
Numerical bifurcation analysis
of delay differential equations

Dirk Roose
Dept. of Computer Science

K.U.Leuven

Dirk.Roose@cs.kuleuven.be

1

Acknowledgements

Many thanks to

• Koen Engelborghs
• Tatyana Luzyanina
• Koen Verheyden
• Giovanni Samaey
• Kirk Green
• Robert Szalai

because they did the work ...

2

Overview

• Lecture 1
– numerical methods for delay differential equations (DDEs)

with constant pointwise delays
• stability analysis of steady state solutions

– short introduction to software package DDE-BIFTOOL

• Practical session
– Demo & hands-on experience with DDE-BIFTOOL

3

Overview (2)

• Lecture 2
– computation & stability analysis of periodic solutions
– computation of connecting orbits

(homo- & heteroclinic orbits)
– short introduction to software package PDDE-CONT

for continuation and bifurcation analysis of periodic
solutions of DDEs

• Practical session
– Demo & hands-on experience with DDE-BIFTOOL and

PDDE-CONT

4

Delay Differential Equations

h"p://www.scholarpedia.org/ar2cle/Delay‐differen2al_equa2ons

Delay differential equations (DDEs) differ from ODEs in that the
derivative at any time depends on the solution at prior times
(and in the case of neutral equations on the derivative at prior
times)

constant or state-dependent ‘point’ delays τi (y(t))

DDEs often arise when traditional pointwise modeling
assumptions are replaced by more realistic distributed
assumptions, for example, when the birth rate of predators is
affected by prior levels of predators or prey rather than by only
the current levels in a predator-prey model.

d

dt
y(t) = f (y(t), y(t !"

1
), y(t !"

2
),..., y(t !"m))

5

Initial Function

Because the derivative y’(t) depends on the solution at
previous time(s), it is necessary to provide an initial history
function to specify the value of the solution before time t = 0.
In many common models the history is a constant; but non
constant history functions are encountered routinely.

For most problems there is a jump derivative discontinuity at
the inital time.

yt
0

y(t)

6

Discontinuity propagation

In most models, the DDE and the initial function are
incompatible: for some derivative order, usually the first,
the left and right derivatives at t = 0 are not equal.

 const. history

Fascinating property: how such derivative
discontinuities are propagated in time.
For the equation and history just described, for
example, the initial first discontinuity is propagated as a
second degree discontinuity at time t = 1, as a third
degree discontinuity at time t = 2, and, more generally,
as a discontinuity in the (n+1)st derivative at time t = n.

7

Discontinuity propagation

This behavior is typical of that for a wide class of delay
differential equations: generalized smoothing occurs
as the initial derivative discontinuity is propagated
successively to higher order derivatives.

Smoothing need not occur for neutral equations or for
non-neutral equations with vanishing delays.

8

Introduction to DDEs
used in various application areas

• Biology, physiology

• population dynamics (cells, viruses)

• control systems

• semiconductor lasers (optical feedback)

• high-speed cutting, milling & drilling

• congestion control in communication networks

• car following models

9

Example: climate modeling

α = 2; τ = 1

10

Example: physiology

• Mackey-Glass equation
• physiological control system (feedback system)

breathing control
• control variable is sensed and appropriate changes

are made in the rates of production and/or decay.
control variable: e.g. concentration blood cells

11

Example: laser with optical feedback
• In many laser systems delay arises due to the finite travel

time of light between components of the system and may
lead to different types of dynamic behaviour including
chaos

• DDE model of a semiconductor laser with filtered optical
feedback

E: complex optical field, N: population inversion of the laser,
F: complex optical field of filter, τ : delay (external feedback)

12

Example: milling machine

Regenerative effect: cutting tool cuts a
surface that was produced by the same tool
some time ago.
The cutting forces nonlinearly depend on
the chip geometry, which in turn depends on
the current and a delayed tool position.
Rotation of each tooth

⇒ periodic coefficients
Delay is inversely proportional to speed

13

Example: control of heating system

temperature to be controlledsetpoint

Lab. Tomas Vyhlidal, CTU Prague

14

Example: heating system (2)

,

,

() () () ()

1 1
() () () () () ()

2 2

() () ()

() () ()

() () ()

h h h h b a b u h set u

a a a c e a h a c e

d d d d a d

c c c c c d c

e c set c

T x t x t K x t K x t

q q
T x t x t x t K x t x t x t

T x t x t K x t

T x t x t K x t

x t x t x t

! " "

" "

"

! "

= # # + # + #$
%

+ # &'% = # + # + # # #()% * +
%

= # + #,
% = # # + #
%

= #%
%
-

&

&

&

&

&

7 delays !
Control law (PI+ state feedback)

,

T

h set h a d c e
x K x x x x x! "= # $

15

yt
0

y(t)

• initial function segment has to be specified
• state at t = t0 : function segment
 ⇒ infinite dimensional state space ⇒ analytical & numerical

calculations more difficult than for ODEs

Introduction to DDEs

constant or state-dependent delays τi (y(t))
τ : max τi

yt0 (!),! "[#$,0]
 !(")," #[$%,0]

d

dt
y(t) = f (y(t), y(t !"

1
), y(t !"

2
),..., y(t !"m))

16

Steady state solutions

Computation

Stability: constant delays: consider variational equation

determine roots λ of characteristic equation

nonlinear generalised eigenvalue problem
state-dependent delay: linearisation: τ can be treated as constant

y
*
!

n
" f (y

*
, y

*
,..., y

*
) = 0

Ai !
"f

"y
i

y0 ,y1,...,ym()= y*,y*,...,y*()

d

dt
y(t) = f (y(t), y(t !"

1
), y(t !"

2
),..., y(t !"m))

R

17

Characteristic equation

[Shampine http://faculty.smu.edu/shampine/Read1.pdf]

18

Stability of steady state solutions

stable

unstable

infinite number roots of
characteristic equation
(‘eigenvalues’)

only finite number of
eigenvalues
with Re(λ) > r

19

Numerical stability analysis

numerical methods to determine stability of a steady
state solution by computing the ‘rightmost eigenvalues’

• based on discretization of solution operator of
variational equation via

– time integration (e.g. linear multistep method (LMS))
– pseudospectral discretization

• based on discretization of infinitisimal generator via
– time integration
– pseudospectral discretization

20

!(µ)

!(µ)

S(t0)

y(t)

yt
0

Discretization of solution operator

eigenvalues of
solution operator S(t0)

µ = exp(λt0)

S(t) : solution operator of variational equation

21

discretize
S(t0)

-> (large) matrix
M(h,t0)

calculate
(dominant)

eigenvalues

correct via
characteristic

equation

starting
values locking

deflation

linear multistep
method

step length h

 QR or subspace iteration

Newton iteration
on Δ(λ)v = 0
 cTv - 1= 0

Computation of dominant eigenvalues of S(t0)

22

Computation of dominant eigenvalues of S(t0)

• matrix M(h) = M(h,t0) : approximation / discretisation of S(t0)
eigenvalues µ = exp (λt0)

– dimension of M = # mesh points in [-τ,0] x # eqs
– preferably: dominant eigenvalues easy to compute

• choice of t0
 t0 large : + : expensive time integration

 - : well separated eigenvalues

t0 small : + : integration over short time interval
 - : µ’s not well separated ⇒ use QR

we use t0 = h (= step length) !!!

x

x
x x

x

x

xx

23

Discretization of solution operator

• (extended) delay interval discretized by equidistant
mesh with spacing h

• solution represented by i=-L,...,0

• LMS method: e.g.

approximations by interpolation

• discretization of solution operator

y!L+1 ... y0 y1[]
T
= M (h) y!L ... y!1 y0[]

T

y

i
= y(t

i
), t

i
= ih

!

y
1

= y
0

+ h A
0
y

0
+ A j

˜ y (t
0
" # j)

j=1

m

$
%

&
' '

(

)
* *

!

˜ y (t
0
" # j)

24

t0 t1

y1
y-k

t-L

y-L h

y0

Construction of matrix M(h)

0-τ1-τ2-τm …

y!L+1 ... y0 y1[]
T
= M (h) y!L ... y!1 y0[]

T

25

Computation of rightmost eigenvalues

Compute eigenvalues of M(h) by QR-algorithm (‘eig’ in Matlab)
-> approximate (dominant) eigenvalues of solution operator
recover roots λ from eigenvalues µ

h should be chosen that all ‘rightmost’ roots λ with real part > r
are approximated accurately

‘steplength heuristic’ in DDE-BIFTOOL

approximate eigenvalues can be corrected by Newton’s method
applied to characteristic equation

26

Reliable stability computation

• approximate all roots λ with Re(λ) > 0 accurately
– suppose that steady state solution of DDE is delay-

independent stable (sol. variational eq. stable for all τ)

– determine region enclosing all λ with Re(λ) > r
– determine ‘radius’ of LMS stability region ρLMS such that

stability of solution of DDE and of LMS integrator
‘coincide’

⇒ heuristic for h :

• approximate all eigenvalues λ with Re(λ) > r
accurately

!

h = 0.9
"
LMS

|| A
0
|| + | r | + || A

i
|| exp(#r$

i
)%

!

h = 0.9
"
LMS

A
ii=0

m

#

27

Stability of solution of DDE

Characteristic equation →

define ; λ is root iff

if then solution is stable

all roots with pos. real part lie in circle with radius
 __
 : radius of disc in which imaginary axis is
approximated by LMS(i[0,2π]) ‘up to ε’

!" (#) = $ (A0 + Aj

j=1

m

% e
&#" j)

! "# (A
0
+ Aj

j=1

m

$ e
%!& j)

! "#$ (!)

max | !" (
+
) | # || Aj

j=0

m

$ ||

|| Aj

j=0

m

! ||

+
!"# (

+
) =$C C

C

28

Stability of solution of discrete system

Characteristic equation for discrete system can be written as

%µ = exp(%!h)

29

[Engelborgs & R., 2002] if step size of LMS method < h
then delay independent stability is preserved in the discrete
system ‘up to ε’

Step length heuristic

30

Computed eigenvalues: examples
x: exact eigenvalues +: computed eigenvalues

r r

r r

31

Improved step length heuristic

• Heuristic implemented in original version of DDE-BIFTOOL:

 robust, but too conservative
 too many roots are computed accurately
 → h too small, large eigenvalue problem, expensive

• Current version of DDE-BIFTOOL: improved heuristic:
larger h, cheaper procedure

32

Improved step length heuristic

Towards larger h
• Numerator: region in which eigenvalues are preserved by LMS

 time integration properties not important
 → special purpose LMS methods (of maximal order)

• Denominator : boundary of region enclosing all λ with Re(λ) > r
often large overestimation, especially when DDE system
is discretization of PDE with delay (→ ‘long tail’)

→ more realistic bound

!

h = 0.9
"
LMS

|| A
0
|| + | r | + || A

i
|| exp(#r$

i
)%

33

Example: 4 DDEs with 1 delay

34

Example: 4 DDEs with 1 delay

35

Example: 4 DDEs with 1 delay
Computed approximate roots and corrected roots
(Newton on characteristic equation)

36

• system of DDE and PDE (laser dynamics)

• spatial variable x
• 2d order finite diff. discretization in space
• resulting DDE system: dimension n =131
• parameters such that close to Hopf bifurcation (with large ω)
• spectrum : long tail !

old heuristic with BDF order 6 : very small h
 → size eigenvalue problem N = ± 1 000 000

• new heuristic : N = ± 3 500

Large scale DDE

37

• Computed approximate roots and corrected roots
(Newton on characteristic equation)

Large scale DDE

38

Other approaches

B) discretization of solution operator
using pseudospectral approximation

C) discretization of infinitisimal generator
– using time integrator (LMS or Runge-Kutta)
– using pseudospectral approximation

39

Spectral discretization
• solution operator can be discretized by pseudospectral

discretization (polynomial of high degree instead of points
on uniform mesh) → matrix eigenvalue problem

• asymptotic convergence properties better than for LMS
methods

• for relatively low accuracy: both methods lead to a matrix
eigenvalue problem of similar size

• but no automatic selection of appropriate degree of
polynomial

40

Infinitisimal generator

Since S(t) is a strongly continuous semi-group, one can define
the corresponding infinitesimal generator A by

For variat. eq. the infinitesimal generator becomes

eigenvalues of A ≡
roots of characteristic eq.

41

Computation of eigenvalues of A

• discretise A into matrix A(h)

• calculate (rightmost) eigenvalues of A(h)

• (correct via Newton on characteristic equation)

Discretisation of A [Breda, Maset and Vermiglio]

• discretise C into vector space XN
mesh: equidistant or not

• approximate dy /dθ
•pseudo-spectral discretisation
• time integration methods

• LMS (k steps BDF)
• Runge-Kutta (Radau II)

42

Pseudo-spectral discretization

Breda et al.: pseudo-spectral discretization of the infinitesimal
generator.
An eigenfunction of the infinitesimal generator veλt, t in [−τ, 0],
is approximated by a polynomial P(t) of degree p.
Collocation for the eigenvalue problem for the infinitisimal
generator leads to an equation of the form

collocation points ti, i = 1...p are chosen as the shifted and
scaled roots of an (orthogonal) polynomial of degree p.
System-specific information

43

Pseudo-spectral discretization

The resulting matrix eigenvalue problem has size n(p+1)

The matrix is full but can be of much smaller size than in the
previous case,due to the ʻspectral accuracy’ convergence

44

Pseudo-spectral discretisation (cont.)

Convergence analysis

!

max
1" i"#

$exact % $ i =O((
C

N
)

p

) = O((
Ch

&
)

p

)

ν : multiplicity of λexact

with p = k BDF
 p = 2s-1 Runge-Kutta
 p = N Pseudo-spectral

45

Software packages

• DDE-BIFTOOL K. Engelborghs et al
• PDDE-CONT R. Szalai

46

DDE-BIFTOOL

• Functionality
– no time integration (use Matlab dde23 or ARCHI,

DKLAG6, XPPAUT, DDVERK, ...)
– continuation of steady state & periodic solutions of

DDEs with constant & state-dependent delays
(no branch switching)

– computation of stability of solutions
monitoring of relevant eigenvalues
(no automatic detection of bifurcation points)

– continuation of fold and Hopf points
– continuation of homo- & heteroclinic orbits

– no normal forms ...

47

DDE-BIFTOOL

• Implementation
– a set of Matlab routines
– can be adapted and extended easily

– no GUI, ‘command line’ Matlab commands
– graphical output from Matlab
– user has to provide the system equations (and

derivatives) and to write (interactively)
a ‘high level’ program

• Availability
– free for research purposes

48

Structure of DDE-BIFTOOL

uses

provides

49

DDE-BIFTOOL: numerical methods

• stability of steady states: discretization of solution operator by
LMS method; automatic procedure to approx. accurately all
eigenvalues with real part > r (r : user defined)

approximate eigenvalues corrected by Newton iteration on
characteristic equation

• periodic solutions and stability: based on collocation

• continuation:
secant prediction, pseudo-arclength, Newton correction,
steplength strategy based on extrapolations/interpolations

• determining systems for fold, Hopf, ...

50

Usage of DDE-BIFTOOL

Layer 0 system definitions: user provides
• sys_init.m (path)
• sys_rhs.m (system eqs.)
• sys_deri.m (derivatives, or use sys_deriv.m)
• sys_tau.m

only in special cases
• sys_cond.m (extra conditions, e.g. to enforce unique solution)

only for state-dependent delays
• sys_ntau.m

51

Structure of DDE-BIFTOOL

Layer 2 routines to manipulate individual points
• point types: determines which information is stored

– stst (steady state): parameter, state
– hopf : parameter, state, ω, eigenvector
– fold
– psol : periodic orbit :, degree of collocation polynomial, mesh

– hcli : homoclinic or heteroclinic orbit
• additional : stability information
• routines to correct points, compute & plot stability,

convert type and correct
immediate acess to all ‘points’ via matlab command line

52

Structure of DDE-BIFTOOL

Layer 3 branches
• branch = array of points; method parameters;

free parameters
• method parameters : data structure, 3 substructures:

– point : st.st. : max. Newton iterations, accuracy, ...
 periodic: extra: phase cond., collocation par.

– continuation strategy
– stability computation : ‘r’ (eigenvalues real part > r)

• free parameters: parameters bounds; max. step sizes

• routines to extend branch, to compute stability, to
visualize branch & stability

53

Example of DDE-BIFTOOL output

One parameter branch of steady state solutions

Prediction steps shown in green; corrected points in blue

54

Example of DDE-BIFTOOL output
Stability along the branch can then be computed

Crossings of the imaginary axis show bifurcations against point number
(left) along the branch (right); stabilising Hopf bifurcation at point 26.

real part
of roots

55

Example of DDE-BIFTOOL output

From this Hopf bifurcation, a one parameter
branch of periodic solutions can be computed

(The shape of this branch indicates the Hopf bifurcation was subcritical)

56

Example of DDE-BIFTOOL output
Again, stability along the branch can then be computed

Crossings of the unit circle show bifurcations against point number (right)
along the branch (left); stabilising saddle-node bifurcation at point 33.

trivial
Floquet
multiplier

57

Example of DDE-BIFTOOL output

Final branch plotted manually

Lower branch shows stable steady state (green), born in a saddle-node
bifurcation (x), destabilised in a Hopf bifurcation (*). Initially unstable
branch of periodic solutions stabilised in saddle-node bifurcation of limit
cycles (x) and destabilised in a period-doubling bifurcation (diamond).

58

DDE-BIFTOOL run

branch of steady state solutions
• generate 1st point (build data structure)

set method parameters
correct steady state solution
[set method parameters & compute stability]

• copy 1st point into 2d point
change parameter
correct steady state solution

• build brach with 2 points
set method parameters (incl. continuation parameter)

