n(x exp t X) = x. Cx(t ) (teN). (5.8) 

Fo r  some computa t iona l  purposes  it is convenient  to in t roduce the sub- 
manifold  

= exp ~ (5.9) 

of  G. It is wel l -known that  S is a closed submanifo ld  of  G and that  exp is a 
d i f feomorphism of ~ with S. We denote  by l o g ( S - ~ )  the inverse of  exp(~---,S). 
We now define the t ransposi t ion  an t i au tomorph i sm  x~--~x' of G(resp X ~-~X' of  
9) by 

x'=O(x-~),  X ' = - O ( X )  (xeG, Xeg).  (5.10) 



Spectra of Compact Locally Symmetric Manifolds of Negative Curvature 61 

We then have an action of G on itself given by 

(g,x)~---,g[x] =gxg '  (g, xeG). (5.11) 

For any x~G we have its Cartan decomposition 

X=XnXs=xKexplog(x  s) (xKeK, xseS, log(xs)e~), 

using which it is easily seen that S is the orbit of e under the action (5.11) and 
that 

~: n(g) ~--~g g' (geG) (5.12) 

is a diffeomorphism of S with ,~ that commutes with G and takes n(e) to e. We 
shall use this diffeomorphism to go from S to S and vice versa. If seS we define 
s ~ by 

s~ = exp(�89 (seS); (5.13) 

it is the unique element of S whose square is s, and s~---~s ~ is a diffeomorphism of 
onto itself. 

We have T S c  TG. The action of G on TG induced by (5.11) is given by 

g. (x, X) = (g Ix], Ad(g')- I(X)). (5.14a) 

In particular, 

TeS=5 , T~S= Ad(s-�89 (~). (5.14b) 

To write down the geodesic flow in TS we note first that ~ induces the 
diffeomorphism 

(~(x), ,ix(X)) ~ (x x', 2 X x' 1) (5.15 a) 

t - -  i ~ t  (xeG, Xe~) of TS with TS. Since the geodesic flow 4' s -  on TS is given by 
(with xeG, Xe~) 

�9 '(rt(x), ~x(X)) = (n(x exp t X), 7i x exptx(X)) (5.15 b) 

it follows from these formulae that the geodesic flow ~ ' =  4)} on TS is given by 

~t(s, Y)=(s expt Y,, Y) (seS, YeTiS). (5.16a) 

This is the restriction to TS of the flow ~'  on TG given by 

~'(y, g ) = ( y e x p t  Y, Y) (yeG, geg). (5.16b) 

Comparing (5.14) and (5.16) we see that for ~.~G, (so, Y)eTS, 

(s o, Y) is 7-periodic ~ y s o 7' = So exp I1, Y= Y~'. (5.17 a) 

Hence, for such 2=(So, Y)eTS, the Poincar6 map N~ is given by 

~ : ( s , X ) ~ - , ( 7 - ~ s e x p X T ' - l , X  v') ((s,X)eTS). (5.17b) 
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Proposition 5.3. (i) I f  z is y-periodic in TS then g. z is g 7 g-Cperiodic in TS. (ii) 
There are y-periodic points in TS if and only if 7 is 3emisimpIe. (iii) I f  Y ~ ,  (resp. 
Zc~) (e, Y) is y-periodic in TS (resp. 0z(e), z~(Z)) is y-periodic in TS) if and only if 
~/r and Ys commute and 

log Ys = t Y(resp. log Ys = Z), (5.18) 

that is, if and only if y is semisimple, in standard position and Y= 2 log ys(resp. Z 
= log ?s), 

The assertion (i) follows from the fact that G commutes with tb t. From 
(5.17a), for Y6~, (e, Y) is y-periodic if and only if yy '=exp  Y, Y=Y<. Let X 
=logys  so that ? = ? r e x p X .  Then y y ' = e x p 2 X  TM so that Y=2X~"; and Y< 
=(2X~")<= 2X ~ =2X=Y.. Hence X~'"=X, showing that V is semisimple, in 
standard position, and that Y = 2 X  ~" (cf. Lemma4.1). Conversely, if V is semi- 
simple and in standard position, we define Y=21og? s and verify (5.17a) for 
(e, Y). This proves (iii); in view of (i), this gives (ii) also. 

Let 7~G be semisimple. Define 

F(?) = set of 7-periodic points in TS (F(7) c TS) 
(5.19) 

S( j=projec t ion  of F(y) in S (S(7) c S). 

Proposition 5.4. Let y6G be semisimple. Then F(7) and S(?) are connected smooth 
manifolds, stable under G,~; and the projection F(?)-~ S(?) is bijective. Moreover, G~ 
acts transitively on F(7), the stabilizer in G,; of points ofF(y) are maximal compact 
subgroups of Gy, and F(y) is a symmetric space. I f  y is in standard position, G. l and 
9~ are O-stable, K~=G~,c~K is a maximal compact subgroup of Gy, and 
G~ ~ exp(~) K~ where ~7 = g c~. 

Since G is transitive over S, we may assume that 7 is in standard position. 
Formula (5.18) shows that when rc(e)~S(y), there is exactly one point in F(y) 
above ~z(e). Moreover, (i) of Proposition 5.3 shows that F(7) (and hence S(y)) are 
G~-stable. Suppose now that ~z(e)~S(y) and p~S(y). Let Z6~ be the unique 
element such that p=~z(expZ) and let y =  exp(-Z) .  Then ~z(e)=y. p eS(yy y-1). 
So ~ = y y y  -1 is in standard position. If ~K=YyKy -1, ~s=Yysy -1, then 
=(~)K('7)S = 9K iS- NOW all elements in sight are semisimple; moreover, (7)K and 
(?)s commute (because ~ is in standard position) while ~K and ~Ys commute also 
(because ?K and Ys commute). So, by the uniqueness of the decomposition of 
semisimple elements into a product of commuting semisimple elements one of 
which is elliptic and the other hyperbolic we have 

y ?K y - 1 = (7)K, Y ?S Y- 1 = (~7)S" 

Applying ' to the first and 0 to the second of these relations we find that y2 
= e x p ( - 2 Z )  commutes with ?K and 7s. Hence Z commutes with ?K and Ys, i.e., 
Z~g~ or p=exp(Z).~r(e)EG~ The statements of the proposition easily 
follow from this. 
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Remark 5.5. Let 7 be in standard position and write Y=logTs. It follows from 
(5.18) that 

F(;% = {(~(g), r~g(Y)): geG.J. 

It is clear from this description that the manifold F(7) is horizontal with respect 
to the Levi-Civita connection. 

5.3. The 7-displacement Function. For an arbitrary element 7eG, the 7-displace- 
ment function fl~) is defined on S by 

f(~)(p) = dist (p, 7" P) (peS), (5.20) 

where dist is the distance function on S. Actually it is more convenient to work 
with gl~= ~(f~.))2. Clearly, if x =x K x s, then 

g(~)(p) =�89 IIlog(7 exp( X))sll 2 (p=expX,  Xe~). (5.21) 

So g~  is an analytic nonnegative function. Clearly .f(x~.x-1)(x" p)=f(~(p). 

Proposition 5.6. g(71 has a nonempty set of critical points if and only if 7 is 
semisimple. In this case, the set of critical points of g~7) is precisely S(7). 

Using the transitivity of G on S, this comes down to proving that ~(e) is a 
critical point of g{~) if and only if 7 is semisimple and in standard position. 
Writing 

e x p ( - t X ) T e x p t X = k ( t ) e x p Z ( t )  (X,Z(t)e,) ,  (5.22) 

with k(0)=7~, Z(O)=logTs=Z say, we find that g(~')(~(exptX)) -1-~[12(t)112. 
Hence ~(e) is a critical point ofg (y~ if and only if <Z;(0),Z) =0  for all X ~ .  We now 
differentiate (5.22) at t = 0  (in this computation, the tangent spaces to K and 
are identified as usual with f and ~ respectively). Rewriting (5.22) as 

exp ( -  tX  < 1) exp t X  = ?s ~(TK 1 k(t)) 7s(exp(-Z) exp Z(t)) 

and using the well-known formula for the tangent map of the exponential (cf. 
Helgason [24], p. 36) we find 

1 --e -adZ 
X-Ad( ' / -~)X=Ad(ysl ) ( /~(0))4  a d Z  (2(0)) (5.23) 

or, 
�9 e a d Z _ _  1 . 

Ad (7s) X - Ad (7[ a) X = k(0) + ~  (Z(0)). 

We now take the component in ~ modf  of both sides. This gives 

(sinh ad Z 
cosh (adZ) (X) -  Ad(7K 1)X = \- a d Z  ) (2(0)). 

(5.24) 

Take scalar products with Z on both sides and note that <(adZ)"(Z') ,Z)=0 for 
any m > 1 and any Z', We then obtain 

(5.25) 
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(X,  Z) - ( Ad(7~7 ') X, Z) = <Z(0), Z) 
or 

<Z(0), Z )  = (X,  Z - Z ' " ) .  (5.26) 

If this is 0 for all Xe~, then, as Z-Z~Ke~,  we find that Z = Z  ~K. So 7~ and 7s 
commute, and we are through. 

Proposition 5.7. Let ~,eG be semisimple. Then on the critical set S(?) the function 
f~)  takes the same value m(?). Moreover, re(y) is the minimum value o f f  ~ and S(7) 
is the set f(r)-'(m(?)). I f  y is in standard position, then re(j=/Jlogys[l. 

We may assume that ? is in standard position. Then, as G~ is transitive on 
S ( j  and f~) is G~-invariant, it is a constant on S(7), say equal to m(j .  Let m 
= i n f f  ~). If m is actually attained at some point, then that point must be 
stationary for g~) and so lies in S(7), proving m = m ( j .  To prove that m is 
attained, it is enough to show that there is a minimizing sequence which is 
bounded in S. As f{r) is Gr-invariant, this will be done if we show that for any 
number c >0, there is a compact subset Q c S  such that 

E = {p: peS, f(~)(p) <= c} ~ G v �9 f2. (5.27) 

If p = x.  n(e), then f{~')(p) < c if and only if x -  1 y x = k exp Z where H z ]1 < c. Hence, 
there is a compact set f2~cG such that x .n(e)eE if and only if x ~?xef2~. 
Now, the conjugacy class [7]G is closed and so the map x~-~x -~ ?x induces a 
homeomorphism of G~\G onto [7]~. Hence the preimage in Gr\G of the set O1 
under this map is compact. So, there is a compact set f22cG such that 
x-~?x~f21 if and only if xeG~f22. Then E=G~f22.n(e)=G~f2 where f2 
= ~2" n(e). 

Remark 5.7. The above results on the displacement function are known (see 
Ozols [35]). Ozols' proof makes use of a second derivative calculation to 
conclude that the function t~-~g(~(c(t))(teR) is convex for each geodesic c, i.e., 
d ~ 
d-~g~)(c(t))>__0 for all t. This would then imply directly that the set of critical 

points of g{V) is totally geodesic and transitively acted on by G< Our proof has 
the advantage of avoiding second derivative calculations and, in keeping with 
the theme of this article, is group theoretic in character. The convexity is itself a 
special case of the more general result that for any two geodesics Cl,C2, the 
function g: t~--~dist(cl(t), c2(t)) ( teR) is convex. 

It can also be shown that the critical set S(7) of g~) is clean, i.e., that at each 
point peS(7), the Hessian form is nondegenerate transversal to S ( j  (see Ozols 
[35]). This is however not needed for our purposes. 

5.4. The Linear PoincarO Map at a y-periodic Point in TS. Let us consider the 
point 2=(e ,Y )eTS  where Y=21OgTs, ~ being semisimple and in standard 
position. To determine the linear Poincar6 map at 2 we use the trivialization 
T S ~  • ~ given by the map (cf. (5.14b)) 

z: (X,Z)~---~(exp X, Z exp(-x/2)) (X, Ze~). (5.27) 
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So, using (5.17b), we obtain for the Poincar6 map in s x ~ the formula 

aj: (X,Z)~--,(V,, W) (X,Z,V, W~), (5.28) 

where 

exp V = 7- t exp X/2 exp Z exp X/2 7' - t ; 
W = e adV/2 Ad(7') e-"d x/2 (Z). (5.29) 

The derivative (d~)(o, y) of ~ at (0, Y) can then be calculated from this expression 
for ~.  Regarded as an endomorphism of ~ | ~, it is given by the following 2 x 2 
matrix whose entries are endomorphisms of ~: 

- ( cosh(�89 Y) sinh(�89 Y)/(�89 Y)] 
Pm'r)=(d~)m'r)=Ad(2K1)~ \sinh(�89 Y)o}ad Y cosh(�89 Y) / .  (5.30) 

It is easy to determine the spectral decomposition of/~o.r) from this formula. Let 
us write ga for the eigenspace of �89 Y in ,q for the eigenvalue a. Then g is the 
direct sum of go and the g+, (a >0). For any a >0,0(g~---,g_,) is an isomorphism 
and %=(g. (Dg_.)n~ is the eigenspace of (�89 Y)219 for the eigenvalue a2; go is 
0-stable and we put % = g o c ~ .  Then ~ is the direct sum of the % (a>0), dim(%) 
=dim(g+_.) (a>0), and the ~. (a>0) are all Ad(gK)-stable. It follows from this 
that 

- 0 1) 
Pro,Y, tg.*..----Ad(TK 1) (e;  I e-" . / ) --Ad(7-  I . . . ._ .  

/~o, y)19o~9o = Ad(7~ 1)(I0 Ii). 

(a > 0) 

(5.31) 

Since .% = gr, the centralizer of Y, the first relation gives 

/5(o.Y)19+ ~9+ -~(Ad(7- 1)),/,~ (~+ = @ ~a)" 
a>O 

(5.32) 

From the second relation it is moreover clear that the eigenvalues of/~(o,y)19o~9o 
are precisely those of Ad(7~ 1) on %. We note that 

~o =g r  c~,  Ad(7- 1)190 = Ad(7~ 1)190 . (5.33) 

If e is an eigenvalue of Ad(7- 1)19o, U~ the corresponding spectral subspace (in 
�9 . %), then, 

(5.34) 

Since YE~o, we see at once that Pto,n has a nontrivial unipotent component. 
Indeed, if g r is the centralizer of 7 in g, then ~ =.q ~ c~ s is the subspace of ~o fixed 
by Ad(Tt7 ~) and so we get 

Ker(I -/~o, r)) = {(X, 0): X ~  ~} = Range ((I -/~o,v))l~9~). (5.35) 
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Proposition 5.8. For any semisimple element 7eG, ~,  has the clean.fixed point set 
F ( J ,  i.e., F(7) is smooth and for any zeF(7), T~(F(7))= Ker(I-P~,~),  P~,~ being the 
tangent map of ~ ,  z at z. 

We may take z to be above n(e). 7 is then in s tandard position and 
d im(Ker ( I  - P~,z)) = dim(~ ~) = d i m ( F ( j )  by (5.35). Since T~(F(j) c Ker ( I  - P,,~) in 
any case, we are done. 

Remark 5.9. The formula (5.35) again shows that  F(7) is horizontal  with respect 
to the Levi-Civita connection. 

It is useful to write down the information contained in (5.31)-(5.34) in terms 
of roots. We select a 0-stable CSG L containing 7. Let  1 be the corresponding 
CSA; we have l e g  r. We now consider the roots of (9r,~, I~). For  any such root  c~, 
we have 0c~ = - ~, ~ ~(7) = ~ ~(TK), ~ ~(7) = ~ ~(7- 1). The span of g~. + ~, 9~, + ~ is stable 
both  under 0 and complex conjugat ion;  we put  b ,  for the intersection of this 
span with g. If fl is another  root  but  + _+c4 4: +~, then bp and b ,  are linearly 
independent.  We consider the following special cases. 

c~ neither real nor pure imaginary. The four roots  _+c< + ~  are distinct. So on 
II~.b,, Ad(7~ ~) has the eigenvalues ~+~(~-~) with multiplicity 2. On the other  
hand, b ~ c ~  has dimension 2 and is spanned by X+_~-OX+~. Indeed, if X + ,  
- O X •  we would have ~ = 0 e ;  if X , - O X ,  is a multiple of X ~ - O X  .. . .  
then 2 r  [L, = 1, i.e., c~ is real. Thus Ad(v~ 1)lb,o~ has the eigenvalues ~_+ ~(7 1), with 
multiplicity 1. 

c~ real.b~ is now two dimensional.  Ad(7~ ~) has the eigenvalue r  -+ 1 with 
multiplicity 2. b , ~ s  (resp. b , n ~ )  is one dimensional and spanned by X ~ - O X ~  
(resp. X~+OX~) (as 0 c ~ = - ~ ,  X~+OX ~:t:0). So, on b~n~,  Ad(7~ ~) has the 
eigenvalues ~ ( 7 -  ~) with multiplicity 1. 

c~ purely imaginary. O~ is now c~ while b~ is two dimensional  as in the preceding 
case. For  the root  vector X~ we have either X ~ e ( [ n g r )  ~ or X~s(~ngr)~;  0~ is 
called compact or noncompact accordingly. If c~ is compact ,  b ~ n ~ = 0 and there is 
no contr ibut ion to Pr,~. If c~ is noncompact ,  b~c~ ,  and Ad(7~)lb~ has the 
eigenvalues ~• ~(7-1), each with multiplicity one. 

Since the imaginary roots  of (g~, I~) are already roots  of (gr, c, f~), we get 

Proposition 5.10. Let 7 be semisimple and in standard position. Let zeF(7) be 
above r~(e) and let L be any O-stable CSG containing ~. Then, with 2 as an 
indeterminate, and ~ running over the roots of (gc, I~), 

det (2I-Py.~)=(2-1)  2dim~'m 1-[ (2 -~_~(7) )  YI ( , ;(_~_~(j)2.  (5.36) 
:tnot ~ imaginary 

imaginary noncompact 

From (5.35) we see that  I -Pe ,  z induces an isomorphism 

(I - P~,~)~ : R/N --o R/N,  (5.37) 

where R = Range ( I -  P~,~), N = K e r ( I -  P~,~); we refer to this as the reduced linear 
Poincar6 map. F rom (5.36) we get 
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Corollary 5.11. We have 

det(I-Py,z)  ~ =  l~ (1-~__,(y)) [ ]  (1-~_~(y)) 2. (5.38) 

no t  ~ i m a g i n a r y  
i m a g i n a r y  n o n c o m p a c t  

I f  L is of Iwasawa type, i.e., L g = A, then 

det(I-P~,z) ~ =  11 ( 1 - 4  ~(7)). (5.39) 

a no t  
i m a g i n a r y  

Corollary 5.12. Assume that LR=A,  i.e., L is of Iwasawa type and that Ys is 
regular in A. Then 

M e t ( / -  Pe,~)* I~ = A + (y). (5.40) 

For  (5.39) we must remember that there are no imaginary noncompact roots 
for Iwasawa L; to get (5.40) we use (4.5b). 

Remark 5.13. Formula (5.39) seems to have been first obtained by Kolk [28]; 
has method was more differential geometric. 

5.5. Periodic Geodesics in X.  The natural map p: S--~ X = F \ S  gives rise to a 
map p: TS ~ T X  ~ F \  TS. As S is simply connected, the mapping that assigns to 
any y e F  the p-images of curves from y to 7 .y  (yeS) induces a bijection cv--,p(c) 
from the set (d(F) of F-conjugacy classes to the set Ul(X) of free homotopy 
classes of closed curves in X. Since the elements of F are all semisimple, it 
follows that for any ce~(F) the homotopy class p(c) contains periodic geodesics 
(of period 1), namely the p-images of all the y-periodic geodesics for any 7ec, 
now considered as curves in S rather than as points in TS. Regarding these 
periodic geodesics as curves in TX we can identify the set of periodic geodesics 
lying in the class p(c) with a subset F(c) of TX.  Obviously 

F(c)) =/5(F(7)) (TeCe<g(r)). (5.41) 

Since F(y) has been shown to be a symmetric space (cf. Proposition 5.4) it is 
natural to expect that F(c) is a locally symmetric space (cf. Kolk [28], VI, 
Theorem 6). This is indeed so, and the argument for proving it is essentially the 
following elementary lemma. 

Lemma 5.14. Let y, 7' eF, zeF(y), z'eF(y'). Suppose /5(z)=/~(z'). Then there is a 
unique 6eF such that 6. z = z' ; and 7' = 37 6- x. In particular, the F(y) are mutually 
disjoint for distinct y; and for a given y in F, two points z, z' in F(y) have the same 
image in T X  under p if and only if the element 3eF such that 3 . z = z '  belongs to 

Since z can be moved to a position above rc(e)eS, we may assume that the 
base point of z is x(e). Then zeF(y) as well as F(3- ty '6 ) .  Let yx=6-1y '6 .  By 
Proposition5.3, both y and y~ are in standard position and that z=(n(e),  
~r ~r ). So ys=(Y0s . Using the fact that YK and Ys (resp. 
(71)r and (y0s=Ys) commute, we find that 

y{ a 7 =(Ya)K t (Yt)s I Ys 7r =(71)~ t y~eK. 
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As F contains no elliptic elements other than e, 7~ =7, or 7 '=67 6-~. So the first 
assertion is proved. If z~F(7)c'~F(7'), we take 6 = e  above to get 7=7 ' ;  if z, 
z'~F(7) and z ' = 6 . z  for fieF, then we take 7 '=7 in the above result to get 6~F~. 

Proposition 5.15. Let c6C~(F). Then the set F(c) of periodic geodesics (lying in the 
class p(c)) is a smooth compact submanifold of TX and is canonically isomorphic to 
the compact locally symmetric space F~\G JUr where Ur is any maximal compact 
subgroup of G r. The elements of F(c) all have the same length l(c) (cf. (5.2)), 
considered as curves in X; and l(c) is the minimum of the lengths of the closed 
curves in the homotopy class p(c). For c6Cg(F), the F(c) are mutually disjoint; and 
the l(c) form a discrete subset of the nonnegative reals with each value taken only 
by finitely many c. 

It is immediate from Lemma 5.14 that F(c)~F~\F(y) for 7~c, and that for c, 
e'~Cg(F), F(e)c~ F(c')=~ whenever e ~= c'. The compactness of F(c) is clear since 
F~\Gr/U~ is compact (cf. Lemma 2.5). Proposition 5.7 implies that all the geo- 
desics in F(c) have the same length l(c) and that this length is the minimum of 
the lengths of closed curves in the homotopy class p(c). The last statement 
follows from the fact that inf l (c)>0 (Theorem 5.1), and the fact that a 

c er [ e ] r  

compact subset of G meets only finitely many of the c's (Lemma 2.5). 
The set of positive numbers l(c) is of course the so-called length spectrum of 

X. The identification of the space F(c) with Fr\G~/Ur suggests that the distri- 
butions T~ appearing in the Poisson formula for X should be intimately related 
to the manifolds F(c). The following partial result is evidence of such a 
relationship. 

Proposition 5.16. Let c~C~(F) be of real regular Iwasawa type (cf. subsection 5.1). 
Let L be a O-stable CSG with LR=A and let h=hlh  R (h~L~, hR~A' ) be an 
element of L in the G-conjugacy class of elements of c. Then 

T~ = I det (I - Pc)*l- t. (I to1-1 ~ fish,) (5.42a) 
S E W  

where we write det ( I -Pc)  for the common value of det(l-Pr,~) as 7 varies in c and 
z in F(7). Moreover, in this case, Fr is isomorphic to Z rk(s) for 7eF\{e} : F(c) is a 
torus of dimension equal to rk (S ) fo r  any c + [ e ] r ;  and the volume of this torus 
under the identifications F(c),~ Fr\F(7) ~ Fr\G r/U~ is precisely v c (cf. (5.1)): 

v c = vol(F~\G ~/Ur) = vol o (F r \G  r/Ur). (5.42b) 

The statement concerning T c follows from (4.30) and (5.40). For the remain- 
ing ones we may assume yeL  so that 7=717R, 7seA '. Then G~=Mr A where 
M ~, is the centralizer of 7, in M. Since M r, is compact, F r n M >.~ = {e}. So, under 
the projection homomorphism M~A---,A, Fe gets injectively mapped onto a 
subgroup A ~ r) of A. The compactness of M r, also implies that A { ~'} is discrete in 
A. Since A(r ) \A"~Fr \MrA  is compact, A (~) is a lattice in A and so is 
isomorphic to Z~k(s); and F(c)~-a torus of dimension equal to dim(A). Moreover, 
since U~=M~,, Gr',, Ur x A, so that dxr =dox r, and 

vc = v o l ( F , \ G  JU~) = v o l o ( F , \ G  r/U,) = volo (A ( ')\A). 
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Suppose now that rk(S)= 1. Then, for every c+[e]r,  (5.42a, b) are valid. By 
the above result, the group F~ (74=e) is infinite cyclic and so we can find 7oeF~ 
such that 7o generates F~ and 7~=7 for some integer m> 1. It is obvious that c o 
=[7o]r  is uniquely determined by c; c0(res p. /(Co)= lo(c)) is called the primitive 
class (resp. primitive length) corresponding to c. Clearly 

l(co) = l o (c) = m-  1 l(c) (5.42c) 

Theorem 5.17. (Poisson formula when rk(S)= 1). We have 

m(2) e ~ =2 "(2~) ~z -(" a)/2I(p)-x vol0(X)(�89 ) 
).EA 

+�89 ~ lo(c )[det ( I -PO~l-~(6m)+6 l~c)) (5.43) 
cE~(F) ,  
c �9 [e]r 

as an identity of distributions on a'~ lR, lo(c ) being the primitive length correspond- 
ing to c. 

Remark 5.18. For a less precise version see Kolk ([28], formula (34), p. 107). 
When G =SL(2, IR), formula (5.43) specializes to results of Randol [37] and Lax- 
Phillips [29]. 

5.6. Comparison with the Results of Duistermaat-Guillemin. The formula (5.43) 
obtained above raises the question of the relation between the results of this 
article and those of Duistermaat-Guillemin [6] on the singularities of the 
Fourier transform of the spectrum of positive elliptic differential operators. In 
this subsection we shall indicate briefly how this comparison can be made. In 
what follows, we write d for the Laplace-Beltrami operator ~o s of (2.6). 

We note that the Riemannian structure on S induces an isomorphism 
TS-~ T*S. The Hamilton flow of the length function of the tangent vectors to 
S(=the principal symbol of ( - d )  ~ pulled back to TS) coincides with the 
geodesic flow tb t on (TS)t, the unit sphere bundle of S. Multiplication by t > 0 in 
the fibers of TS intertwines q~t on (TS)t (=  the sphere bundle of vectors of length 
t) with tb t on (TS)~. So, for any 7eG we have an idendification of F(7 ) with the 
set F 1(7) of periodic (with respect to 7) geodesics in (TS)I, of period Illog 7sll. 

If we pull back the canonical symplectic form of T*S at a point z above re(e) 
to ~O~ via the identification T * S ~ T * S  and the trivialization z (cf. (5.27)), we 
find that it is the symplectic form a~ given by 

tr~((X, Y): (X', ~')) = ( Y, X') - (X, ~') (X, ,Y, Y, ~ '~).  (5.44) 

However, as ker(I-Pr,=)= T=(F(7)) is horizontal (cf. (5.35), it is isotropic for a=, 
so that our situation is opposite to that described in Lemma 4.4 of Duistermaat- 
Guillemin [6] (another way of saying this is that I -  Pr,z has a nonzero nilpotent 
component always); so, in order to calculate the canonical density on ker(I 
-P~,z) we must go back to its definition in loc. cit (4.1), (4.2). 

Let us temporarily write P=P~,~, N=T~I~)(S(7))x {0},~ker(I-P),  L={0} 
x T~t~)(S(7)), W ~ Range ( I -  P), V = ~ @ ~. It is then clear from (5.31)-(5.35) that V 
= W G L  and that I - P  is an isomorphism: L - , N .  Let us also write, for any real 
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vector space U with a scalar product, e, v for its corresponding Euclidean density. 
Then ev is equal to the canonical density on V defined by the symplectic form 
a z. The canonical density # = c e  N on N defined in loc. cit (4.1), (4.2) is now 
determined by the equation 

(I - P), (ev/#) = Ev/C - 1 eL , (5.45) 

where c-  1 eL is the density on V/W ~- L defined by the pairing between N and L 
induced by a z. Now, ev/#=eLew/CeN, ( I - -P) ,eL=eN,  SO that (5.45) becomes 
c- 1 eN( i_p) ,  ew/N =Cew, or 

c z = [det(I - P ) *  [- ' (5.46) 

We have thus proved: 

Proposition 5.19. The density on F(~;) obtained from the canonical density on the 
corresponding manifold of periodic geodesics in (TX)~ ~(T* X)I by Duistermaat- 
Guillemin ([6], (4.1), (4.2)) is equal to ]det(I-P,S*[-~ times the density on F(~') 
induced by using the Killing form and the identification ofF(7) as G.JU~ where U;. 
is a maximal compact subgroup of G 7" 

Let us now fix a number T >0  in the length spectrum of X. By Proposition 
5.15, there are finitely many cfiC((F) (1 < j <  k) such that l(cfl = T; the manifolds 
Z 2 in (T*X)I that correspond to the F(c2) under our identifications are then 
disjoint, connected, compact, and their union is the set of periodic geodesics of 
period T in (T*X)~. Now, the subprincipal symbol of ( - A )  ~ is equal to zero, 
and so, by the above Proposition, the numbers ej.o appearing in loc. cit. 
Theorem 4.5 come out to be 

o~i,o=(2rc)-~l(I-Pr)*l-~volo(Fr\GjU,) (7ecj, 1 <j<k)  (5.47) 

Let us now return to the Poisson formula (5.3). Let P be a positive elliptic 
differential operator of even order m on X arising from a G-invariant differential 
operator on S. Then there exists a m-invariant polynomial p of degree m on a c 
= ~- such that the spectrum of P consists of the numbers p(2), 2~A,counted with 
multiplicities. Let us write Q=P~/", q(p)=p(i#) 1/m for # e ~ .  Then, for the 
distribution (in t) 3(t)= Tr(e -"Q) we find, remembering that the measure d# on 

is the one dual to doa, 

8(t) ~ m(2) e -itqr176 
X~A 

= ~ m(2) ~ ~ei<'~-"">e-itq")d#doa 
2~A ,~R a 

= ~ vr [. ei~ 
ce~ (r) ~R 

as a distribution in t. To make the comparison with loc. cit. Theorem4.5, we 
introduce Z~ C~(~)  with support in a small neighborhood of T >0  and equal to 
1 in a small neighborhood of T, and investigate the asymptotic behaviour, as 
"C --~ ~ ,  o f  
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(27t)- 1 ~ ei~(,- T)8(t) z(t) dt 

= y'  (2~) - , z ,  vc,(T,.,j" j" ei~[, t-<u,-> ,q(~u)/~lz(t)d#dt" (5.48) 
1 <=j<k IR ,~R 

If for some j, the class c~ is of real regular Iwasawa type, we can use (5.42a) to 
give an asymptotic expansion, for ~ - ,  oo, of the corresponding term in (5.48), 
provided the homogeneous part ql of q of degree 1 is strictly convex, using the 
substitution of variables #=~v ,  q~(v)=l.  For P = - A ,  the Laplacian, q~(#) 
= [I#l[, and one obtains for such a class cj, using (5.42a, b), the expansion 

ei,-  T)8(t) )~(t) dt , 1 

1 + ~j, kr . 
k = l  

In view of the formula (5.47) for ~j.0, this result agrees with loc. cit Theorem 4.5, 
except for the factor i - ~  occuring in (4.7) loc. cit. Now, a~ is equal to the Morse 
index of the periodic geodesic as a stationary point for the length function on 
the space of closed curves (see the end of toc. cit. Section 6). Therefore, aj = 0 in 
our case, because, the length function restricted to the homotopy class of the 
periodic geodesic attains its minimum on the periodic geodesic, in view of 
Proposition 5.15. 

Of course, the treatment of t~-,Tr(e -~Q) for only one operator Q eliminates a 
large part of the information in the Poisson formula (5.3); only when rk(S)= 1, 
the coefficients of the leading terms of the singularities of t F--~Tr(e -~tQ) lead to a 
full recovery of ~ v~ T~, and therefore of the whole spectrum A, as is clear (with P 
= - A )  from (5.47) and (5.43). 

6. Spectra l  A s y m p t o t i c s  : Pre l iminar i e s  

6.1. From now on our aim is to use the formula (3.28) to study the spectrum A of 
X. Thus we get, with a replacing A, and using (3.30): 

Propos i t ion  6.1. There is a m-invariant open neighborhood U of 0 in a which is 
balanced ( U = - U )  and starlike at 0 ( t U c U  for 0_<t<l )  with the following 
property: for an), fE  C~(U), 

m(2)f(2) - vol(X) . (f(v)  fl(v) dv; (6.1) 

here, the series on the left converges absolutely, and f is the Fourier-Laplace 
transform o f f  given by 

f ({)  = ( f  e ~) = ~f(H) er ({eJ~). (6.2) 

6.2. We now begin the study of the equality (6.1). The basic idea is to construct 
test functions with supports in U whose Fourier transform are > 0  on A. Let 
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conj be the conjugation in ~'- defined by #-R, SO that ( ~ R - { - ~ I ) c ~  - 

~ i ( ~ R r = ~ ' R , ~ l ~ . ~ , ~ g T l )  ; and define, for any sew, 

~(s)  = {~: ~ ~,~, s. ~ = - ~co,j}. (6.3) 

Lemma 6.2. Let U c a be as in Proposition 6.1 with the additional restriction that 
IIHll <�89 all H s U .  Suppose g6C~(U)  is real non-negative symmetric (i.e. g(H) 
= g ( - H )  for H ea), m-invariant, and S g d H = 2 .  Then its Fourier-Laplace trans- 

a 

form ~, (cf. (6.2)) has the following properties: 

(i) ~(~)=~(-~)=~(s. ~ ) ( ~ , s ~ m ) .  
(ii) g(~C~ = g(~)c~ (~ E ~ ) .  

(iii) ~(r is real if ~ U ~(s).  In particular, ~(2) is real if 2~A. 
S~ID 

(iv) I~(Ol>__l/f~E~ and II~tl<l. 
The assertions (i) and (ii) are consequences of the assumptions that g is real, 

symmetric and to-invariant. If s~to and r  satifies s. r = _~onj, we find, using 
(i) and (ii), that g(~ )~ -g ( - -~ )~ -g ( - - (S '~ ) c~176  c~ So g is real 
on ~ ~(s);  and to complete the proof of (iii) we must recall that A ~ ~ ~(s),  

SEW S~W 
according to Corollary 3.5. Suppose now ~ f f  with I1~tl =< 1. Then 

~(~) = S (1 + (e r  1)) g(H) dH = 2 + ~ (e r - 1) g(H) dH. 
a U 

But as IIHII <�89 for H~U, I~(H)I _-<�89 for H~U. Also, if z~E and ]z[ <~  

Iv ~ -  11~  Izl + Izl 2 + . . . .  Izl/1 - I z l  _-< 1. 

Therefore (iv) follows now, using the estimate 

[~ (e ~tm - 1) g(H) dH[ <= �89 g dH = 1. 
U a 

We choose a balanced to-invariant open neighborhood U~ of 0 in a, starlike 
at 0, with U~ + Ua ~ U. Let gEC~(U~) and let us assume that g has the properties 
described in Lemma6.2. We define the functions h,g(t: .) and h(t: . ) ( t>0)  on a 
by 

h = g , g ;  g(t: H)=t"g(tH)(HEa);  h(t: . )=g( t :  . ) ,g ( t : - ) .  (6.4) 

The Fourier transforms ~(t: .) and g(t: .) then satisfy, for t > 0  and ~ e ~  

~(t: ~)=~(t -  1~); [~(t:~)=~,(t:~)2=~,(t-l~)2=t~(t-a~). (6.5) 

Lemma 6.3. The functions h(t: ')  and l;i(t:')satisfy for t>_-l: (i) g(t :~)>0,  /f 
~e ~ ~(s),  in particular fi'(t: 2)>__0/f2~A; (ii) f ( t :  ~)[ >_-1 / f ~ e ~  and [[~]l __< t; (iii) 

S~ID 
h(t: ")eC~(U) is real symmetric and w-invariant; (iv)for each integer m>O and 
real number a > 0  there is a constant c=c(m:a)>O such that for all t >= 1 and ~ e ~  
with I[ ~R [[ < a 

[fi'(t: ~)[__< c tr"(1 + [[~][)-". (6.6) 
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For (i) use Lemma 6.2 (iii) and (6.5); for (ii), Lemma 6.2 (iv) and (6.5). For (iii) 
observe that since t > l  and U 1 is starlike at 0, suppg( t : - )=Ul ;  hence 
supp h(t: . ) ~  U t + U t ~ U, and convolutions of real symmetric w-invariant func- 
tions are likewise real symmetric and m-invariant. According to the Paley- 
Wiener estimate given in formula (3.23), for each integer m>0,  we can find a 
constant c '=  c m' >0 such that, for ~ Y ,  

1~(~)12 --___ C'(1 + ]L ~ II) "exp(ll ~R ]1), 

< 1  since IIHII =T for H~supp(g). So 

I~(t:r ~)12<c'(l +t-lll~ll)-~'exp(ll4RII t--l) ( ~ ) .  

Now, as t > t ,  l + t  111411>t 1(1+11~11); so we find that, if II~Rll<a 

IF(t: 3)1 <c' tin(1 + 11411)-" e". 

We can already obtain some crude results on the asymptotic behaviour of A 
on the basis of the above lemmas. Thus we have 

Proposition 6.4. There is a constant c > 0 such that, for all t >= 1, 

m(2)<ct"  (n=dimG/K) .  
2~A, II)dl < t  

In view of Lemma6.3(iii) we can take f = h ( t :  .) in (6.1). Since f~(t: )o)>0 for 
2~A and n~(t:2)>l for 2~A with 1[2H<t, by (i) and (ii) of Lemma 6.3, we get, 
with v=vol(X)/ lwl ,  

m()+) < ~ m(2) n~(t: 2) 
AcA, II ~. II <t ).eA 

=v ~ ~( t :v l f l (v)dv=v ~ fi(t t v)fi(v)dv 

=vt"  ~ ~(v)fl(tv)dv, 

the integral being convergent by the Paley-Wiener Theorem. By the growth 
estimates for fi given in (3.44), we have for t>=l and ve,.~, fl(t v)=<const t" +~(1 
+ ][v]]) "-' .  So the last expression on the right side above is majorized by 

constt" ~ f~(v)(1 + Hv[l)"-~dv, 
~ z  

giving the Proposition. 
From this we get at once (cf. Proposition 3.6)) 

Corollary 6.5. A is a discrete set. 

Moreover we have 

Proposition 6.6. For any f ~  C~(a), the series 

2 m(2)lf(2-  4)1 
~eA 
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is normally convergent when ~ varies over compact subsets of ~ (in particular, 
uniformly convergent on compacta in ~ ). 

Select a constant c I > 0  such that, for all q ~ ,  

[ f(~/)[ < c1(1 + i[r/]])-(,+ 2)exp(b []//R ]1), 

where b > 0  is a constant such that supp( f )c{H:H~a,  IIH]] <b}. According to 
Proposition 3.4 (iii), any 2~A satisfies N2RI] < ]IPlI; so if s  is a compactum, 
we can find an integer p > 0  such that 11(2,--ORll < p  and ][~][ <p(),~A,~eO). Let 
k>p be any integer. Then, for all 2~A with k >  11211 < k +  1 and (~O, 

]f(2--~)[ =<c1(1 + 1[2--~[]) ~"+2)exp(b II(,~- ~)RN)_< c2(1 + k - p )  -1"+2), 

c 2 > 0 a constant. According to Proposition 6.4, we have 

Z m(2) < c(k + 1)", 
~ A , k  < 112[[ < k +  l 

hence we get 

~, m(2) sup If(2- OI 
2~A, 11211 > p  ~ f 2  

<= ~ E m(2)c2(l+k-P) -'"+2) 
k = p  2 e A , k  < HAll < k +  1 

<=cc2 ~ (l+k-P)-("+Z)(k+l)"<o�9 
k - p  

The above method of estimating a sum like ~ m(2) f (2 -4 )  by partitioning it 
2eA 

into subsums over various "shells" and estimating these individually, will be 
occasionally used in our subsequent work. 

6.3. These results, however, are too crude. What we need are analogous results 
on the number of spectral points in balls around a variable point # ~ .  So we 
introduce the test functions 

h(t:." # ) = h ( t : . ) e  -u(') ( t > 0 , # ~ ) ,  (6.7) 

where the h(t: -) are given by (6.4). Clearly 

h(t:." #)eC~(U) (t> 1 , # e ~ ) .  (6.8) 

Moreover, for the Fourier-Laplace transforms h'(t'. :#) we have 

h'(t: ~: #) = h'(t: ~ -  #) ( t> 1, ~sJ~- ,#e~) .  (6.9) 

Lemma 6.7. For each integer m>O there is a constant c=c(m)>O such that for all 
t>= 1, 2~A, g e M ,  

IF(t: 2 -# ) l  < c t"(1 + 112-#ll) -m. (6.10) 
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This follows from (6.6) because any 2~A satisfies [12R[ ] < liP1[ and, since pe  R ,  
(;~ - ~ ) R  = 2 R .  

Let us now define f i cC~( .~ )  ~~ by 

fi(/~)= ~ (1 + Ilv-pll) " ' fl(v)dv ( /~ .~) .  (6.11) 

The majorant  (3.44) for fl shows that fi is well defined. 

Proposition 6.8. (i) We have, for all t>  1 and p ~ ,  

~' m(2) fi'(t' 2 -  p) = vol(X)[w[ - l  ~ fi'(t: v -  I~) fl(v) dv, (6.12) 

where the series on the left converges absolutely. (ii) We can find a constant c 
= c ( h ) > 0  such that, for all t> 1, P~.~t, 

I ~ m(2) nr(t: 2 -  p)] < c t" +' fi(#). (6.13) 
. ~A  

Indeed, applying Proposition 6.1 with f = h ( t : . "  p), we find 

m()Ofi(t: A: ~)=vol (X) lwl  1 ~ ~(t: v" tO fi(v)dv, 
2~  A o~ I 

and assertion (i) follows from (6.9). (ii) follows from (i) and Lemma 6.7. 

6.4. Estimates for ft. Assertion (ii) of Proposition6.8 makes it clear that the 
growth properties of fi are important  for us. Let us recall the numbers 
d (~ ) (~A ++) defined in (3.41); we have ~, d ( ~ ) = n - r .  For any subset 

~E A + + 
q' ~ A + + we define d(~) > 0 and the set T(~b) ~ , ~  by 

d (~ )=  ~ d(a); (6.14) 

T@) = { / t : /~e~ ,  (~,/~> = 0 V~e 4'}. (6.15) 

Proposition 6.9. There is a constant c > 0 such that 

fi(/O<= c [ I  (1+1<~,~>1) de=) (/~e,~), (6.16) 

and, for any subset cb~ A + + and arbitrary #e  T(~), 

It follows from (3.37) and (3.40) that f i(v)=I(p) 2 ~I 
~EA + + 

according to (3.44) we have, for peT(q~) and v e ~ ,  

f i( l~+v)=l(P) 2 11 [I( ~ :g+v) l -2  1~ II(~:g+v)J 2 
a E O  ~ A  + + \ 0  

~-~Cl H ( 1 ~t- KO~' Y> Dd(a) f l  (1+[< ~, v>l + I<~' ~>l)a<'~ 
aeO ~ A  + + \0  

<c~(l+ltvll) " ~  [ I  ( I+K~,~)I)  ~'~, 
a~A + + \ 0  

(6.17) 

II(=: 01-2 ( v ~ ) ;  so 
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where c2>0 may be selected to be independent of ~,It and v. Thus, for all 
#ET(qS), (cf. (6.11)) 

fi(#)= ,f (1 + [Ivll) ..... 1 fl(t~ + v)dv 
~ r  

_-<c= [ I  (l+l(~,#)[)a(=lJ "(l+llv13 -r 1dr. 
aeA + § ~ I  

Formula (6.16) follows now by taking as �9 the empty set, and (6.t7) follows 
using (6.14). 

The inequality 

(I+H~'[[) l<( l+l l~-~ ' l l ) ( l+l[~. l l )  1 ( ~ , ~ ' ~ )  (6.18) 

leads at once to the following: 

fi(v) <(1 + ]]v-/~N) "+1 fi(/~) (v,/~e~). (6.19) 

The estimate (6.19) shows that fi is of regular growth; if b > 0  is any fixed 
constant, we have for a suitable constant c=c(b)>O 

fi(v) < c ~ fi(#) d# (v e~/). (6.20) 
l i l t  vii _-<b 

When making estimates it is convenient to work with functions of regular 
growth; however, so far as integrals over bounded sets are concerned, /3 and fl 
have the same growth as we will show in the next proposition. Let fi denote the 
distance function in ~ .  We define, for any ~c > 0 and any subset E c ~ ,  

E~={v: v ~ , 6 ( v , E ) < _ t c } .  (6.21) 

Proposition 6.10. Given K > O, we can find constants al, a 2 > 0 depending on ~c, such 
that, for any bounded Lebesgue measurable set E in o~, 

al ~ /3(l~)dl~ < ~ fi(#)d#<=a 2 ~ /3(la)dl~. (6.22) 
E E~ E2~ 

The proof of the first inequality in (6.22) is by observing that there is a constant 
c1 =cl(tc)>0 such that, for all E, 

~ fl(#)d#<=cl ~ ~ /3(v)dvd# 
E E~ II#-vll  =<r 

< c , ( ~ + l )  "+~ 5 5 ( l+ l l # -v l l ) - "  1/3(v)dvdlz. 

Using formula (6.19) and the estimate (6.16), we get a constant c 2 --c20c ) > 0 such 
that for any # s ~ r  

fi(#)<c' 2 inf fi(v) <c  2 inf 1~ ( l+ l (~ ,v) l )  a~'~ (6.23) 
I I , u - v l l _  -<K I1~ v l l<K ctEA ++ 

By choosing c(~)> 0 small enough, we can find a constant c 3 = c3(K ) > 0 with the 
property that for arbitrary # ~ ,  

vol({v: v ~ ,  H#- vll < tc, l( cc v)l > c(tc) V c~eA + + } ) > c3. (6.24) 
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Now we apply (3.44a) and we obtain c4=c4(~c)>0 satisfying 

[ I  (1 + I(~, v)l) ~'~_-< c~/~(v), 

if v ~  and I(a, v)I=>e0 c) for all c~A + +. Combin ing  (6.23)~6.25) we get 

fi(l~) <= c s ~ fl(v) dv (l~Yt),  
IIt~ ~'II_--<K 

where c s =cs(~c ) = c  2 c 4 c~ ~ is independent  of y. Therefore  

E~ E~ I I # -  vii _-<1( 

<% ~ fl(v) ~ dydv=az(tc ) ~ fl(y)dp. 
E2K ]l// -VI[ <:K E2K 
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(6.25) 

7. Local Spectral Asymptotics around a Variable Point pE,~  

7.1. Our  aim in this section is to obtain precise est imates for sums of the form 

m(s ( / l e~ t ,  t ~ 1 ) . (7.1) 

These est imates will of course depend on both  y and t. By analogy with 
Proposi t ion 6.8(ii) one would expect that  the est imates will be in terms of/~(y) 
and powers  of  t. It turns out tha t  high powers  of  t do not  mat te r ;  this is because 
t is bounded  whenever  we apply  these estimates.  However ,  the factor /~(p) that  
enters our  est imate for (7.1) is critical; indeed, our  main  effort is to show that  the 
factor /~(y) furnished by Propos i t ion6.8  is in fact the one needed to major ize  
(7.1). 

We begin with a way of par t i t ioning the sum (7.1). Recall the definition of 
the N- l inear  spaces Y ( s ) c  Y(s~w),  given in (6.3): 

y ( s ) = { ~ : ~ e y ,  s . ~ =  _ ~conq, (7.2) 

conj being the conjugat ion in Y relative to YR" Since A c ~ Y(s),  we can write 
SEI1J 

A= ~) A(s) disjoint union); A(s )cAnY(s ) .  
SEW 

(7.3) 

Note  that  for s =  1, Y ( 1 ) = ~ ;  thus A ( 1 ) c ~ .  More  generally 

y ( s ) ~ = ~ = l v  �9 vco%,s .v=v}  (se~). (7.4) 

F rom (7.4) we see that  if s +  1 and y e Y ( s ) ~ ,  y is fixed by s4= 1 so that, by a 
well-known theorem of Chevalley (cf. Varada ra j an  [41, L e m m a  4.15.15]), there is 
~ A  ++ with (cr  

s 4 : l , y ~ Y ( s ) c ~ , ~ ( a , p ) = O  for some ~ d  ++ (7.5) 
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We write l for the number of short positive roots: 

l = IA + + I. (7.6) 

Using the notation of (6.15), we define the (finite) classes Jk(O<k<l)  and ~- by 

~--~={T(~):dPcA++,l~[=k}; J - =  ~ ~ (7.7) 
O ~ k ~ l  

For any T ~ -  we introduce a partition of w given by 

m =tor~m~-; mT~m~=J~; tor={s:s6m, s . t z=#Vp~T} .  (7.8) 

We now consider the sum (7.1), with # ~  and t >  1. We have, for any T ~ "  and 
any #~T, 

y m(,~) 
3,eA, H 2-~tll  < t  

= ~ ~ m(2)+ ~ ~ m(2). (7.9) 
SZmT 2cA(s),  [12-#11 < t  sewer 2eA(s), 112-#11 < t  

If sew T and 2~A(s), both 2 and/~ lie in ~(s);  hence 4- /~6~(s) .  If we now recall 
(Lemma6.3) that the Fourier transforms /~(t: r are >0  for ~e~(s)  and > 1 in 
absolute value for [l~ll <t ,  we get the estimate 

Z Z m(2)< Z Z m(2)~'(t'2-~t) 
sew-/- 26A(s), [[ 2-- U [I <~ t S~mT AeA (s) 

= Z m(2)f[(t:2--#)-- E Z m(2)~(t:2--p) 
2eA semi-  2EA(s) 

< l Z  m(2)h'(t:2-/Ol+ Z Z m(A)f(t:2-p)l.  
2~A s~m'T ).cA(s) 

Combining this with (7.9) we get the following proposition. 

Proposition 7.1. Let O<<-k<_l, and T ~ -  k. Then, for any #~T  and any t> 1, we have 

Z m(2)<] Z m(2)~(t:2-#)[ 
2EA, I[2-U[I  _--<t .,teA 

+ ~ ~ m(A)lnc(t:2-#)[+ ~ ~ m(2). (7.10) 
S~m'T 2~A(s) S~tO'T 2eA(S), II 2 ~ l l < t  

We next prove the crucial fact that the sums involving w' T can be estimated 
in terms of ~ m(2), where ~t h varies over T I ~ ,  with k t strictly 

2~A, PI2 /till < t l  

greater than k, and tl =c t  for a suitable constant c>  1. This allows downward 
induction on k and will lead to the required estimates for (7.1). 

Proposition 7.2. For T6Jk(O< k < l) and SEW'T, let T 1 = T c ~  + = {v: v~ T, s- v = v}. 
Then we have the following. (i) 7"1 # T and there is k 1 with k<k~ <l such that 
T t 6 ~ .  (ii) We ean find a constant c=c(k)~  1 with the following property." if p~T  
is arbitrary and #t~T1 is the orthogonal projection of # on TI, then, for any 
# ~ ( s ) ,  one has 

112-~111 :<ell~-~ll;  I1~-~111 ~cH~-~ll .  (7.11) 
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Note  first of  all that  k < l. For,  if k = I, then T =  (0) and to}. = 0. Next,  M s ~ T, 
so that  T I # T .  To  prove  that  T l s , ~ ,  for some k ~ > k  we must  produce  an 
~eA + + such that  ~ vanishes on T~ but not on T, i.e., such that  the reflexion s~ 
fixes all elements of  TI but  does not fix some elements of T. Now s fixes each 
element of  T~. So, by a wel l -known theorem on finite reflexion groups (cf. 
Varadara jan  [41, Lemma4.15.15])  we can write s = s ~  s~. . .s~, ,  where cq . . . . .  % 
are in A + + and each of the s~, fixes all elements of T 1. If  each of the s~, fixes all 
the elements of  T, then s would fix all of T, which is contradic tory  to the 
assumpt ion  that  sEto' r. So, for some i, s,~ does not fix all the elements of  T. We 
are done. The  p roof  of  the second assertion is by noting that  the linear m a p  J~(s) 
x T ~  T given by (~, v) ~ ~ + v, is injective on the image of the linear map  ~ ( s )  
x T ~ , ~ - ( s ) x  T which sends (2,#) to ( 2 - # 1 , / ~  ~ - /O .  Indeed, if 2 - / ~  ~ - ~ 1 -  ~-~- 0, 

then 2=/~eT1;  s o / t = / ~  1 and thus 2 - / q  = / h - / ~ = 0 .  But this implies at once the 
existence of a constant  cl =c~(T,s)  such that  

0 < C  1 =-< 1, 112--/~11 > C l ( H J ~ - - ~ t l  I[ + I1~1 --~11) (2~J(s).I~6T), 

and the assertion follows by the finiteness of ~ and mr .  
We can now prove  the main  result of  this section. We remark  that  the 

applicat ions of  Theorem 7.3 do not require the explicit formula  (7.13) below for 
n(k); we give this form only for having clean proofs. 

Theorem 7.3. Let  l be as in (7.6). Then there is a constant c > 0 with the following 
property. For any integer k with O < k < l ,  any T~J-k, and arbitrary #~T, t>  1, we 
have 

m(),) < c t"lk) [~(#), (7.12) 
2~A, II 2 #l[<t 

where [ 1 ~ C ~ ( ~ )  ~ is defined in (6.11) and 

n ( k ) = 2 ( n +  1)( l+  1 - k ) .  (7.13) 

We shall p rove  Theo rem 7.3 by downward  induction on k. We start  with k 
= 1. Ytt consists only of (0). So # = 0, and (7.12) becomes ~ m(2) < c t 2(n+ 1), 

2eA, 11211 <t 
which is true, by Proposi t ion6.4.  So consider O < k < l .  We assume (7.12) for 
k 1 >k .  The  first step is to est imate the left side of(7.12) by (7.10). Let Z1 ,E  2 and 
$3 be the three terms appear ing  on the right side of  (7.10). Then 

m ( 2 ) < S  1 -~- S 2 --3t- S 3 . (7.14) 
2~A, 112 #ll <I 

where /~eT, T e ~ ,  and t > l .  We shall now obtain  majoran ts  for each of S i, i 
= 1,2, 3. S 1 is es t imated by (6.13) of  Proposi t ion 6.8. We have 

L'x = I ~ m(2) nO(t: 2 -/~)l _-< c(h) t" +' fl(p) 
2cA 

(7.15) 

for all t >  1, I~ETE~-- k. S 2 and z~" 3 a r e  est imated with the help of  Proposi t ion  7.2 
and the induct ion hypothesis.  First  we take up S 3. Let  no ta t ion  be as in Pro-  
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position7.2. If sew' r, 2eA(s) and il2-pll_<__t, 
= c ( k ) > l  as in (7.11), 

/I;~ - ~ x  II __<c ]l;~-~ll  __<c t. 

So, we obtain 

Z Z E m@. 
s~m:r 2sA(s), II 2-- ,u II =<t 2cA, [I 2 -  .ux II =<ct 

J.J. Du i s t e rmaa t  et  al. 

then, as 2e~(s),  we have for c 

Since J/le r 1E~k, where k I > k, the induction hypothesis applies, with a constant 
cl(k ). Further by (6.19) and (7.11) we have 

fi(/~l) ~ (  1 + 11/~-~11[) n+x/~(p) < (1 +c  t) "+1 fi(p), (7.16) 

while n(kO+n+ 1 <n(k). So we find a constant c2(k)>0 such that 

z~ 3 ~ C l (k )  (c t) n(kO fi(/A 1) ~ c 2 ( k )  tntk) fi(fl), (7.17) 

for all peT, t__> 1. It remains to consider Z 2. We have 

z2= Y E 
sem'T 2cA(s) 

sem'Tj--OAsA(s),j<=ILA ,u.[I < j + l  

We use (6.10) to estimate f ( t : 2 - / 0 [ .  Select constants bp=bp(h)>O (p=0, 1 . . . .  ) 
such that, for 2eA, g ' e ~ ,  t >  1, we have f ( t :  2-# ' ) l  <b v tP(1 + H2-ffll) -p. 
Then 

X2<=bp tp Z ~ Z m(2)(J+l) -p" 
S~W'Tj--O )L~A(s), II 2-- t~ll --<_j+ t 

But, by Proposition 7.2, for a given j > 0, using notation from the discussion of 

X 3 ,  

E E m@__< Z m(;) 
ssto'T2eA(s),ll2 ,ul[ =<j+ 1 AsA, l[A-ulH<=c(j+l) 

< c3(k) (j + 1)"(kO fl(/~0, 

by the induction hypothesis, c3(k ) > 0 being independent ofj. Hence, using (7.16), 

Z 2 <= bp t p c 3 ( k  ) (1 + c t) n+ 1 f i ( / / )  ~,, @ q_ 1)-p+,~k,). 
j = o  

Take now p=n(k+l)+2 (cf. (7.13)), then p+n+ l=<n(k). So we get a constant 
c4(k ) > 0 such that 

X2~c4(k) tn(k)fi(fl) (/~e T, t > 1). (7.18) 

Combining (7.14), (7.15), (7.17) and (7.18) we get (7.12). 
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8. Estimates for the Complementary and Principal Spectra 

8.1. We are now in a position to estimate both the complementary and principal 
spectra. It turns out, however, that the principal spectrum Ap= A c a ~  cannot be 
treated without first proving that the complementary spectrum A ~ = A \ A v  is of 
lower order of magnitude. So we begin this section with the study of A~. In 
Theorem 8.3 we prove the estimate ~ m(2) = O(t" d- 1), t--, + oo, which is 

2+A~, 11211 <t 
the best possible unless we impose further conditions on G and F (see Exam- 
ple 8.4). Here, with d(~) as in (3.41), 

d =  min d(~). (8.1) 
~EA + + 

We have d>  1, and according to (3.43) d=  1 if and only if there is eeA + + such 
that g'---~l(2,1R); this is the case, for instance, if G~SL(n ,  IR)(n>2). On the 
other hand d>2 ,  if G has a single conjugacy class of CSG's (cf. Remark 4.5(ii)). 

From Proposition 3.4(iii) and the formulae (7.3) and (7.5) we obtain: 

Lemma 8.1. Suppose 2cA c, then 

(i) 112RII--<Hp[I; (ii) 3~eA ++ such that (~,)q>=0.  

Let ,Y- • denote the set of all linear subspaces of ~ of the form T(cb) (see 
(6.15)) for nonempty ~ c A  + +. For any T=  T ( ~ ) e Y  • we now define (cf. (6.14)) 

Ac(T ) = {2: 2eAt, 2ie T}; (8.2) 

n(r)  = n(cb) = d(cb) + codim:~,(T). (8.3) 

Proposition 8.2. There is a constant c > 0  such that for all T = T ( @ ) e J  -• and all 
t>_l 

m(2)<ct" ,~r~. (8.4) 
& E A t ( ' / ' ) ,  II)~[I ~<t 

We begin the proof by fixing TeJ - •  Let us choose a covering of the ball 
{v: veT, Ilv[I < t} by closed balls of unit radius with centers in the original ball of 
radius t. By elementary geometry we can arrange matters so that the number of 
balls of unit radius needed is <c  o t ~ c o being a constant independent of t. 
So 

{v:veT, llvll~t}= ~ {v: veT, Ilv-vjLI ~ 1}, 
1 < j < M ( t )  

with 

vj~T, Hvjll <t(1 < j <  M(t)); 

Then 

m(2)=< 2 m(2) 
26Ac(T), I[,q.[[ <-t 2e Ac, RI~ T, H2I [ [  < t  

_-< X Z re(x). 
l < j < M (t) 2 e A c ,  2 l ~  T,  112j-vjII-< 1 

M(t) ~= c o tdlm(T)(t ~ 1). (8.5) 
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But, for 2cA, II2R II 5 lip II (Lemma 8.1), so that l [2i-  vsll ~ 1 implies [I ~-- viii ~ 1 
+ IIPl[. Hence 

m(2)=< ~ ~ m(2). (8.6) 
2~Ac(T),  11411 < t  1 < j < M ( t )  2~A, 112-vs l l  -< 1 + Ilpl[ 

Use now Theorem7.3 and (6.17) to estimate the right side of (8.6). If T=T( r  
where r  has k > l  elements, there is a constant c~>0 such that, for 
veT, u>  1, 

So 

~, m(2) < c 1 u "(k) (1 + Ilvtl) . . . .  ~<*'. 
2e  A ,  112 vll<=u 

m(2)_-<c2(1-4-Ilvsll) " - r  de.) 
2 e A ,  11 2 -  va II _-< 14- Ilpll 

Summing over j =  1 .. . .  M(t), and using the estimate (8.5) for M(t), we get from 
(8.6) the estimate 

~, m(2)<=CoC2t, r d ( ~ ) + d i m T ,  

2EAc(T), 11411 < t  

which is (8.4). 

Theorem 8.3. There is a constant c > 0 such that, for all t >= 1, 

~, m(2)<c t  "-a-1. (8.7) 
2 e A c ,  11411 < t  

In fact, by Lemma 8.1, A c c w { A c ( T ) :  T e Y •  Hence 

Z m(2)< E Z m(2). 
2eAc,  II~.ll ~ t  T~.~ -• 2~Ac(T),  [14[[ <t 

For T= T(~b)~J • n(T) = d(q0 + codim(T) > d + 1. So, by (8.4), for T~3- • 

y~ m(~) = o ( t " -  ~-~). 
2~Ac(T),  I[AII < t  

Example 8.4. Let X j = Fj \ G j/ K s(1 < j < q) be compact quotients with correspond- 
ing spectra A s c o  ~ and multiplicities mj(2s) for 2sea  j. Then the product X 
= 1-I X j  satisfies condition (2.9) again, while G, resp. K, F, ~,~ is equal to the 

1 < j < q  

product of the Gj, resp. K s, Fj, ~ .  Moreover the spectrum A of X is equal to the 
product of the A s, with multiplicities m(2)=Ilms(2)(2eA ). It is then clear that 
Ap = II(As) p, which implies 

Ac= U AlX'"xAj-lx(Aj)cxAj+lx'"XAq" (8.8) 
l<~j<q 

According to Proposition3.4(i) (As)c#g[, and in Theorem8.8 we shall prove 

ms(2j),-~cst"J , t ~ + o e ,  where nj--dimXj.  This implies that there 
t : e A j ,  112:N _-<t 

is a constant c >0  such that, with n o = rain n j, 
1 <S<=q 
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m ( 2 ) >  c t  . . . .  (t > 1). (8.9) 
2~Ac, II ~,ll <t  

So A~ is infinite if q > l .  In particular, let rank X j = I  (1 <j<q); then according 
to Theorem 8.3, (A)~ is finite (sic), and it is easily verified that, given T ~  • 

m ( 2 ) ~ c t  "-"(r), t - ,  + oo. 
2~Ae(T), 113.]1 <I 

So, in this case the estimates of Proposition 8.2 are sharp. 

8.2. We now deal with the principal spectrum Ar=Ac~ ~ .  We consider subsets 
of ~]. For any f2 c g*'~ we denote by 8f2 its boundary and by f2' its comple- 
ment: 

8f2 = Closure(f2)\Interior (f2); f2' = ~ \ f 2  (8.10) 

If 6 denotes the distance function in o~, we define, for any • >0, 

c~12~ = {v: v 6~/ ,  6(v, 6~f2) < K} (8.11) 

Let d ov be the measure on ~ coming from the Killing form. 

Theorem 8.5. Given ~c>0, we can find a constant c=c(/r such that for all 
bounded Lebesgue measurable subsets f2 c ~ we have 

I ~ m(2)-a(G)volo(X)lml - t  ~fl(v)dovl<cjfl(v)do v, 
) .cA,  2ie12 ~Q 012 K 

where voIo(X ) is as in (3.31), while (cf. (3.40)~3.42)) 

/ ~  , . , - r+  [ n(2c0 -�89 
~rtu) =z  ..... 7r l(p) t (8.12) 

The starting point for the proof is the relation (i) in Proposition 6.8: 

m(2)~(2-#) =vol(X)Im1-1 j &v-#)/3(v)dv. (8.13) 
2~A .~1 

We integrate both sides of (8.13) over f2, and in view of Proposition 6.6 we are 
allowed to interchange integration and summation; hence 

m(2) ~ ~(2-#)d#=vol(X)Ito1-1 j j" ~(v-#)f l(v)dv d#. (8.14) 
~.~A f2 g2 ,~1 

It is now a question of relating ~ m(2) to the left side of (8.14). To this end 
2eA, 2iei2 

we rewrite the left of (8.14); we have 

2EA D )~A, AI6~ ,~I 

- Z m(2) ~/~(2 - #) d# + Z m(2) ~ h'(2 - p) d#. 
26A, 2r~O 12' 2~A, 2i~12' 12 
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Since #~-~ ' (~-#)  is the Fourier transform of the function H~-+e-r 
and since d# is the measure dual to dH, we have S [ ; ( r  ( r  So 

Ih(O) ~ m(R) - ~ m(R)'S ~(2 - #) d#l <= J, ((2) 
,~A,  AI ~ ~2 )tEA G' 

= E m(2) S f ( 2 - ~ ) l d ~ §  E m(2) S f ( 2 - # ) l d ~ .  (8.15) 
2~A, 2lE-O Y2' ).cA, AI~O' 

On the other hand, 

S S ~(v-#)fl(v)dvd# 
~ J : r  

Y2~2 ~ ' ~  

=S S [[(v-#)fl(v)d#dv-S S [[(v-#)fl(v)d#dv 
(2 ~ r O Y~' 

+ S S [~(v-#)fl(v)d#dv 
82'82 

= h(O) S fl(v) d r -  S S ~(v - #) fi(v) d# dv 

+ S S ~l~- #t #(~) d# d~. 

So this implies that 

IS S [[(v-#)fl(v)dvd#-h(O) S fl(v)dvl-__J2(O)+ J3(~2) 
gg f f  l Y~ 

=S S f(v-#)lfl(v)d#dv+ S S f(v-#)lfl(v)d#dv. (8.16) 
FLY1' .Q' YI 

Now dv=(2n)-rdo v, while h(0)+0. So, from (8.14)-(8.16) we get 

[ ~ m(2)-(Zn)-rvol(X)lml 1Sfl(v)dov[ 
2.cA,  21EY~ .O 

=< h(0)- l(j~ (Q) + jz(Q ) + j3((2)). 

To complete the proof of Theorem 8.5 it is therefore sufficient to establish the 
following: (i) vol(X)=(2n)ra(G)volo(X), which is immediate from Corollary 
3.13; and (ii) 

3 

Z J,(~) <= c S /~(v) do v, 
i =  1 &Q~ 

where c>O is a constant independent of Q. In view of Proposition6.10 it is 
sufficient to obtain (ii) with fl replaced by fi; and we shall establish this in the 
following technical lemma. 

Lemma 8.6. Using the above notation, 

Ji((2)<c(•) S fi(v)dov (1<i<3) .  
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We begin with some auxiliary estimates. For  any integer p > r + 1 we have, 
using (6.6) constants c = c(p) > 0 such that f ( ~  - / t )]  =< c(1 + II ~ - / t  II)- ~ r(~ eo~, I[ ~R I[ 
--< []PI[, # ~ t ) .  As a consequence we have, for any f2 and ~ c ~  with II~Rq]----< I[P[I 
and ~ el2', 

s II ~i--I~ II > 6(~x,~f2) 

<c ~ (l+llvll)-P-rdv<c'(l+~(~1,~O)) P. 
I[vll > a(~z, ??12) 

If we now define the functions q~(p: s  by 

qo(p: 3)=(1 + 6(~i, (3~))-- P (~ ~ - ) ,  (8.17) 

we find constants c I =c~(p)>O such that for any s 

s 

f (~- ,u) ldl2<c~o(p:O ( ~ ,  II~RII < IlPll, ~,es (8.18b) 
s 

Further  we claim that for a suitable constant  c2=c2(~c:p)>O, we have, for all 
v e ~  and f2, 

q)(pzv)~c 2 ~ ( l + l l v - ~ l l )  Pall. (8.19) 
~g2~ 

Indeed, given any v e ~ ,  we select v'e~f2 such that fi(v, ~f2)= 11 v-v'll.  Then (8.19) 
follows on considering the ball in ~ around v' with radius ~c. 

We are now in a posit ion to estimate the J~(O). In the case of J2 we choose p 
= n + l  and we have, for all f2, using (8.18b) and (8.19), 

J2(~Q)= ~ 5 f (v- ,u)l  d# fl(v) dv< c~ ~ (o(n + 1: v) fl(v) dv 
f2.Q' s 

~ClC 2 ~ ~ ( l + l l v - / < l ) - "  'dl~fl(v)dv 

We argue similarly to estimate J3(~Q), using (8.18a) and (8.19). We find thus a 
constant  c 3 = C 3 ( g , p ) > 0  such that, for all f2, 

J~(f2)__< c 3 j" fi(~) d~ (i = 2, 3). (8.20) 
(?s 

It remains to estimate J~(f2). Using (8.18a) and (8.18b) we find (cf. (8.15)) that 

Jl(O)<q ~, m(2)~o(p:2). 
2eA 

We shall now estimate the sum on the right by dividing it into subsums over 
2cA with 2~eQ(/22), where the Q(/2fl ( j=  1, 2 . . . .  ) are closed cubes in ~ with sides 
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of length 2 and centered at points / ~ f i ~  whose coordinates are integral. 
According to Theorem 7.3 we have, for some constant  c >0 ,  

m(2) < c/~(/~j) (j = 1, 2 . . . .  ). 
,~A, AxeQ(#g) 

So there exists a constant  c a = c4(p)> 0 such that for O 

Jl((2) ~ c 4 ~ /~(fi/) sup {(p(p: ~): ~Q(#j)}  (8.21) 
j=t  

If we now use (6.20) and the inequality ~o(p: ~)<d(p)~p(p: ~') (~, ~'~Q(/~)), where 
d(p) > 0 is independent  of j, we find c 5 = cs(p)> 0 such that, for j = 1, 2 . . . .  

/~(/~)sup{q~(p: ~): ~ Q ( # ) }  < c  5 ~ /~(v)q~(p: v)dv. (8.22) 
Q(uj) 

So using (8.21), (8.22) and (8.19) with p=n+r+2, we get c 6 =c6(~c)>0 such that, 
for all Q, 

Jl(~Q)~c 6 ~ fl(v) S (1-}-]]v-/2]l) Pd#dv 

_-<c6 ~ B(/~)I ( l + l [ v - u [ [ )  "+"+~dvd#, (8.23) 

where we used (6.19). Hence, for a constant  c 7 =cv(~c)>0, we have, for all ~2, 

J1($c2)'(c7 5 fl(,u)d#. 

This completes the proof  of Lemma  8.6. 
In order  to see more  clearly the fact that Theorem 8.5 gives that Ap grows 

asymptotically like fi, it might be il luminating to construct  examples of families 
of sets ~ which go to infinity in such a way that S ~(v) d o v is of smaller order of 

c%Q~ 
magnitude than the main term Sfl(v)dov. We recall (cf. Lemma3 .1 l )  the 

12 
definition of ~v s: 

Vas(V)= [I (~, v> "(~) ( w ~ ) .  (8.24) 
aEA + 

We are now interested in families (O(t))t>=l consisting of Lebesgue measurable 
sets contained in o~ which satisfy the following conditions: 

(a) There  are constants cl, c2>0 such that, for all t >  1, 

#EY2(t) ~ [l#{i--<---ct t; volo(Y2(t)) >= c 2 t r. 

(b) There is a constant  ~c > 0 such that  

vol0(~O(t)~ ) = O(t'-1), t---~ + ~,  (8.25) 
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It is obvious that for such a family we can find constants d~,d 2 > 0  such that 

dmt"< ~ IWs(v)ldov<dzt" (t_>_l). 
f2 m 

Lemma 8.7. Let f2 be any bounded open subset of ~ such that c3f2 has finite ( r -  1)- 
dimensional Hausdorff measure, i.e. lim sup ~c- 1 volo(~f2~) < ~ .  L e t / a ~  be fixed 
and let ~ ~ o 

f2(t) = la + tf2(t > 1). (8.26) 

Then the family (f2(t))t=> 1 satisfies conditions (a) and (b) of(8.25). In particular this 
will be true if c3f2 is smooth. 

Theorem 8.8. Let (f2(t))t>__ 1 be a family of subsets of ~ satisfying the conditions 
(a)-(b) of(8.25). Then we have, in the notation of Theorem 8.5, 

m(2)=a(G)volo(X)[rol -~ ~ fl(v)dov+O(t"-t), t - -~+~  
AEApn.Q(t) ~(t) 

=(22~n"+~o'(G))-1volo(X)Iw1-1 ~ Ir~s(v)ldov+O(t"-l), t ~ + ~ .  
~ltl (8.27) 

It is a consequence of Theorem 8.3 and condit ion (8.25a) that 

m(2) = ~ m(2) + O(t"-~), t-~ + ~ .  (8.28) 
.~EA, .~16~(t) REAp n ~72(t) 

F r o m  Lemma 3.11 and (8.25a) again, we obtain easily 

~(G)volo(X)lwl 1 ~ f l (v)do v 
~(t) 

=(22rn"+r a(G))-lvolo(X)lm1-1 ~ I~s(v)ldov+O(t"-t), t - - , + ~ .  
mr) (8.29) 

Fur ther  formula (3.44) asserts that  /~(/~)<c(1 + II~ll)"-' (~6+~); so by condit ion 
(8.25a) we find a constant  c > 0  such that f l (v)<c t"  r for all t >  1, v6c'~Q(t)~. By 
condit ion (8.25b) we get 

fl(v)dov=O(t"-l), t ~ + o o .  (8.30) 
~I2(t),, 

The assertion follows now from Theorem 8.5 and (8.28)-(8.30). 
We shall now cast Theorem 8.8 in an alternative form. To this end we 

proceed as follows. Recall that  g = f  + ~; we denote by ~* the dual of ~. For  any 
set f2 in ~,~ we define the subset f2+, in ~* by 

f2+, = { ( -  1) + Ad(k).  v: v~f2, k~K}.  (8.31) 

Employing as usual, s tandard Haar  measures, we have the formula (cf. Helgason 
[24, p. 381]) valid for any f~Cc(~) 

Sf(S)doS=lwl - l  ~1 ~I c~(U)"(~l J" f (Ad(k)H)do(kM)doH. 
a aEd + K/M 



88 J.J. Duistermaat et al. 

Going over to ~ via the Killing form, the set Y2+, goes to the set Y2+= 
{ ( -  1)+Ad(k)Hv: vs~2,k~K}, and so, 

vol0 (~2+,)= vol0(f2+) =volo(K/M)Ira J- 1 S Ir~ v)[ dov, (8.32) 

since doll corresponds with dov. Using (8.32), we write the last term in (8.27) as 

(22r n,+r a(G))-t volo(K/m )- l volo(X)volo(g2(t)+,)+O(t,- 1), t--~ + c~. 

So, using Proposition 3.12, Theorem 8.8 takes the following form. 

Theorem 8.9. Let the family (Y2(t)),> 1 satisfy the conditions (a)~(b) cf (8.25) and 
define Ya(t)+, by (8.31). Then 

~, m(2) =(2n)-"  vol0(X ) vol0(~2(t)+, ) + O(t'- t), t-+ + c~. 
J.~Ap c~ ~(t) 

Remark 8.10. Let us consider the Laplacian A =co s on X (cf. (2.6)); its eigenvalue 
corresponding to an element 2eAp is -(112112+ IrpJF 2) (cf. (3.17)). So applying the 
Theorems 8.3 and 8.9 we obtain at once the Minakshisundaram-Pleijel result for 
the number N(t) of eigenvalues of - A  (counted with multiplicities) which are 

t ,  a s  

/ n \ 1 
N(t)=(2 l/~)-" F ~ +  1) volo(X)t n/2+O(tm-l)/2), t-+ +oo. (8.33) 

Indeed, Q(t)+, is now the ball in ~* of radius t around the origin whose volume is 

rc"/2F + 1 t", from which the above expression follows. 

Remark 8.11. We observe that the deduction of the Minakshisundaram-Pleijel 
formula from Theorem8.8 used the expression for volo(K/M ) obtained in 
Proposition 3.12. It is clear that conversely one can start with (8.33) and find this 
formula for volo(K/M ). 

Remark 8.12. In fact, let P be a positive elliptic differential operator of order m 
on X which comes from a G-invariant operator on G/K, i.e. Peg'K(G//K ) (cf. 
(2.2)). The principal symbol of P can be regarded as an Ad(K)-invariant 
homogeneous polynomial of degree m on ~*, say p; and P being elliptic, we have 
p(~)+0, if t/e~*\{0}. Using the Killing form, we consider p as a polynomial on 
~. On the other hand, the Harish-Chandra homomorphism 7 (cf. Proposition 3.2) 
maps P onto an element p, eU(ac) ~ such that p l , = p  . . . .  with P,,m as the 
homogeneous part of degree m of p,. The eigenvalues of P are given by ~ P ( 2 )  
= p, (2) > 0 (2 e A). Observing how Ap asymptotically fills up ~ ,  we get i m p(tl) > 0 
if q e ~ \ { 0 } ,  which implies imp(t0>0 if tle~*\{0}, as ~* = A d ( K ) . ~ -  R. So, if ,~ 
= t #  (2~Ap, t>0 ,  /~eo~z) , then the condition that p,(2)_<t m is equivalent to 
p(/~)_-< 1 +O(t-~) ;  and using Theorem8.3 it follows from Theorem8.9 that the 
number M(P:t) of eigenvalues of P (counted with their multiplicities) which are 
__< t m, is given by 

(2zc)-,volo(X)volo(Y2+,)t,+O(t,- 1), t--~ +oo, 
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where ~={/ t :  / a ~ ,  p(/l)<l}. But vol0(X ) volo(Q~,)=volo(B*X ) where B*X 
={(x,q): x~X,  q~* ,  i"p(//)<l}. If we denote the principal symbol of P 
regarded as a function on the cotangent bundle T*X also by p, then B*X 
= {(x, q): (x,/7)~ T* X, i rap(x, r/) < 1}, and vol o(X) vol o((~,) coincides with the 
volume of B*X with respect to the canonical density in T*X. So we have 
established M(P: t) = (2~)-" vol(B* X) t" + O(t" 1), t ~ + oo which is a result of 
H6rmander [26]. 

Remark 8.13. Even for positive non-elliptic differential operators P of order m on 
X with corresponding polynomial p on ~* it is reasonable to expect that the 
number of eigenvalues <tm is asymptotically given by a constant x j /~(v)dv, 

r~(t) 
where ~2(t)= {#: # ~ 1 ,  P(/0 < tin} �9 If Pm is the homogeneous part of degree m of 
p, then the ~2(t) exhibit an unproportional stretching in the direction of the cone 
{/~:/~E~-~, p~(#)=0}. How drastically the asymptotic estimates for the spectrum 
can change has been shown for a certain class of hypoelliptic operators on 
arbitrary compact manifolds by Menikoff and Sj6strand [31]. 

9. Improved Error Estimates when rk(S) = 1 

9.1. In this section we shall suppose that r= rk (S)=  1. From (5.43) and (5.40) we 
get, for any f ~  C~ (a), 

m()0f(2)=vol(X) 1 ~ f(v)fl(v)dv 
)~A ,~i 

+ ~ /0(c)A+(~,) ~�89162 (9.1) 
c ~- [e]r 

Here 7=TtexpH~ is any element in [c]G in standard position, with 7t6K, H~ a 
regular element in a; we have (cf. 4.8) and (5.42c)) 

lo(e)~HHy{I; A+(7) l=eR(Y)e-r (1-- ~_~(7)) 1. (9.2) 
~eP\P~ 

We will use the above formulae to obtain 

Theorem 9.1. I f  rk(G/K)= 1, we have 

i + 1  volo(X)t"+O(t" 1/logt), t ~ + o o .  (9.3) 
2~Ap, 112ll <t 

We shall obtain this estimate by proving Proposition 9.2 below; it is the 
equivalent of formula (60) in B6rard [2] when n > 2, and stronger than (60) loc. 
cit when n =2. Theorem 9.1 is then proved by imitating B6rard's arguments as in 
loc. cit pp. 264 265. We remark that when n = 2  and thus g---~l (2,1R), the 
estimate of BOrard in (60) loc.cit does not appear to give (61) loc.cit, and 
consequently, the arguments of pp. 264-265 loc.cit are not applicable; it is the 
stronger estimate provided by Proposition9.2 that leads to (61) loc.cit and 
thence to Theorem 9.1. Moreover, if n=2,  there is a proof of (9.3) using number 
theoretic methods by Randol [38]. 



90 J.J. Duistermaat et al. 

We recall the test functions h(t: . )eC~(a)  ~ (t>0) which are constructed in 
(6.4). 

Proposition 9.2. We can find constants cl, c2, c 3 >0, depending on h, such that, for 
all e with 0 < e < l  and # ~ ,  

m(2) fi'(e: 2-p)=h(O)vol(X)e�89 
?rEAp (9.4) 
[E(~: U)[ =< cl ~(1 + I1~1t)"- 3 _~_ C2 eC3/e. 

In view of (9.1) we have, for any P e ~ i  and e>0, 

~, m(2) if(e: 2 - / 0  = �89 ~ f[(e" v -  p) fl(v) dv 

+ ~ lo(c)A+(~ - l e  u(m')eh(eH~,) 
c * [e]r  

+ Z m(2)~(~:2-#)= Z Oi(~:P)' 
) . e A t  1 < i < 3 

We shall now estimate the O~=O~(e:/z) individually in terms of e and /~. We 
treat 0 3 first. Using the relation 

supp(h(e: "))~ {H: n e a ,  I1~11 <e-l} (~>0), (9.6) 

the estimate (3.23) and Lemma 8.1, we obtain a constant b~ >0  such that f (e :  2 
-/~)[__<b l e IIplI/~ (e>0, 2~A~, p~o~). So, as A~ is finite (see, for instance, Theo- 
rem 8.3) there is a constant b 2 >0  such that 

[O3(e: #)l--< ~, m(2)] f;(e: 2 -  P)] < b2 e Ila II/~ (e > 0, p e ~ ) .  (9.7) 
2 e A c  

To estimate (92 w e  note that l(c)= I[H~{] so that, by (9.6), the summation in (92 is 
over those c:#[e] r for which l(c)<e -1. Using (9.2), we get, for all e > 0  and 
~ ,  

[O2(g:P)i--<eb3 2 HH, II e;l"(n') ~I II-~-~(T)I -~, (9.8) 
c * [e]r, a e P \ P ,  

l(c) <=a- I 

where the constant b3>0 is independent of ~ and #. An elementary and well- 
known measure theoretic argument gives the following estimate: there are 
constants b4, b 5 >0  such that, for x>0 ,  

l(c) ~ b 4 e bSx (9.9) 
c ~ g  (F),  l (c) < x 

Further, as the numbers l(c) (c4:[e]r) are bounded away from 0 (Theorem 5.1) 
we find h 6 >0 such that, for all 7, 

[ I  I I-~- , (T)I  = 1-I 1~,(7,)-e-~(n')l> [ I  [1-e-~(n')[>b6 �9 (9.10) 
a ~ P \ P r  a E P \ P z  a ~ P \ P I  
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So combin ing  (9.8)-(9.10), we find, for any e > 0  and # e ~ -  x, 

IO2(~:/~)[ < e b 3 (b 4 eb~/0 e II;,,I/~ b61 < b7 eb./L (9.11) 

The es t imates  (9.7) and  (9.11) would  then prove the propos i t ion ,  p rov ided  we 
establ ish the fol lowing result. 

Proposition 9.3. There is a constant c > 0  such that, for i ~ . ~  and 0<e__< 1, 

([(e:v-,u)[3(v)dv=h(O)efl(lO+eF(tO; IF(#) l<c( l+] l /~ l [ )  "-3.  (9.12) 

Let  t/e~,~ I be a unit  vec tor  and  let H e ( - 1 ) ~ a  be the (unique) dual  basis 
element.  By a Tay lo r  series expans ion  of o rder  2 for fl(/~+ v) a round  p and by 
Fou r i e r  invers ion we get 

[[(c: v -  #) fl(v) dv= ~ [[(e ' v) fl(# + v)dv 

= h(e: O) fl(/O + h(e: O; - 8(H)) fl(/~; 8(r/)) 
1 

+ ~ ~ ( 1 - O ( v , t / ) 2 f i ( ~ + ~ v ; 8 ( q 2 ) ) / ~ ( e  - '  v)dvdr.  
f~ O 

By the symmet ry  of  h, h(e: 0; - 8 ( H ) ) = 0 ,  and  we find 

~0:: v-I~) fl(v)dv=eh(O) fl(l~) 
1 

+ ~ ~(1-z )e2(V ,  t l )2f l ( t t+~ev;  8(tl2))[[(v)e, dvdz.  
,~x 0 

In view of the Pa ley-Wiener  es t imates  for ~ and the es t imate  1 + H/~ + r e vii < (1 + 
I1#[I) (1 + ]lv][), we are done  as soon as we can es t imate  the second der ivat ive  of  ft. 
Being in the r ank-one  s i tua t ion  this comes down to the ( legit imate) differen- 
t i a t ion  of the asympto t i c  expans ion  for f~, occurr ing  supra  (3.44). So (9.12) 
follows (even for n = 2 ,  when ,q=s l (2 ,  IR)). 
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