Trends in Bifurcation Software: *From CONTENT to MATCONT*

Yuri A. Kuznetsov

Utrecht University, NL

Contents

- Generations of bifurcation software
- **Features of AUTO, CONTENT and MATCONT**
- Demos
- Perspectives

References

- Dhooge, A., Govaerts, W., and Kuznetsov, Yu.A. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Software 29 (2003), 141 164
- Dhooge, A., Govaerts, W., Kuznetsov, Yu.A., Mestrom, W., and Riet, A.M.
 Cl_matcont: A continuation toolbox in Matlab. In: "Proceedings of the 2003 ACM Symposium on Applied Computing" (Melbourne, Florida, USA, March 2003), 161-166
- Doedel, E.J., Govaerts, W., and Kuznetsov, Yu.A. Computation of periodic solution bifurcations in ODEs using bordered systems. SIAM J. Numer.
 Anal. 41 (2003), 401-435
- Doedel, E.J., Govaerts, W., Kuznetsov, Yu.A., and Dhooge, A. Numerical continuation of branch points of equilibria and periodic orbits. Int. J. Bifurcation & Chaos 15 (2005), 841-860

$$\frac{du}{dt} = f(u, \alpha), \ u \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

$$\frac{du}{dt} = f(u, \alpha), \quad u \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

I: Codes (AUTO86, LINLBF, BIFOR2, PATH, LOCA)

$$\frac{du}{dt} = f(u, \alpha), \quad u \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

I: Codes (AUTO86, LINLBF, BIFOR2, PATH, LOCA)II: Interactive programs (AUTO97, XPPAUT, LOCBIF)

$$\frac{du}{dt} = f(u, \alpha), \ u \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

I: Codes (AUTO86, LINLBF, BIFOR2, PATH, LOCA)II: Interactive programs (AUTO97, XPPAUT, LOCBIF)III: Closed environments (DsTool, CONTENT)

$$\frac{du}{dt} = f(u, \alpha), \ u \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

I: Codes (AUTO86, LINLBF, BIFOR2, PATH, LOCA)
II: Interactive programs (AUTO97, XPPAUT, LOCBIF)
III: Closed environments (DsTool, CONTENT)
IV: Open environments (MATCONT, ...)

Features of AUTO, CONTENT, and MATCONT

	A	С	М
time-integration		+	+
Poincaré maps			+
continuation of equilibria	+	+	+
detection of branch points and			
codim 1 bifurcations (limit and Hopf points) of equilibria	+	+	+
computation of normal forms			
for codim 1 bifurcations of equilibria		+	+
continuation of codim 1 bifurcations of equilibria	+	+	+

Features of AUTO, CONTENT, and MATCONT

	А	С	Μ
detection of codim 2 equilibrium bifurcations			
(cusp, Bogdanov-Takens, fold-Hopf,			
generalized and double Hopf)		+	+
continuation of limit cycles	+	+	+
detection of branch points and			
codim 1 bifurcations (limit points, flip and			
Neimark-Sacker (torus)) of cycles	+	+	+
continuation of codim 1 bifurcations of cycles	+		+

Features of AUTO, CONTENT, and MATCONT

	А	С	Μ
branch switching at equilibrium and cycle bifurcations	+	+	+
continuation of branching points			
of equilibria and cycles			+
computation of normal forms for			
codim 1 bifurcations of cycles			+
detection of codim 2 bifurcations of cycles			+
continuation of orbits homoclinic to equilibria	+		

Demos: Peroxidase-oxidase reaction

$$= 2YH_2 + O_2 + 2H^+ \to 2YH^+ + 2H_2O$$

$$\begin{array}{ccc} A+B+X \xrightarrow{k_1} 2X, & Y \xrightarrow{k_5} Q, \\ & 2X \xrightarrow{k_2} 2Y, & X_0 \xrightarrow{k_0} X, \\ A+B+Y \xrightarrow{k_3} 2X, & A_0 \xleftarrow{k_7} A, \\ & X \xrightarrow{k_4} P, & B_0 \xrightarrow{k_8} B \end{array}$$

Demos: Peroxidase-oxidase reaction

$$= 2YH_2 + O_2 + 2H^+ \to 2YH^+ + 2H_2O$$

$$\begin{array}{ccc} A+B+X \xrightarrow{k_1} 2X, & Y \xrightarrow{k_5} Q, \\ & 2X \xrightarrow{k_2} 2Y, & X_0 \xrightarrow{k_0} X, \\ A+B+Y \xrightarrow{k_3} 2X, & A_0 \xleftarrow{k_7} A, \\ & X \xrightarrow{k_4} P, & B_0 \xrightarrow{k_8} B \end{array}$$

Steinmetz & Larter [*J. Chem. Phys.* **74** (1991), 1388-1396]

$$\begin{cases} \dot{A} = -k_1 ABX - k_3 ABY + k_7 - k_{-7}A, \\ \dot{B} = -k_1 ABX - k_3 ABY + k_8, \\ \dot{X} = k_1 ABX - 2k_2 X^2 + 2k_3 ABY - k_4 X + k_6, \\ \dot{Y} = -k_3 ABY + 2k_2 X^2 - k_5 Y. \end{cases}$$

Universiteit Utrecht

Bifircation curves

Universiteit Utrecht

Bifircation curves (zoom)

Univer

Perspectives

- Bindel, D.S., Demmel, J.W., Friedman, M.J., Govaerts, W.J.F., and Kuznetsov, Yu.A. Bifircation analysis of large equilibrium systems in MATLAB. In: V.S. Sunderam et al. (eds.) "Proceedings of the International Conference on Computational Science ICCS 2005, Atlanta, GA, USA, May 22-25, 2005, Part I". Springer Verlag Lecture Notes in Computer Science 3514 (2005), 50-57
- Friedman, M., Govaerts, W., Kuznetsov, Yu.A., and Sautois, B. Continuation of homoclinic orbits in MATLAB. In: V.S. Sunderam et al. (eds.)
 "Proceedings of the International Conference on Computational Science ICCS 2005, Atlanta, GA, USA, May 22-25, 2005, Part I". Springer Verlag Lecture Notes in Computer Science 3514 (2005), 263-270
- **Compiling of defining functions and their Jacobian matrices**

