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1 Introduction

The following presentation of the theory of Lebesgue integration with respect to a measure
µ is due to Daniell [2].

Let Ω be a set. A ring of subsets of Ω is a collection A of subsets of Ω such that

∅ ∈ A and A, B ∈ A ⇒ A ∪B ∈ A, A ∩B ∈ A, A \B ∈ A. (1.1)

A positive measure on A is a function µ : A → R which is positive in the sense that

µ(A) ≥ 0 for every A ∈ A, (1.2)

additive in the sense that

µ(A ∪B) = µ(A) + µ(B) whenever A, B ∈ A and A ∩B = ∅, (1.3)

and has the monotone convergence property in the sense that

If An is a decreasing sequence in A with
∞⋂

n=1

An = ∅, then lim
n→∞

µ(An) = 0. (1.4)

Given the ring A of subsets of Ω, a function f : Ω → R is called A-elementary, if f(Ω) is a
finite subset of R and f−1({c} ∈ A for every c ∈ R such that c 6= 0. let E = EA denote the
set of all A-elementary functions on E.

Provided with the pointwise addition and scalar multiplication of functions, the space F
of all functions f : Ω → R is a vector space over R, and E is a linear subspace of F . Also, in
F we have the partial ordering defined by f ≤ g if and only if f(x) ≤ g(x) for all x ∈ Ω, and
the functions max(f, g) and min(f, g), defined by (max(f, g))(x) := max(f(x), g(x)) and
min(f(x), g(x)) := min(f(x), g(x)) for every x ∈ Ω, are the smallest and largest elements of
F which are ≥ f, g and ≤ f, g, respectively. The ring property of A implies that E has the
Riesz property

f, g ∈ E ⇒ max(f, g) ∈ E and min(f, g) ∈ E. (1.5)
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For any f ∈ E, the integral of f with respect to the positive measure µ on A is defined
as ∫

f(x)µ(dx) :=
∑

c∈f(Ω)\{0}

c µ(f−1({c}). (1.6)

Then

u = Iµ : f 7→
∫
f(x)µ(dx) (1.7)

defines a linear form u : E → R, which is positive in the sense that

u(f) ≥ 0 if f ∈ E and f ≥ 0, (1.8)

and has the monotone convergence property in the sense that, for every sequence fn in E,

If fn ↓ 0 then u(fn) → 0, as n→∞. (1.9)

We provide a proof, which is not contained in Daniell [2], perhaps because (1.9) is a very
simple case of the usual limit theorems in the theory of Lebesgue integration with respect
to a measure.

Proof The linearity and positivity of u = Iµ are obvious. For the proof of (1.9), we define,
for each δ ∈ R>0, Aδ, n := {x ∈ Ω | fn(x) > δ}. Then fn ∈ E and (1.1) imply that Aδ, n ∈ A,
and fn(x) ↓ 0 for every x ∈ Ω implies that n 7→ Aδ, n is a decreasing sequence of subsets of
Ω with empty intersection. Therefore (1.4) implies that limn→∞ µ(Aδ, n) = 0.

Let A1 = {x ∈ Ω | f1(x) > 0}. Then f1 ∈ E and (1.1) imply that A1 ∈ A, and fn ≤ f1

implies that fn
−1({c} ⊂ A1 for every c ∈ R>0. Also max fn ≤ max f1. Because for different

c’s the sets fn
−1({c}) ∈ A are disjoint, we have

u(fn) =
∑

c∈fn(Ω), 0<c≤δ

c µ(fn
−1({c}) +

∑
c∈fn(Ω), c>δ

c µ(fn
−1({c})

≤ δ µ(A1) + (max f1)µ(Aδ, n).

Let ε > 0. Choose δ > 0 such that δ µ(A1) < ε, and then, for this δ, n such that δ µ(A1) +
(max f1)µ(Aδ, n) ≤ ε. Then u(fn) ≤ ε, hence 0 ≤ u(fm) ≤ u(fn) ≤ ε for every m ≥ n. �

One of the points of Daniell [2] is that, assuming only that E is a vector space of real
valued functions on a set Ω which has the Riesz property (1.5), and u : E → R is a linear
form on E which satisfies (1.8) and (1.9), then there is a space E of functions on Ω with
values in R := R∪{ −∞}∪{∞} and an extension of u to a real valued function on E which
is denoted by the same letter u, such that the space E and the function u : E → R has all
the properties of the space of Lebesgue integrable functions and the Lebesgue integral.

If E = EA and u = Iµ for a ringA of subsets of Ω and a measure µ onA, respectively, then
the extension procedure in Daniell [2] is equal to the one in the theory of Lebesgue integration,
and therefore E and u : E → R is equal to the space of Lebesgue integrable functions and
Lebesgue integral, respectively. That is, the theory of Daniell [2] is a generalization of the
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the theory of Lebesgue integration to arbitrary linear forms u : E → R which statisfy (1.5),
(1.8), and (1.9). As no additional arguments are needed, this generalization is at no extra
cost. Moreover, the presentation actually becomes somewhat simpler, because no ring of
subsets A and measure µ appear in the notations, only the linear form u : E → R satisfying
(1.5), (1.8), and (1.9).

We now describe E, u : E → R, and their main properties. The first step in the extension
procedure is the definition of the set E↑ of all functions f : Ω → R ∪ {∞} which are the
pointwise limits of a pointwise non-decreasing sequence fn in E, notation E 3 fn ↑ f . Then
the numbers u(fn) form a non-decreasing sequence, of which the limit is independent of the
sequence E 3 fn ↑ f . If f ∈ E, then f − fn ↓ 0, hence u(f) − u(fn) = u(f − fn) → 0 if
f ∈ E. It follows that there is a unique u↑ : E↑ → R∪{∞}, such that u↑(f) = limn→∞ u(fn)
whenever E 3 fn ↑ f , and such that u↑|E = u. We write u↑ = u in the sequel.

The next step is the definition, for every f : Ω → R of

u(f) := inf{u(ϕ) | ϕ ∈ E↑ and f ≤ ϕ} ∈ R, (1.10)

where u(f) := ∞ if there is no ϕ ∈ E↑ such that f ≤ ϕ. with this definition, E = E
u

is
defined as the set of all f : Ω → R with the property that, for every ε > 0, there exists
ϕ ∈ E such that

u(|f − ϕ|) ≤ ε. (1.11)

In other words, E is the closure of E in the space of all functions f : Ω → R if u(|f − ϕ|)
is viewed as the distance between f and ϕ ∈ E. It is proved that, for any ϕ, ψ ∈ E,
|u(ϕ) − u(ψ)| ≤ u(|f − ϕ|) + u(|f − ψ|). It follows that there is a unique v : E → R such
that |v(f)−u(ϕ)| ≤ u(|f −ϕ|) whenever f ∈ E and ϕ ∈ E, which implies that v|E = u, and
therefore allows to write v = u.

With the standard arguments of the theory of Lebesgue integration with respect to a
measure, Daniell [2] subsequently proved that the extended functional u is linear in the sense
that u(f+g) = u(f)+u(g) and u(c f) = c u(f) whenever f, g ∈ E, c ∈ R, and the functions
f+g and c f are pointwise defined. Furthermore, u is positive in the sense that u(f) ≤ u(g) if
f, g ∈ E and f ≤ g. More importantly, E and u : E → R enjoy very strong limit properties.
For instance, one has the Levi property1, that if E 3 fn ↑ f : Ω → R, and the sequence
u(fn) is bounded from above by a finite number, then f ∈ E and u(f) = limn→∞ u(fn). We
a similar statement for decreasing sequences in E, which in the case that f = 0 implies that
u : E → R satisfies (1.9). However, the initial space E and linear form u : E → R usually
is not closed under taking limits of arbitrary monotone sequences fn for which the u(fn) are
bounded.

For any subset A of Ω the characteristic function 1A of A is defined by 1A(x) = 1 if x ∈ A
and 1A(x) = 0 if x ∈ Ω\A. Let A = Au denote the collection of all A ⊂ Ω such that 1A ∈ E.
A is a ring of subsets of Ω, because 1∅ = 0, and 1A∪B = max(1A, 1B), 1A∩B = min(1A, 1B),
and 1A\B = 1A − 1A∩B all belong to E if A, B ∈ A.

Define µ = µu : A → R by µ(A) = u(1A) for every A ∈ A. We have µ(A) = u(1A) ≥
u(0) = 0 because 1A ≥ 0, and µ(A∪B) = u(1A∪B) = u(1A + 1B) = u(1A) + u(1B) = µ(A) +

1There were several famous mathematicians with the name Levi. This is Beppo Levi.
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µ(B) if A, b ∈ A and A∩B = ∅. Let An be an increasing sequence inA for which the sequence
µ(An) is bounded from above, and let A be the union of all the An. Then E 3 1An ↑ 1A

and the sequence u(1An) is bounded from above. Therefore the Levi property implies that
1A ∈ E and u(1A) = limn→∞ u(1An). Therefore A ∈ A and µ(A) = limn→∞ µ(An). There is
an analogous statement for decreasing sequences in A, which implies (1.4).

In particular A is a ring of subsets of Ω and µ is a measure on A. We have EA ⊂ E and
Iµ is equal to the restriction of u to Eµ. Applying the extension procedure with u : E → R

replaced by Iµ : Eµ → R, it is natural to ask whether E ⊂ Eµ
Iµ

, and u is equal to the

restriction to E of the extension of Iµ to Eµ
Iµ

. However, this is not always the case. That is,
for f ∈ E, u(f) cannot always be recovered as the Lebesgue integral of f with respect to the
measure µu. The following, admittedly a bit articifial, example shows this convincingly. In
other words, the Daniell closure is a true generalization of the theory of Lebesgue integration
with respect to measures.

Example 1.1 Let Ω be a subset of R≥0 with at least two strictly positive elements. Let E
be the set of all restrictions to Ω of linear functions on R. That is, f ∈ Ω if and only if there
exists c ∈ R such that f(x) = c x for every x ∈ Ω. Define u(f) = c if f(x) = c x for every
x ∈ Ω, that is, if we choose x0 ∈ Ω \ {0}, then u(f) = f(x0)/x0 for every f ∈ E. It follows
that E is a vector space of functions on Ω with the Riesz property (1.5), and that u is a
linear form on E such that (1.8) and (1.9). However, E↑ = E, E = E, A = {∅}, Eµu = {0},
and Iµ = 0. �

However, the other direction one has the following result, not contained in Daniell [2]. I
learned the theorem and the idea of the proof from Constantinescu, Weber and Sontag [1,
Prop. 5.1.2 and Th. 5.1.6].

Theorem 1.2 Suppose that E has the Stone property, that is, min(f, 1Ω) ∈ E for every

f ∈ E. Then E = Eµ
Iµ

, and u(f) =
∫
f(x)µ(dx) for every f ∈ E.

Proof We first prove that if f ∈ E, then Eµ
Iµ

and u(f) =
∫
f(x)µ(dx). In view of f =

max(f, 0)−max(−f, 0) where max(f, 0) and max(−f, 0) are nowhere negative elements of
E, we may assume that f ≥ 0. For any c ∈ R>0, we have min(f, c 1Ω) = c min((1/c) f, 1Ω) ∈
E. Therefore, if 0 < c′ < c, also

gc, c′ =
1

c− c′
(min(f, c 1Ω)−min(f, c′ 1Ω)) ∈ E.

We have gc, c′(x) = 1 when f(x) ≥ c, gc, c′(x) = (f(x)−c′)/(c−c′) ∈ [0, 1] when c′ ≤ f(x) ≤ c,
and gc, c′(x) = 0 when f(x) ≤ c′. Let cn be a non-decreasing sequence of positive real numbers
such that 0 < cn < c for every n and cn ↑ c as n→∞. Then hn := min1≤m≤n gc, cn ∈ E, and
hn ↓ 1(f≥c), if (f ≥ c) := {x ∈ Ω | f(x) ≥ c}. It follows from the Levi property in E that

1(f≥c) ∈ E, that is, (f ≥ c) ∈ Au, and 1(f≥c) ∈ E
u

A.

4



Let F be a finite non-empty subset of R>0. For every c ∈ F , let c′F = min{c′ ∈ F | c′ > c},
where c′F = ∞ if c = maxF . Define

fF =
∑
c∈F

c 1(c≤f<c′F ),

where (c ≤ f < c′F ) = (f ≥ c) \ (f ≥ c′) ∈ A, hence fF ∈ E
u

A. We have fF ≤ f and

u(f) ≥ u(fF ) =
∑
c∈F

c u(1(c≤f<c′F ))

=
∑
c∈F

c µ((c ≤ f < c′F )) =

∫
fF (x)µ(dx).

If Fn is an increasing sequence of finite subsets of R>0 such that the union of all the Fn is
dense in R>0, then fFn ↑ f as n → ∞. Because the integrals of the fFn are bounded from
above by u(f), it follows from the Levi property for Lebesgue integration with respect to µ
that f is Lebesgue integrable with respect to µ and∫

f(x)µ(dx) = lim
n→∞

∫
fFn(x)µ(dx).

This is actually Lebesgue’s original definition of the Lebesgue integral. On the other hand
the Levi property for u : E → R implies that u(f) = limn→∞ u(fFn) where

u(fFn) =

∫
fFn(x)µ(dx)

for every n. It follows that u(f) =
∫
f(x)µ(dx).

We have therefore proved that E ⊂ Eµ
Iµ

and u|E = Iµ |E. Because the Daniell closure of
Iµ is Iµ, the Daniell cloure of u|E = Iµ |E is contained in the Daniell closure of Iµ, that is,

E ⊂ Eµ
Iµ

and u|E = Iµ |E. Because on the other hand Eµ ⊂ E and u|E is Daniell closed, we

also have Eµ
Iµ ⊂ Eµ

u ⊂ E, and therefore E = Eµ
Iµ

and u = Iµ on E. �

This manuscript grew out of an attempt to prove the following theorem without using
too much measure theory.

Theorem 1.3 Let Ω be an open subset of Rn, and let u be a distribution on Ω. Then u is
positive in the sense that u(ϕ) ≥ 0 whenever ϕ ∈ C∞

0 (Ω) and ϕ ≥ 0, if and only if there
is a positive measure µ on Ω, such that for every ϕ ∈ C∞

0 (Rn) we have that ϕ is Lebesgue
integrable with respect to µ and u(ϕ) =

∫
ϕ(x)µ(dx).

Proof The ”if” part is obvious.
For the ”only if” part, let u be a positive distribution on Ω. Let K be a compact

subset of Ω. Choose χ ∈ C∞
0 (Ω) such that χ ≥ 1K . If ϕ ∈ C∞

0 (Ω) and supp(ϕ) ⊂ K,
then ±ϕ ≤ (sup |ϕ|)χ, hence (sup |ϕ|)u(χ) − (±u(ϕ) = u((sup |ϕ|)χ − (±ϕ)) ≥ 0, that is,
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|u(ϕ)| ≤ u(χ) sup |ϕ|. It follows that u extends to a continuous linear form u on the space
C0(Ω) of all continuous functions with compact support on Ω, where u(ϕ) ≥ 0 if ϕ ∈ C0(Ω),
ϕ ≥ 0.

If C0(Ω) 3 ϕn ↓ 0, then we have for evey n that suppϕn ⊂ K := suppϕ1, where K is
a compact subset of Ω. The theorem of Dini now implies that the sequence ϕn converges
uniformly to zero, and the continuity of the linear form u on C0(Ω) implies that u(ϕn) → 0
as n→∞.

We conclude that the space E = C0(Ω) and the linear form u : E → R satisfy (1.5),
the Stone property, (1.8), and (1.9). Theorem 1.2 therefore implies that there is a positive
measure µ such that, for every ϕ ∈ C0(Ω), ϕ is Lebesgue integrable with respect to µ and
u(ϕ) =

∫
ϕ(x)µ(dx). �

The condition for the measure µ, that every ϕ ∈ C∞
0 (Ω) is Lebesgue integrable with respect

tot µ, is not very direct in terms of the measure µ itself. This is remedied by the following
proposition. Note that 1A is µ-integrable if and only if A is measurable with respect to µ
and µ(A) <∞.

Proposition 1.4 Every ϕ ∈ C∞
0 (Ω) is µ-integrable ⇒ 1A is µ-integrable for every relatively

compact open subset A of Ω ⇒ every ϕ ∈ C0(Ω) is µ-integrable.

Proof We have f ∈ E if and only if f is Lebesgue integrable with respect to µ.
Suppose that C∞

0 (Ω) ⊂ E and that A is a relatively compact open subset of Ω. Choose
χ ∈ C∞

0 (Ω) and an increasing sequence χn in C∞
0 such that χn ↑ 1A ≤ χ. Because u(χn) ≤

u(χ) for every n, it follows from the Levi property that 1A ∈ E.
Conversely, suppose that 1A ∈ E for every relatively compact open subset A of Ω. Let

ϕ ∈ C0(Ω) and ϕ ≥ 0. Then (ϕ > c) is a relatively compact open subset of Ω for every
c ∈ R>0, hence 1(ϕ>c) ∈ E. If 0 < cn < c and cn ↑ c, then then 1(ϕ>cn) ↓ 1(ϕ≥c), and the Levi
property implies that 1(ϕ≥c) ∈ E. Because the A ⊂ Ω such that 1A ∈ E form a ring, we have
fore every a, b ∈ R such that 0 < a < b that 1(a≤ϕ<b) ∈ E. Approximating ϕ in a monotone
way by a sequence of linear combinations of functions 1(a≤ϕ<b) as in the proof of Theorem
1.2, we conclude that ϕ ∈ E. For any ϕ ∈ C0(Ω) we have ϕ = max(ϕ, 0) − max(−ϕ, 0),
where max(ϕ, 0) and max(−ϕ, 0) are ≥ 0 elements of C0(Ω). Therefore C0(Ω) ⊂ E. �

Daniell [2, Sec. 3, 4] also proved the following theorem.

Theorem 1.5 Let E be a vector space of real valued functions on Ω with the Riesz property
(1.5), and let v : E → R be a linear form on E which has the monotone convergence property
(1.9) with u replaced by v. Assume furthermore that if f ∈ E, f ≥ 0, then

v+(f) := sup{v(ϕ) | ϕ ∈ E, 0 ≤ ϕ ≤ f} <∞. (1.12)

For any f ∈ E, define v+(f) = v+(max(f, 0))− v+(max(−f, 0)) and v−(f) = v+(f)− v(f).
Then v+, v− : E → R are linear forms on E such that v± satisfy (1.8) and (1.9) with u
replaced by v±. We have v = v+ − v−.
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For a proof, see Section 6.

Corollary 1.6 Let Ω be an open subset of Rn, and let v be a distribution on Ω. Then v is
of order zero if and only if there exist positive measures µ+ and µ− on Ω, such that for every
ϕ ∈ C∞

0 (Rn) we have that ϕ is Lebesgue integrable both with respect to µ+ and to µ−, and
v(ϕ) =

∫
ϕ(x)µ+(dx)−

∫
ϕ(x)µ−(dx).

Proof The condition that v is of order zero means that for every compact subset K of Ω
there exists a positive constant C = C(K) such that |v(ϕ)| ≤ C max |ϕ| for every ϕ ∈ C∞

0 (Ω)
with support of ϕ contained in K. It follows that v has an extension to a continuous linear
from on C0(K), denoted by the same letter, for which we have the same estimate.

The ”if” part now follows from

|
∫

ϕ(x)µ+(dx)−
∫

ϕ(x)µ−(dx)| ≤ |
∫

ϕ(x)µ+(dx)|+ |
∫

ϕ(x)µ−(dx)|

≤ (sup |ϕ|)µ+(K) + (sup |ϕ|)µ−(K) = (µ+(K) + µ−(K)) sup |ϕ|,

if ϕ ∈ C∞
0 (Ω) has support contained in the compact subset K of Ω.

For the ”only if” part we observe that if v is of order zero, then the theorem of Dini
implies that (1.9) holds with u replaced by v. Furthermore, if f, g ∈ C0(Ω), 0 ≤ g ≤ f ,
then supp g ⊂ supp f , and therefore |v(g)| ≤ C(supp f) sup |g| ≤ C(supp f) sup |f |, and it
follows that v+(f) ≤ C(supp f) sup |f | < ∞. Theorem 1.3 with u replaced by v± implies
that there exist positive measures µ± such that every ϕ ∈ C0(Ω) is Lebesgue integrable with
respect to µ± and v±(ϕ) =

∫
ϕ(x)µ±(dx). This implies the desired expression for v in terms

of µ+ and µ−, because v(ϕ) = v+(ϕ)− v−(ϕ). �

Let K be a compact subset of Rn. A Radon measure on K is a measure on a σ-algebra of
subsets which contains all open subsets of K, or equivalently all compact susbets of K. As
the Borel σ-algebra of K is defined as the smallest σ-algebra of subsets of K which contains
every open subset of K, a radon measure on K is equivalently described as a measure on a
σ-algebra of subsets of K which contains the Borel σ-algebra of K. Let C(K) denote the
space of all continuous functions on K, provided with the topology of uniform convergence.
Radon [7, Sec. III] proved that v : C(K) → R is a continuous linear form on C(K), if
and only if there exists a Radon measure ν on K such that, for every f ∈ C(K), we have
v(f) =

∫
f(x) ν(dx). 2 Sometimes one sees in the literature that a Radon measure is defined

as a continuous linear form on a space C(K), but this definition would reduce the theorem
to a tautology. Corollary 1.6 is equivalent to the theorem of Radon [7, Sec. III].

2Radon [7] denoted the integral by
∫

f dν. I prefer the notation
∫

f(x) ν(dx) which I learned from Stroock
[12, bottom of p. 42], because it reminds of the definition of a measure ν as a function which assigns a real
number to a subset of K, where dx stands for an ”infinitesimally small subset of K containing the point x”.
If one wants to delete the variable x from the notation, then the natural notation would be

∫
f ν, which

is a minimal notation, as one needs a symbol for the function f which is integrated, the measure ν with
respect to which f is integrated, and for the operation of integrating. Here Stroock [12, bootom of p. 42]
used Radon’s notation

∫
f dν, probably in order to conform to the majority, which is wise.
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When K = [a, b] is a bounded and closed interval in R, the theorem of Radon is equiv-
alent to the Riesz representation theorem [9], [10], which states that v : C([a, b]) → R is
a continuous linear form, if and only if there exists a function α : [a, b] → R of bounded

variation such that, for each f ∈ C([a, b]), v(f) =
∫ b

a
f(x) dα(x), the Stieltjes integral of

f with respect to the function α. In the literature one sometimes sees the Riesz represen-
tation theorem described as this result only for positive linear forms, when the function α
is non-decreasing. This is a bit unfair to Riesz, because [9], [10] definitely treated arbitrary
continuous linear formas on C([a, b]). Radon [7, Sec. III] referred to Riesz [9]. In [10], which
is slightly later than Radon [7], Riesz did not mention Radon’s generalization. Perhaps be-
cause the theorem of Radon is ”only” a generalization of the Riesz representation theorem,
one sometimes sees the Riesz representation theorem described as the theorem that, for any
open subset Ω of Rn, every continuous linear form on C0(Ω) is equal to integration with re-
spect to a Radon measure on Ω. Daniell [2, Introduction] referred to Radon [7], Young [13],
Riesz [10], Moore [6], and Hildebrandt [4], but did not mention the term Lebesgue integral
or refer to Lebesgue.

In order to convince myself of the statements of Daniell [2], I have written down all the
proofs in the remainder of this manuscript. I also have added some results in order to make
a more complete fit with the theory of Lebesgue integration with respect to a measure. A
very thorough exposition of the Daniell closure and its relation to Lebesgue integration with
respect to a measure can be found in the book of Constantinescu, Weber and Sontag [1]. It
also contains a nice discussion [1, Appendix] of the history of the theory of integration.

A bit oddly, I could not find Theorem 1.5 in [1], which has a prominent position in
Daniell’s paper [2, Sec. 3, 4, 8]. Nor could I find in [1] the theorem that the space L of
equivalence classes of elements in E is complete with respect to the norm f 7→ u(|f |). This
theorem is not discussed in Daniell [2] either. When u = Iµ, then L = L1(µ) is the space of all
equivalence classes of Lebesgue integrable functions. The completeness of Lp(µ), the space
of all equivalence classes of measurable functions f such that |f |p is integrable with respect
to µ, provided with the norm f 7→ (

∫
|f |2 µ)1/p, is known as the Riesz-Fischer theorem, after

Fischer [3], where it has been proved for Ω = [a, b] and p = 2, and Riesz [8, p. 468] for
Ω = [a, b] and 1 < p < ∞, with a footnote that it also holds for 0 < p ≤ 1. Because of the
importance of the Banach space L1(µ) in analysis, I have included a discussion of L.

2 The extension to E↑

Throughout this paper, Ω is a set, E a vector space of real valued functions on Ω with the
Riesz property (1.5), and u : E → R a linear form on E which is positive in the sense of
(1.8) and has the monotone convergence property (1.9).

Let E↑ denote the set of all f : Ω → (R ∪ {∞}) for which there exists a sequence fn in
E such that fn ↑ f as n→∞.

Lemma 2.1 Let fn be a sequence in E and fn ↑ f ∈ E↑ as n → ∞. Then u(fn) is a
non-decreasing sequence in R and therefore converges to an element in R∪{∞} as n→∞.
If h ∈ E and f ≥ h, then limn→∞ u(fn) ≥ u(h).
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Proof The monotonicity of the sequence u(fn) has been discussed after (1.9). For the
second statement, let gn := min(fn, h). Then (1.5) implies that gn ∈ E, and we have gn ↑ h,
and therefore (1.9) implies that u(gn) ↑ u(h). Because fn ≥ gn, we have u(fn) ≥ u(gn) for
every n, and the conclusion follows. �

Lemma 2.2 Let fn and gn be sequences in E and fn ↑ f ∈ E↑, gn ↑ g ∈ R+ as n→∞. If
f ≥ g then limn→∞ u(fn) ≥ limn→∞ u(gn). If f = g then limn→∞ u(fn) = limn→∞ u(gn).

Proof Lemma 2.1 with h replaced by gm implies that limn→∞ u(fn) ≥ u(gm) for every
m. Taking the limit for m→∞ yields the first inequality. if f = g we can interchange the
sequences fn and gn, which yields the inequality in the other direction. �

It follows from Lemma 2.2 that there is a unique function u↑ : E↑ → R∪ {∞} such that
limn∞ u(fn) = u↑(f) whenever f ∈ E↑ and fn is a sequence in E such that fn ↑ f as n→∞.
If f ∈ E, then we have fn ↑ f for the constant sequence fn = f , hence u↑(f) = u(f). That
is, the function u↑ : E↑ → R ∪ {∞} is an extension of the function u : E → R. We write
u↑ = u in the sequel.

Lemma 2.3 i) If f ∈ E↑ and c ∈ R>0, then c f ∈ E↑ and u(c f) = c u(f).
ii) If f, g ∈ E↑, then f + g ∈ E↑ and u(f + g) = u(f) + u(g).
iii) If f, g ∈ E↑, then max(f, g) ∈ E↑ and min(f, g) ∈ E↑.

Proof If fn is a sequence in E then fn ↑ f if and only if c fn ↑ c f , as n → ∞, whereas
u(c fn) = c u(fn). This proves i).

For ii) we observe that f, g ∈ E implies that there are sequences fn and gn in E such
that fn ↑ f and gn ↑ g, hence fn +gn ↑ f+g as n→∞. Therefore f+g ∈ E↑ and u(f+g) =
limn→∞ u(fn +gn) = limn→∞ (u(fn)+u(gn)) = limn→∞ u(fn)+limn→∞ u(gn) = u(f)+u(g).
�

Lemma 2.4 i) If f, g ∈ E↑ and f ≤ g, then u(f) ≤ u(g).
ii) If fn is a sequence in E↑, f ∈ F and fn ↑ f , then f ∈ E↑ and limn→∞ u(fn) = u(f).

Proof
i) This follows from the first statement in Lemma 2.2.
ii) It follows from i) that the sequence u(fn) is non-decreasing, and therefore convergers

to an elment of R ∪ {∞} as n → ∞. By definition, fn ∈ E↑ means that there exists a
sequence m 7→ fn, m in E such that fn, m ↑ fn and u(fn) = limm→∞ u(fn, m), as m → ∞.
Define

gl = max
1≤n≤l, 1≤m≤l

fn, m.

Then gl ∈ E, and gl ≤ gl+1, hence gl ↑ g ∈ E↑ and liml→∞ u(gl) = u(g). For every
1 ≤ n ≤ l and 1 ≤ m ≤ l we have fn, m ≤ fn ≤ fl, hence gl ≤ fl, and therefore g =
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liml→∞ gl ≤ liml→∞ fl = f . On the other hand, for every l ≥ n we have fn, l ≤ gl, hence
fn = liml→∞ fn, l ≤ liml→∞ gl = g, hence f = limn→∞ fn ≤ g. Combining g ≤ f and f ≤ g,
we conclude that f = g ∈ E↑.

Because gl ≤ fl, we have u(gl) ≤ u(fl), hence u(f) = u(g) = liml→∞ u(gl) ≤ liml→∞ u(fl).
Furthermore, if l ≥ n then fn, l ≤ gl, hence u(fn, l) ≤ u(gl). Therefore u(fn) = liml→∞ u(fn, l) ≤
liml→∞ u(gl) = u(g) = u(f) for every n, hence limn→∞ u(fn) ≤ u(f). �

3 The upper and the lower form

For every f : Ω → R := R ∪ {−∞} ∪ {∞}, define u(f) by (1.10).

Lemma 3.1 i) If f : Ω → R and c ∈ R>0, then u(c f) = c u(f).
ii) Let f, g : Ω → R, u(f) < ∞, and u(g) < ∞. Then u(min(f, g)) ≤ u(max(f, g)) < ∞,
and u(max(f, g)) + u(min(f, g)) ≤ u(f) + u(g).
iii) If f, g : Ω → R and f ≤ g, then u(f) ≤ u(g).
iv) If 0 ≤ fn ↑ f , then u(fn) ↑ u(f) as n→∞.
v) If f ∈ E↑ then u(f) = u(f).

Proof
i) If ϕ ∈ E↑ then f ≤ ϕ if and only if c f ≤ c ϕ, whereas u(c ϕ) = c u(ϕ) in view of i) in

Lemma 2.3.
ii) Let ϕ, ψ ∈ E↑, f ≤ ϕ, g ≤ ϕ, where we can arrange that u(ϕ) and u(psi) are finite.

Then it follows from iii) in Lemma 2.3 that max(f, g) ≤ max(ϕ, ψ) ∈ E↑, min(f, g) ≤
min(ϕ, ψ) ∈ E↑, whereas (1.5), which also holds in E↑, and ii) in Lemma 2.3 imply that

u(max(ϕ, ψ))+u(min(ϕ, ψ)) = u(max(ϕ, ψ)+min(ϕ, ψ)) = u(ϕ+ψ) = u(ϕ)+u(ψ). (3.1)

The infimum over all these ϕ, ψ of the right hand side of (3.1) is equal to u(f)+u(g) <∞, and
the desired inequalities now follow from the observation that u(max(f, g)) ≤ u(max(ϕ, ψ))
and u(min(f, g)) ≤ u(min(ϕ, ψ)).

iii) and v) If ψ ∈ E↑, g ≤ ψ, then f ≤ ψ, hence u(f) ≤ u(ψ). Taking the infimum over
all these ψ we obtain u(f) ≤ u(g). If f ∈ E↑, then u(f) ≤ u(ψ) for all E↑ 3 ψ ≥ f , hence
u(f) ≤ u(f), whereas taking ψ = f we obtain that u(f) ≤ u(f).

iv) If u(fn) = ∞ for some n, then it follows from iii) and fn ≤ f that u(f) = ∞, and we
are done. Therefore we assume in the sequel that u(fn) ∈ R for every n. It follows from iii)
that the sequence u(fn) is non-decreasing, hence converges in R∪{∞}, and because fn ≤ f
hence u(fn) ≤ u(f) for every n, we have limn→∞ u(fn) ≤ u(f).

Let ε ∈ R>0 and choose a sequence εn ∈ R>0 of which the sum is ≤ ε. Then there exists
ϕn ∈ E↑ such that fn ≤ ϕn and u(ϕn) ≤ u(fn)+ εn. Let ψn = max1≤m≤n ϕm. Then it folows
from Lemma 2.3 by induction on n that fn ≤ ψn = max(ψn−1, ϕn) ∈ E↑, where the sequence
ψn is non-decreasing. We have ψn +χn = ψn−1 +ϕn if χn := min(ψn−1, ϕn), fn−1 ≤ χn ∈ E↑,

u(ψn) + u(fn−1) ≤ u(ψn) + u(χn) = u(ψn + χn)

= u(ψn−1 + ϕn) = u(ψn−1) + u(ϕn) ≤ u(fn−1) + ηn−1 + u(fn) + εn,

10



hence u(ψn) ≤ u(fn) + ηn where ηn := ηn−1 + εn, and it follows by induction on n that

u(ψn) ≤ u(fn) +
n∑

m=1

εn ≤ u(fn) + ε.

for every n. Therefore ψn ↑ ψ ∈ E↑, fn ≤ ψn for all n implies that f ≤ ψ, and therefore

u(f) ≤ u(ψ) = lim
n→∞

u(ψn) ≤ lim
n→∞

u(fn) + ε.

Because this holds for every ε > 0, we conclude that u(f) ≤ limn→∞ u(fn). �

The counterpart of the set E↑ with the reversed order is the set E↓ of all f : Ω →
R ∪ {−∞} for which there exists a sequence fn in E such that fn ↓ f . The function
u : E → R extends to a function u : E↓ → R ∪ {−∞} such that u(f) = limn→∞ u(fn)
whenever fn is a sequence in E such that fn ↓ f . We have the analogous properties for
u : E↓ → R ∪ {−∞} as we had for u : E↑ → R ∪ {∞}, where a short proof is by observing
that f ∈ E↓ if and only if −f ∈ E↑ and, if this is the case, u(f) = −u(−f).

The counterpart of u with the reversed order is

u(f) := sup{u(ϕ) | ϕ ∈ E↓ and ϕ ≤ f} ∈ R (3.2)

for every f : Ω → R, where u(f) = −∞ if there is no ϕ ∈ E↓ such that ϕ ≤ f . We have the
analogous properties for u as we had for u, where the shortest proof is by observing that a
short proof is by observing that u(f) = −u(−f) for every f : Ω → R.

Lemma 3.2 Let f, g : Ω → R. Then:
i) u(f) ≤ u(f).
ii) If u(f), u(f), u(g), and u(g) all are finite real numbers, then u(max(f, g)), u(max(f, g)),
u(min(f, g)), and u(min(f, g)) are finite, and the sum of the non-negative numbers
u(max(f, g))−u(max(f, g)) and u(min(f, g))−u(min(f, g)) is majorated by the sum of the
non-negative numbers u(f)− u(f) and u(g)− u(g).
iii) If u(f) and u(f) are finite, then u(|f |) is finite and u(|f |)− u(|f |) ≤ u(f)− u(f).

Proof
i) Let ϕ, ψ ∈ E↑ such that f ≤ ϕ and −f ≤ ψ. We have sequences ϕn and ψn in E such

that ϕn ↑ ϕ and ψn ↑ ψ, which implies ϕn(x) ↑ ϕ(x) ≥ f(x) and ψn(x) ↑ ψ(x) ≥ −f(x)
for every x ∈ Ω. If f(x) ∈ R, then we can add the inequalities and obtain ϕ(x) + ψ(x) ≥
0. If f(x) = ∞, then ϕ(x) = ∞, and if f(x) = −∞, then ψ(x) = ∞, and because
ϕ(x), ψ(x) ∈ R ∪ {∞} it follows that ϕ(x) + ψ(x) ≥ 0 for all x ∈ Ω, that is ϕ+ ψ ≥ 0. We
gave this somewhat roundabout argument because if f(x) = ∞, then −f(x) = −∞, and
f(x) + (−f(x)) is not defined. ii) in Lemma 2.3 now leads to ϕ + ψ ∈ E↑ and 0 ≤ u(0) ≤
u(ϕ + ψ) = u(ϕ) + u(ψ), which implies that −u(ψ) ≤ u(ϕ). Taking the infimum over all
E↑ 3 ϕ ≥ f of the right hand side we obtain −u(ψ) ≤ u(f), and then taking the supremum
over all E↑ 3 ψ ≥ −f of the left hand side we obtain u(f) = −u(−f) ≤ u(f).
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ii) Let ϕ, ψ ∈ E↑, ϕ′, ψ′ ∈ E↑, ϕ′ ≤ f ≤ ϕ, and ψ′ ≤ g ≤ ψ, where, due the finiteness
assumptions, we can arrange that the u-values of ϕ, ψ, ϕ′, and ψ′ all are finite. It follows
from (3.1) and the analogous equation with ϕ and ψ repalced by ϕ′ and ψ′, respectively,
that the numbers u(max(ϕ, ψ)), u(min(ϕ, ψ)), u(max(ϕ′, ψ′)), and u(min(ϕ′, ψ′)) all are
finite, and that the sum of the non-negative real numbers u(max(ϕ, ψ)) − u(max(ϕ′, ψ′))
and u(min(ϕ, ψ)) − u(min(ϕ′, ψ′)) is equal to the sum of the non-negative real numbers
u(ϕ)−u(ϕ′) and u(ψ)−u(ψ′). On the other hand max(ϕ′, ψ′) ≤ max(f, g) ≤ max(ϕ, ψ) and
min(ϕ′, ψ′) ≤ min(f, g) ≤ min(ϕ, ψ) imply that all the numbers u(max(f, g)), u(max(f, g)),
u(min(f, g)), and u(min(f, g)) are finite, and u(max(f, g))−u(max(f, g)) ≤ u(max(ϕ, ψ))−
u(max(ϕ′, ψ′)), u(min(f, g)) − u(min(f, g)) ≤ u(min(ϕ, ψ)) − u(min(ϕ′, ψ′)). The desired
inequality follows because the infimum over all these ϕ and ϕ′ of u(ϕ) − u(ϕ′) is equal to
u(f)−u(f), and the infimum over all these ψ and ψ′ of u(ψ)−u(ψ′) is equal to u(g)−u(g).

iii) Apply ii) with g = −f , when max(f, −f) = |f |, min(f, −f) = −|f |, u(−|f |) =
−u(|f |), u(−|f |) = −u(|f |), u(−f) = −u(f), and u(−f) = −u(f). �

4 The closure

The closure of E with respect to the linear form u is defined as the set E = E
u

of all
f : Ω → R such that u(f) = u(f) ∈ R.

Lemma 4.1 If f ∈ E↑, then f ∈ E if and only if u(f) <∞, and in this case u(f) = u(f) =
u(f). If f ∈ E↓, then f ∈ E if and only if u(f) > −∞, and in this case u(f) = u(f) = u(f).

Proof Let f ∈ E↑. It follows from v) in Lemma 3.1 and the definition of E that u(f) =
u(f) = u(f) ∈ R if f ∈ E.

Conversely, assume that u(f) < ∞. By definition, limn→∞ u(fn) for a sequence fn ∈ E
such that fn ↑ f . It follows that −f ≤ −fn ∈ E, hence u(−f) ≤ u(−fn) = −u(fn), and
taking the limit for n→∞ we obtain that −u(f) = u(−f) ≤ −u(f), hence u(f) ≥ u(f) =
u(f). In combination with i) in Lemma 3.2 we conclude that u(f) = u(f) = u(f).

Replacing f by −f , the second statement in the lemma follows from the first one. �

Lemma 4.1 implies that if, for every f ∈ E we define u(f) = u(f) = u(f), then the function
u : E → R agrees with the previously defined functions u on E↑∩E = {f ∈ E↑ | u(f) <∞}
and on E↓ ∩ E = {f ∈ E↓ | u(f) > −∞}. Because u(f) ∈ R for every u ∈ E, Lemma
4.1 and the fact that u : E↑ → R ∪ {∞} was an extension of u : E → R, this implies that
u : E → R is also an extension of u : E → R.

Lemma 4.2 i) If f ∈ E, c ∈ R, c 6= 0, then c f ∈ E and u(c f) = c u(f).
ii) If f, g ∈ E and f ≤ g, then u(f) ≤ u(g).
iii) If f, g ∈ E, then max(f, g), min(f, g) ∈ E.
iv) If f ∈ E then |f | ∈ E and |u(f)| ≤ u(|f |).
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Proof
i) The equations u(−f) = −u(f) and u(−f) = −u(f) show that if f ∈ E, then −f ∈ E

and u(−f) = −u(f). If c > 0 then i) in Lemma 3.1 implies that u(c f) = c u(f) and
u(c f) = −u(−(c f)) = −u(c (−f)) = −(c u(−f)) = c (−u(−f)) = c u(f), which implies
the statement. When c < 0, we write c f = (−c) (−f) with −c > 0, and observe that f ∈ E
implies that −f ∈ E, c f = (−c) (−f) ∈ E, and u(c f) = u((−c) (−f)) = (−c)u(−f) =
(−c) (−u(f)) = c u(f).

ii) This follows from iii) in Lemma 3.1.
iii) This follows from ii) in Lemma 3.2.
iv) This follows from iii) with g = −f . �

For the ”almost everywhere” version of the following theorem, see Theorem 5.3.

Theorem 4.3 If fn is a monotonous sequence in E, f : Ω → R, fn → f as n→∞, and the
sequence u(fn) is bounded, then f ∈ E and limn→∞ u(fn) = u(f). If limn→∞ u(fn) = ±∞,
then u(f) = u(f) = ∞.

Proof Suppose that f − n ↑ f as n→∞. For every n and every εN , ε
′
n ∈ R>0 there exist

ϕn ∈ E↑ and ϕ′n ∈ E↓ such that ϕ′n ≤ fn ≤ ϕn, u(ϕn) ≤ u(fn) + εn, and u(ϕ′n) ≥ u(fn)− ε′n.
Because ϕ′n ≤ f we have u(f) ≥ u(ϕ′n) ≥ u(fn) − ε′n, and choosing the ε′n to converge to
zero, it follows that u(f) ≥ limn→∞ u(fn), which also proves the last statement.

Now assume that limn→∞ u(fn) < ∞. Define ψn = max1≤m≤n ϕn, that is, the ψn are
defined by induction on n by ψ1 = ϕ1 and ψn = max(ψn−1, ϕn) for n > 1. It follows
from iii) in Lemma 2.3 that ψn ∈ E↑, ψn ≥ ψn−1, and fn ≤ ϕn ≤ ψn. Furthermore
fn−1 ≤ ψn−1 and fn−1 ≤ fn ≤ ϕn imply that fn−1 ≤ min(ψn−1, ϕn), hence u(ψn)+u(fn−1) ≤
u(max(ψn−1, ϕn)) + u(min(ψn−1, ϕn)) = u(ψn−1) + u(ϕn) ≤ u(ψn−1) + u(fn) + εn, where in
the middle identity we have used (3.1). It follows that u(ψn)−u(fn) ≤ u(ψn−1)−u(fn−1)+εn
for n > 1, where u(ψ1)−u(f1) = u(ϕ1)−u(f1) ≤ ε1, hence we obtain by induction on n that

u(ψn) ≤ u(fn) +
n∑

m=1

εm (4.1)

for every n. For every ε ∈ R>0 we can choose the sequence εn such that its sum is ≤ ε,
when (4.1) implies that u(ψn) ≤ u(fn) + ε for every n. We have ψ := limn→∞ ψn ∈ E+,
f = limn→∞ fn ≤ limn→∞ ψn = ψ, hence u(f) ≤ u(ψ) = limn→∞ u(ψn) ≤ limn→∞ u(fn) + ε.
because this holds for every ε > 0, the conclusion is that u(f) ≤ u(f) ≤ limn→∞ u(fn). In
combination with the previously obtained inequality u(f) ≥ limn→∞ u(fn), this proves that
u(f) = u(f) = limn→∞ u(fn), that is, f ∈ E and u(f) = limn→∞ u(fn).

The statements in the theorem for the decreasing sequence fn can be proved by applying
the previous to the increasing sequence −fn. �

For the ”almost everywhere” version of the following theorem, see Theorem 5.4.
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Theorem 4.4 If fn is a sequence in E which converges pointwise to a function f : Ω → R,
and there exists ϕ ∈ E such that |fn| ≤ ϕ for every n, then f ∈ E and u(fn) converges to
u(f) as n→∞.

Proof If follows from Lemma 4.2 that ϕ, −ϕ ∈ E, −ϕ ≤ fn ≤ ϕ, and −u(ϕ) = u(−ϕ) ≤
u(fn) ≤ u(ϕ) for every n.

Let gn, m := max0≤l≤m fn+l and hn, m := min0≤l≤m fn+l. Then gn, 0 = fn, gn, m =
max(gn, m−1, fn+m) for m > 0, and it follows in view of iii) in Lemma 4.2 by induction
on m that gn, m ∈ E for every n and every m ≥ 0. Because −ϕ ≤ fn ≤ ϕ for all n, we have
−ϕ ≤ gn, m ≤ ϕ and −ϕ ≤ hn, m ≤ ϕ for all n, m, which in view of ii) in Lemma 4.2 implies
that −u(ϕ) ≤ u(gn, m) ≤ u(ϕ) and −u(ϕ) ≤ u(hn, m) ≤ u(ϕ) for all n, m.

The sequence m 7→ gn, m is increasing, let gn denote its limit. The pointwise convergence
of fn to f implies that the sequence gn converges pointwise to f as well. Because −u(ϕ) ≤
u(gn, m) ≤ u(ϕ) for all m, and Theorem 4.3 for increasing sequences implies that gn ∈ E
and u(gn) = limm→∞ u(gn, m) ∈ [−u(ϕ), u(ϕ). The sequence gn is decreasing, and Theorem
4.3 for decreasing sequences implies that f = limn→∞ gn ∈ E, and u(f) = limn→∞ u(gn). It
follows that for every ε > 0 there exists an N such that, for every n ≥ N , u(gn) ≤ u(f) + ε.
Because fn ≤ gn, m ≤ gn, it follows that u(fn) ≤ u(gn) ≤ u(f) + ε. The analogous reasoning
with the gn, m replaced by hn, m and alll inequalities reversed leads to the existence, for every
η ∈ R>0, of an M such that u(fn) ≥ u(f)− η for all n ≥M . �

The following theorem yields an equivalent characterization of E as the closure of E in the
space of functions f : Ω → R with respect to the ”distance” u(|f −ϕ|) of f to elements ϕ of
E. The theorem also yields an equivalent characterization of u(f) as the limit value of the
u(ϕ) as ϕ ∈ E and u(|f − ϕ|) → 0. For the ”almost everywhere version of Theorem 4.5, see
Theorem 5.5.

Theorem 4.5 Let f : Ω → R. Then f ∈ E if and only if for every ε ∈ R>0 there
exists ϕ ∈ E such that u(|f − ϕ|) ≤ ε. If f ∈ E and ϕ ∈ E, then |f − ϕ| ∈ E and
|u(f)− u(ϕ)| ≤ u(|f − ϕ|).

Proof If ϕ ∈ E, then ϕ : Ω → R, hence f − ϕ, ϕ − f , and |f − ϕ| = max(f − ϕ, ϕ − f)
are well-defined functions on Ω with values in R.

”Only if” Let f ∈ E and ε > 0. There exists g ∈ E↑ such that f ≤ g and u(g) ≤ u(f)+ε/2.
In turn there exists a sequence gn in E such that gn ↑ g, when u(g) = limn→∞ u(gn). It follows
that for some n, ϕ = gn satisfies u(ϕ) ≥ u(g)−ε/2. We have f−ϕ ≤ g−ϕ and ϕ−f ≤ g−f ,
hence |f−ϕ| ≤ max(g−ϕ, g−f). On the other hand min(g−ϕ, g−f) ≥ 0, and it follows from
ii) in Lemma 3.1 that u(|f−ϕ|) ≤ u(max(g−ϕ, g−f)) ≤ u(g−ϕ)+u(g−f) ≤ ε/2+ε/2 = ε.

”If” For every E↑ 3 g ≥ |f − ϕ| we have E↑ 3 ϕ + g ≥ ϕ + |f − ϕ| ≥ f , hence, in view
of ii) in Lemma 2.3 u(f) ≤ u(ϕ + g) = u(ϕ) + u(g). Taking the infimum over all such g
we obtain that u(f) ≤ u(ϕ) + u(|f − ϕ|). The substitution of f and ϕ by − f and −ϕ,
respectively, leads to u(f) = −u(−f) ≥ −(u(−ϕ) + u(| − f + ϕ|) = u(ϕ) − u(|f − ϕ|).
Therefore, if (|f − ϕ|) can be made arbitrarily small, we conclude that u(f) and u(f) are
finite and arbitrarily close to each other, that is, f ∈ E.
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If f ∈ E and ϕ ∈ E then f−ϕ ∈ E and the above estimates take, in view of iv) in Lemma
4.2,the form u(ϕ)−u(|f −ϕ|) ≤ u(f) ≤ u(ϕ)+u(|f −ϕ|), hence |u(f)−u(ϕ)| ≤ u(|f −ϕ|).
�

5 Null sets and equivalence classes of functions

If one wants to retain limit theorems like Theorem 4.3 and Theorem 4.4 in their full generality,
then one has to allow, in general, −∞ and +∞ as values of the elements of E, which causes
problems in defining pointwise sums of elements of E and the pointwise scalar product of
an element of E with zero. That is, in general E is not a vector space with the pointwise
addition and scalar multiplication. In order to remedy this, we replace the elements of E by
their equivalence classes for a suitable equivalence relation in E.

A subset A of Ω is called a null set with respect to u if u(1A) = 0, where 1A denotes the
characteristic functio of A. Note that 1A ≥ 0, hence 0 ≤ u(0) ≤ u(1A) ≤ u(1A) = 0, which
implies that 1A ∈ E and u(1A) = 0.

Lemma 5.1 i) The empty set is a null set.
ii) If A is a null set and B ⊂ A, then B is a null set.
iii) If An is a sequence of null sets, then the union U of all the An is a null set.

Proof
i) 1∅ = 0 and u(0) = 0.
ii) If B ⊂ A then 0 ≤ 1B ≤ 1A, hence 0 = u(0) ≤ u(1B) ≤ u(1A) in view of ii) in Lemma

3.1.
iii) If A and B are null sets, then 1A∪B ≤ 1A + 1B, hence

0 ≤ u(1A∪B) ≤ u(1A + 1B) ≤ u(1A) + u(1B) = 0 + 0 = 0

in view of iii) and ii) in Lemma 3.1, and therefore A∪B is a nulll set. Now let Bn be the union
of the Am, 1 ≤ m ≤ n. Then the Bn form an increasing sequence of null sets with union
equal to U . We have 1Bn ↑ 1U , hence, using iv) in Lemma 3.1, u(1U) = limn→∞ u(1Bn) = 0.
�

We say that a property P (x) holds for almost every x ∈ Ω if there is a null set N such that
P (x) holds for every x ∈ Ω \N .

Lemma 5.2 Let f, g : Ω → R and f(x) = g(x) for almost every x ∈ Ω. Then u(f) = u(g)
and u(f) = u(g). Therefore, if f ∈ E, then g ∈ E and u(f) = u(g).

Proof We first The set N = {x ∈ Ω | f(x) 6= g(x)} is a null set, that is, 1N ∈ E and
u(1N) = 0. Let ∞N(x) = ∞ and ∞N(x) = 0 when x ∈ N and x ∈ Ω \ N , respectively.
Then E 3 n 1N ↑ ∞N , u(n 1N) = nu(1N) = n 0 = 0 for every n, and therefore Theorem 4.3
implies that ∞N ∈ E and u(∞N) = 0. it follows that for every ε > 0 there exists χ ∈ E↑
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such that ∞N ≤ χ and u(χ) ≤ ε. Let f ≤ ϕ ∈ E↑. Then ii) in Lemma 2.3 implies that
ϕ + χ ∈ E↑ and u(ϕ + χ) = u(ϕ) + u(χ) ≤ u(ϕ) + ε. We have g ≤ f + ∞N ≤ ϕ + χ,
and therefore u(g) ≤ u(ϕ + χ) ≤ u(ϕ) + ε. Taking the infimum over all these ϕ in the
right hand side, we obtain that u(g) ≤ u + ε, and because this holds for every ε > 0, the
conclusion is that u(g) ≤ u(f). The opposite inequality is obtained by interchanging f and
g, hence u(f) = u(g), which in turn implies u(f) = u(g) by replacing f and g by −f and
−g, respectively. �

We call a function f with values in R to be defined almost everywhere, if there is a null set
N such that f : Ω \ N → R. Note that iii) implies that if F is a countable set of almost
everywhere defined functions, then there is a null set N such that each f ∈ F is defined
on Ω \ N , that is, for almost every x ∈ Ω the value f(x) is defined for every f ∈ F . We
say that the almost everywhere defined function f belongs almost everywhere to E if there
exists g ∈ E such that for almost every x ∈ Ω we have f(x) = g(x).

If f is an almost everywhere defined function, g : Ω → R, and f(x) = g(x) for almost
every x ∈ Ω, then we define u(f) = u(g). and u(f) = u(g). Furthermore, we say that f ∈ E
almost everywhere and u(f) = u(g) if g ∈ E. Lemma 5.2 implies that these definition do not
depend on the choice of the everywhere defined function g : Ω → E. The almost everywhere
versions of Theorem 4.3, Theorem 4.4, and Theorem 4.5 now are the following.

Theorem 5.3 If fn is a sequence of almost everywhere defined functions and for almost
every x ∈ Ω the sequence fn(x) is non-decreasing, with limit f(x), and the sequence u(fn) is
bounded, then f ∈ E almost everywhere, and u(fn) ↑ u(f) as n→∞. If in the assumption
we replace ”non-decreasing” by ”non-increasing”, then the conclusion is that f ∈ E almost
everywhere, and u(fn) ↓ u(f) as n→∞.

Theorem 5.4 Let fn be a sequence of almost everywhere defined functions, such that
limn→∞ fn(x) = f(x) for almost every x ∈ Ω. Assume that ϕ ∈ E almost everywhere, and for
every n we have that fn(x) ≤ ϕ(x) for almost every x ∈ Ω. Then f ∈ E almost everywhere
and limn→∞ u(fn) = u(f).

Theorem 5.5 Let f be an almost everywhere defined function. Then f ∈ E almost ev-
erywhere if and only if for every ε > 0 there exists ϕ ∈ E such that u(|f − ϕ|) ≤ ε.
If f ∈ E almost everywhere and ϕ ∈ E, then |f − ϕ| ∈ E almost everywhere and
|u(f)− u(ϕ)| ≤ u(|f − ϕ|).

We call two almost everywhere defined functions f, g : Ω → R equivalent, notation f ∼ g,
if f(x) = g(x) for almost every x ∈ Ω. Lemma 5.1 immediately implies

Corollary 5.6 i) ∼ is an equivalence relation in the set of all everywhere defined functions.
ii) If f ∼ f ′ and c ∈ R, c 6= 0, then c f ∼ c f ′.
iii) If f ∼ f ′ and g ∼ g′, then max(f, g) ∼ max(f ′, g′) and min(f, g) ∼ min(f ′, g′).
iv) If fn and f ′n are sequences such that fn ∼ f ′n for every n, and limn→∞ fn(x) = f(x) for
almost every x ∈ Ω, then limn→∞ f ′n(x) = f(x) for almost every x ∈ Ω.

16



If [f ] denotes the equivalence class of f , then Corollary 5.6 allow to define c [f ] := [c f ] when
c ∈ R, c 6= 0, max([f ], [g]) := [max(f, g)], min([f ], [g]) := [min(f, g)], [f ] ≤ [g] if and only
if max([f ], [g]) = [g] if and only if f(x) ≤ g(x) for almost every x ∈ Ω, and limn→∞ [fn] = [f ]
if and only if limn→∞ fn(x) = f(x) for almost every x ∈ Ω. The following lemma implies
that if f ∈ E almost everywhere, then f(x) is finite for almost every x ∈ Ω

Lemma 5.7 Let f be an almost everywhere defined function.
i) If f(x) > −∞ for almost every x ∈ Ω, and u(f) < ∞, then f(x) < ∞ for almost every
x ∈ Ω.
ii) If f(x) <∞ for almost every x ∈ Ω and u(f) > −∞, then f(x) > −∞ for almost every
x ∈ Ω.
iii) If f ∈ E almost everywhere, then f(x) ∈ R for almost every x ∈ Ω.

Proof i) The assumption implies that there exists g : Ω → R such that ∼ g and −infty /∈
g(Ω). Let N = {x ∈ Ω | g(x) = ∞}. If ϕ ∈ E↑, g ≤ ϕ, then ϕ(x) = ∞ for every
x ∈ N , and it follows that, for every positive real constant c, f + c 1N ≤ ϕ. It follows that
u(g + c 1N) ≤ u(ϕ), and taking the infimum in the right hand side over all E↑ 3 ϕ ≥ g, we
obtain that u(g + c 1N) ≤ u(g). Now iii) and i) in Lemma 3.1 yield that

0 ≤ u(1N) ≤ u((1/c) g + 1N) = u((1/c) (g + c 1N) = (1/c)u(g + c 1N) ≤ (1/c)u(f).

Taking the limit for c→∞ and using that u(g) = u(f) <∞, we conclude that u(1N) = 0.
ii) follows immediately from the proof of i) and (3.2).
iii) There exists g ∈ E such that f(x) = g(x) for every x ∈ Ω. Then iii) in Lemma 4.2

implies that g+ := max(g, 0) ∈ E and g− := max(−g, 0) ∈ E. We have g(x) = ±∞ if and
only if g±(x) = ∞ and because u(g±) < ∞, it follows that the sets N± = {x ∈ Ω | g(x) =
±∞} are null sets. It follows now from iii) in Lemma 5.1 that {x ∈ Ω | g(x) /∈ R} = N+∪N−
is a null set. �

Let L denote the set of all equivalence classes of everywhere defined functions f such
that f ∈ E almost everywhere. Note that it follows from Lemma 5.7 that each equivalence
class contains a function f such that f(x) is finite whenever f(x) is defined. We denote the
equivalence class of f by [f ].

Lemma 5.8 Let f and g be almost everywhere defined functions such that, for almost every
x ∈ Ω we have neither f(x) = −∞ and g(x) = ∞, nor f(x) = ∞ and g(x) = −∞, making
f(x) + g(x) ∈ R well-defined. Then u(f) + u(g) ≤ u(f + g) ≤ u(f + g) ≤ u(f) + u(g).
Therefore, if f, g ∈ E almost everywhere, then f +g ∈ E almost everywhere, and u(f +g) =
u(f) + u(g).

Proof By passing to suitable representant, we may assume that f and g are everywhere
defined and that f(x)+ g(x) is well-defined for every x ∈ Ω. If E↑ 3 ϕ ≥ f and E↑ 3 ψ ≥ g,
then it follows from ii) in Lemma 2.3 that E↑ 3 ϕ+ψ ≥ f +g and u(ϕ)+u(ψ) = u(ϕ+ψ) ≥
u(f + g) ≥ u(f + g). Taking the infimum over all these ϕ and ψ in the left hand side we
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obtain that u(f) + u(g) ≥ u(f + g). The inequality for u is proved analogously, and the
other statements in the lemma follow. �

It follows from Lemma 5.8 that for every [f ], [g] ∈ L there is a unique [h] ∈ L such that, for
almost every x ∈ Ω, f(x), g(x) ∈ R and h(x) = f(x) + g(x). We write [h] = [f ] + [g] in this
case. Also, for every [f ] ∈ L and c ∈ R, including c = 0, there is a unique [g] ∈ L such that,
for almost every x ∈ Ω, f(x) ∈ R and g(x) = c f(x). We write [g] = c [f ] in this case. With
this ”almost everywhere pointwise” addition and scalar multiplication, L is a vector space.
Furthermore, Lemma 5.2 imply that if f and g are equivalent representants of an element
of E, then u(f) = u(g), and therefore there is a unique function u∼ : L → R such that
u∼([f ]) = [u(f)] for every f ∈ E. It will cause no confusion to write u∼ = u, and Lemma
5.8 together with i) in Lemma 4.2 imply that u : L→ R is a linear form on L. Finally there
is a unique partial ordering ≤ in L such that [f ] ≤ [g] if and only if f(x) ≤ g(x) for almost
every x ∈ Ω.

In the following theorem the allowance of almost everywhere defined functions and con-
vergence is essential, even if the functions fn are defined everywhere and fn(x) ∈ R for every
x ∈ Ω.

Theorem 5.9 Let fn be a sequence of almost everywhere defined function such that, for
each n, fn ∈ E almost everywhere. Assume that

∑∞
n=1 u(|fn|) <∞. Then, for almost every

x ∈ Ω, the series

s(x) =
∞∑

n=1

fn(x) (5.1)

is absolutely convergent, and [s] ∈ L. Furthermore, with the notation sm =
∑m

n=1 fn, we
have

|u(s)− u(sm)| ≤ u(|s− sm|) ≤
∞∑

n=m+1

u(|fn|) → 0 (5.2)

as m→∞.

Proof In view of the almost everywhere conclusion in (5.1) we may, by passing to suitable
representants, assume that the functions fn are defined everywhere and fn(x) ∈ R for every
x ∈ Ω. According to iv) in Lemma 4.2 we have |fn| ∈ E, and Theorem 4.3, applied to the
sequence m 7→

∑m
n=1 |fn|, implies that its pointwise limit g belongs to E. It follows from i)

in Lemma 5.7 that for almost every x ∈ Ω we have g(x) <∞, which implies that the series
(5.1) converges absolutely. We have |sm| ≤ g for all m and the almost everywhere version
of Theorem 4.4 implies that [s] ∈ L and u(sm) → u(s) as m → ∞. The first inequality in
(5.2) follows from ± (u(s)− u(sm)) = u(± (s− sm)) ≤ u(|s− sm|), and the second equality
follows from |s− sm| = |

∑∞
n=m+1 fn| ≤

∑∞
n=m+1 |fn|. �

Theorem 5.10 The linear form u : L→ R is positive in the sense that u(f) ≥ 0 whenever
f ∈ L and f ≥ 0. f 7→ u(|f |) defines a norm on L, called the u-norm on L. With respect to
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the u-norm, L is complete, a Banach space. We have |u(f)| ≤ u(|f |) for every f ∈ L, which
implies that the linear form u is continuous with repect to the topology in L defined by the
u-norm.

Proof The positivity of u follows from ii) in Lemma 4.2, and because f ≥ 0 this also
implies that u(|f |) ≥ 0. Let f ∈ E and u(|f |) = 0 and let N = {x ∈ Ω | f(x) 6= 0.
Then, for every positive integer n, u(n |f |) = nu(|f |) = n 0 = 0, and therefore Theorem
4.3 implies that the limit ∞N of the increasing sequence n |f | in E belongs to E, and
u(1N) ≤ u(∞N) = u(∞N) = limn→∞ u(n |f |) = 0. This proves that N is a null set, that is
[f ] = 0 in L. This proves that if f ∈ L, u(|f |) = 0, then f = 0. Furthermore, if f, g ∈ L,
then |f + g| ≤ |f | + |g|, which in combination with the positivity, hence monotonicity, of
the linear form u, implies that u(|f + g|) ≤ u(|f |) + u(|g|). This completes the proof that
f 7→ u(|f |) is a norm on L. The inequality |u(f)| ≤ u(|f |) has already been observed in
(5.2).

In order to prove the completeness of L with respect to the u-norm, let fn be a sequence
in L such that fir every ε > 0 there exists N such that u(|fn − fm|) ≤ ε whenever n ≥ N
and m ≥ N . Let εk be a sequence of strictly positive real numbers with finite sum, and take
N = Nk as above for ε = εk. Let nk be a strictly increasing sequence of integers such that
nk ≥ Nk for every k. Then nk > nk−1 ≥ Nk−1, hence u(|fnk

− fnk−1
|) ≤ εk−1. It therefore

follows from Theorem 5.9 with n 7→ fn replaced by k 7→ fnk
− fnk−1

that, for almost every
x ∈ Ω,

fnm(x) = fn0(x) +
m∑

n=1

(fnk
(x)− fnk−1

(x))

converges to an f(x) ∈ R, that the almost everywhere defined function f defines an element
of L which we denote by the same letter, and that u(|f − fnm|) → 0 as m → ∞. Now
u(|f − fl|) ≤ u(|f − fnm|) + u(|fnm − fl|) ≤ u(|f − fnm|) + εm if l ≥ nm ≥ Nm. The right
hand side in this inequality converges to zero as m→∞, and it follows that u(|f − fl|) → 0
as l→∞. This completes the proof of the completeness of L with respect to the u-norm on
L. �

There are examples where fn is a sequence in E such that u(|fn|) → 0, for no x ∈ Ω the
sequence fn(x) converges. It follows that a u-Cauchy sequence in L need not converge at
any point.

Also note that if for instance u : E → R is identically zero, then L = {0}, Ω is a null
set, and the mapping f 7→ [f ] : E → L is the null map. Although this example is not very
interesting, it contains the warning that the mapping f 7→ [f ] : E → L need not be injective,
and that f 7→ u(|f |) need not define a norm on E. However, if u(|f |) > 0 whenever f ∈ E
and f 6= 0, then L can be equivalently defined as the completion of E with respect to the
u–norm on E.
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6 Dropping the positivity assumption

In this section we prove Theorem 1.5.
If f ∈ E, f ≥ 0, then 0 ≤ 0 ≤ f , hence v+(f) ≥ v(0) = 0. If furthermore c ∈ R>0, then

we have for any g ∈ E that 0 ≤ g ≤ f if and only if 0 ≤ c g ≤ c f , when v(c g) = c v(g), and
this shows that v+(c f) = c v+(f).

If e ∈ E, e ≥ 0, then d ∈ E, 0 ≤ d ≤ e implies in combination with 0 ≤ g ≤ f that
0 ≤ d + g ≤ e + f , hence v+(e + f) ≥ v(d + g) = v(d) + v(g), and taking the supremum
in the right hand side over all these d, g, we obtain that v+(e + f) ≥ v+(e) + v+(f). On
the other hand, if ϕ ∈ E, 0 ≤ ϕ ≤ e + f , then ϕ − e ≤ f , 0 ≤ max(ϕ − e, 0) ≤ f ,
ϕ− e = (ϕ− e) + 0 = max(ϕ− e, 0) + min(ϕ− e, 0) = max(ϕ− e, 0) + min(ϕ, e)− e, hence
ϕ = min(ϕ, e) + max(ϕ − e, 0), v(ϕ) = v(min(ϕ, e)) + v(max(ϕ − e, 0)) ≤ v+(e) + v+(f),
because also 0 ≤ min(ϕ, e) ≤ e. Taking the supremum in the left hand side over all these
ϕ, we obtain v+(e+ f) ≤ v+(f) + v+(g), which in combination with the previous inequality
yields v+(f + g) = v+(f) + v+(g). In particular v+(0) = v+(0 + 0) = v+(0) + v+(0), hence
v+(0) = 0, and therefore also v+(0 f) = v+(0) = 0 = 0 v+(f) for every f ∈ E.

If ϕ, ψ, ϕ′, ψ′ are non-negative elements of E such that ϕ − ψ = ϕ′ − ψ′, that is, ϕ +
ψ′ = ϕ′ + ψ, then v+(ϕ) + v+(ψ′) = v+(ϕ + ψ′) = v+(ϕ′ + ψ) = v+(ϕ′) + v+(ψ), hence
v+(ϕ)− v+(ψ) = v+(ϕ′)− v+(ψ′). If f, g ∈ E, then

max(f + g, 0)−max(−f − g, 0) = f + g

= max(f, 0)−max(−f, 0) + max(g, 0)−max(−g, 0)

= (max(f, 0) + max(g, 0))− (max(−f, 0) + max(−g, 0)),

hence

v+(f + g) := v+(max(f + g, 0))− v+(max(−f − g, 0))

= v+(max(f, 0) + max(g, 0))− v+(max(−f, 0) + max(−g, 0))

= v+(max(f, 0)) + v+(max(g, 0))− v+(max(−f, 0))− v+(max(−g, 0))

= (v+(max(f, 0))− v+(−f, 0))) + (v+(max(g, 0))− v+(−g, 0)))

=: v+(f) + v+(g),

proving the additivity of v+. In turn it follows that, for every f ∈ E, 0 = v+(0) = v+(f +
(−f)) = v+(f) + v+(−f), hence v+(−f) = −v+(f), hence v+((−c) f)) = v+(−(c f)) =
−(c v+(f)) = (−c) v+(f) if c ∈ R>0, and we conclude that v+ : E → R is a linear form.

Let fn ∈ E and fn ↓ 0 as n→∞. Let ε ∈ R>0 and choose a sequence ε ∈ R>0 of which
the sum is ≤ ε. There exist ϕn ∈ E such that 0 ≤ ϕn ≤ fn and v(ϕn) ≥ v+(fn) − εn. let
ψn = min1≤m≤n ϕm. Then it follows by induction on n as in the proof of iv) in Lemma 3.1,
with u, u replaced by v, v+, respectively, and all inequalities reversed, that

v(ψn) ≥ v+(fn)−
n∑

m=1

εn ≥ v+(fn)− ε.

20



Because 0 ≤ ψn ≤ fn, ψn+1 ≤ ψn, and fn ↓ 0 as n → ∞, we have ψn ↓ 0 as n → ∞, hence
v(ψn) → 0 as n → ∞ inview of the monotone convergence assumption for v, and it follows
that 0 ≤ limsupn→∞ v+(fn) ≤ ε, which in turn implies that v+(fn) → 0 as n→∞. That is,
v+ has the monotone convergence property.

Finally, if f ∈ E and f ≥ 0, then 0 ≤ f ≤ f shows that v+(f) ≥ v(f), hence v+(f) −
v(f) ≥ 0. It follows that the linear form v− := v+ − v is positive, and it has the monotone
convergence property because both v and v= have the monotone convergence property. This
completes the proof of Theorem 1.5.

7 Remarks

Our E and E↑ are the spaces T0 and T1 of Daniell [2], respectively. Our set Ω is the set
of points p of Daniell [2], who did not give a name to this set. Our set E is the set of all
”summable functions” of Daniell [2], who did not give a name to this set either.

In [2, Sec. 9], Daniell wrote: ”It is usual, though not necessary, to define the integral
in terms of the measure of certain fundamental sets. Let us suppose that the measure of a
certain class of elementary, or initial sets, or collections E, of the p are given. in connection
with a collection E we can define a function = 1 when p belongs to E, = 0 otherwise. We
can agree to call the measure of E, the integral of the corresponding function. The class T0

is then taken as the class of all functions which are linear combinations of these elementary
set-functions. It will then be closed with respect to pointwise scalar multiplication and
pointwise addition, and the integral can be extended to a linear form on T0. For any set E
whatever we can say that it is measurable if the corresponding function is summable, and
we can identify its measure with the integral of the function. This question requires however
a seperate and careful consideration.”

On the other hand Daniell [2] did not observe that if conversely a measure is given, then
his closure is the standard way of defining the space of Lebesgue integrable functions with
respect to the measure. Daniell opened [2, Introduction] with: ”The idea of an integral
has been extended by Radon, Young, Riesz and others . . . , although many of the proofs
given are mere translations into other language of methods already classical (particularly
those due to Young), here and there . . . new methods have been devised.” I seen this as an
admittance of Daniell that his closure procedure for a large part corresponds to the standard
way of defining the space of Lebesgue integrable functions (Young [13] referred to Lebesgue
[5], whereas Daniell did not mention the name of Lebesgue), but the opening remark in [2,
Sec. 9] indicates a reluctance to talk about integrals defined by measures.

Nowadays the general feeling is that the most important contributions of Daniell are i)
treating the extension of integrals to the space of all integrable functions in the framework
of a positive linear form on a Riesz space of functions, using only the monotone conver-
gence property, and ii) the splitting of a linear form, not necessarily positive, which has the
monotone convergence property, as the diffenence two positive linear forms which have the
monotone convergence property, see Theorem 1.5.

In [2, Sec. 5], Daniell allowed explicitly that the functions in his class T0 = our E↑ have
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+∞ as values, but in [2, Sec. 6, 7] it is done as if all functions only take finite values, which is
quite incompatable with the generality of the limit theorems in these sections. In particular
no attention is paid to the problem of the pointwise definition of the sum and scalar products
of summable functions. As this is remedied by working modulo functions on null sets, one
might conjecture that this gap is related to Daniell’s reluctance to talk about subsets and
their measures, even if one only needs null sets to define the equivalence relation.
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[5] H. Lebesgue: Leçons sur l’intégration et la recherche des fonctions primitives.
Gauthiers-Villars, Paris, 1928 (2de Éd., 2ére Éd. 1904).
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