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We give an overview of all codim 1 bifurcations in generic planar discontinuous piecewise smooth
autonomous systems, here called Filippov systems. Bifurcations are defined using the classical
approach of topological equivalence. This allows the development of a simple geometric criterion
for classifying sliding bifurcations, i.e. bifurcations in which some sliding on the discontinuity
boundary is critically involved. The full catalog of local and global bifurcations is given, together
with explicit topological normal forms for the local ones. Moreover, for each bifurcation, a defin-
ing system is proposed that can be used to numerically compute the corresponding bifurcation
curve with standard continuation techniques. A problem of exploitation of a predator–prey
community is analyzed with the proposed methods.
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1. Introduction

Piecewise smooth systems (PSS) are described by a
finite set of ODEs

ẋ = f (i)(x), x ∈ Si ⊂ R
n , (1)

where Si, i = 1, 2, . . . ,m, are open nonover-
lapping regions separated by (n − 1)-dimensional
submanifolds (boundaries). The functions f (i) and
the boundaries are supposed to be smooth and the
union of all the boundaries Σ and all Si together
cover the entire state space.

PSS are frequently encountered in all fields of
science and engineering, where relationships among
relevant variables are smooth but can be of differ-
ent nature in some regions of state space. Among
the most famous examples of PSS, there are stick-
slip mechanical systems, where the friction between
two surfaces is nonzero and changes sign with the
relative velocity of the surfaces [Galvanetto et al.,

1995; Van de Vrande et al., 1999]. But nonsmooth
mechanics [Brogliato, 1999] include many other
important applications as rocking blocks [Hogan,
1989], suspension bridges [Doole & Hogan, 1996],
vibrations and noise [Oestreich et al., 1997], and
robotics [McGeer, 1990]. Electrical and electronic
devices are systematically modeled as PSS when-
ever they contain diodes and transistors [Hasler &
Neirynck, 1985; di Bernardo et al., 1998]. More-
over, PSS have a long tradition in process control
theory [Flügge-Lotz, 1953; Utkin, 1977; Tsypkin,
1984] where they are used to model on–off feedback
control systems. Finally, interesting problems con-
cerning PSS can be formulated also in economics,
medicine and biology. One of these problems, deal-
ing with the conflict between conservation and
exploitation of natural resources, is shortly dis-
cussed in the example presented at the end of the
paper.
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PSS are called continuous if f (i)(x) = f (j)(x) at
any point of the boundary Σij separating two adja-
cent regions Si and Sj . In these systems the vector
ẋ is uniquely defined at any point of the state space
and orbits in region Si approaching transversally
the boundary Σij, cross it and enter into the adja-
cent region Sj. By contrast, in discontinuous PSS
(from now on called Filippov systems), two differ-
ent vectors ẋ, namely f (i)(x) and f (j)(x), can be
associated to a point x ∈ Σij. If the transversal

components of f (i)(x) and f (j)(x) have the same
sign, the orbit crosses the boundary and has, at
that point, a discontinuity in its tangent vector.
On the contrary, if the transversal components of
f (i)(x) and f (j)(x) are of opposite sign, i.e. if the
two vector fields are “pushing” in opposite direc-
tions, the state of the system is forced to remain
on the boundary and slide on it. Although, in prin-
ciple, motions on the boundary could be defined
in different ways, the most natural one is Filippov
convex method [Filippov, 1964, 1988] that defines
sliding motions on Σij as the solutions on Σij of
the continuous ODE ẋ = g(x), where g(x) is a con-
vex combination of f (i)(x) and f (j)(x) tangent to
Σij at x. Generically, this convex combination is
unique. Thus, the state portrait of a Filippov sys-
tem is composed of the sliding state portrait on Σ
and of the standard state portraits in each region
Si.

Bifurcation analysis of PSS has received a lot of
attention in the last years. In most cases, however,
the study was restricted to continuous PSS or to bi-
furcations of Filippov systems not involving sliding
[Feigin, 1994; Freire et al., 1998; di Bernardo et al.,
1999; di Bernardo et al., 2001]. This greatly simpli-
fies the analysis, since, as we will see in a moment,
sliding bifurcations are many and of quite subtle
nature. Indeed, the appearance or disappearance of
sliding at a particular parameter value is a bifurca-
tion, even if it leaves the attractors of the system
unchanged.

As noticed in [Leine, 2000], there is no gen-
eral agreement on what a bifurcation could be in
Filippov systems. This is an unfortunate situation
because the comparison between different contribu-
tions becomes difficult, if not impossible. Surpris-
ingly, even in the special case of planar systems
only local bifurcations have been considered. The
first attempt was due to Bautin and Leontovich
[1976] who, however, gave an incomplete classifica-
tion, since they did not allow for sliding. Next major

contribution was due to Filippov [1988], who classi-
fied singular points in planar discontinuous systems
and identified all codim 1 local singularities. How-
ever, some unfoldings of local singularities are miss-
ing in Filippov’s work and bifurcations of sliding
cycles are not treated at all. Actually, the existing
contributions on sliding bifurcations of cycles refer
either to specific bifurcations [di Bernardo et al.,
1998] or to particular classes of systems, like me-
chanical systems of the stick-slip type [Galvanetto
et al., 1995; Kunze & Küpper 1997, 1997; Leine,
2000; Dankowitz & Nordmark, 2000] and piecewise
linear systems [di Bernardo et al., 2001; Kowal-
czyk & di Bernardo, 2001; Giannakopoulos & Pliete,
2001]. Finally, very little is known on normal forms
and on numerical analysis of sliding bifurcations.

For all these reasons, we present a review with
reference, however, to the simplest class of Filippov
systems, namely generic planar systems. There are
3 merits of the paper. First, bifurcations and their
codimensions are defined, as in [Filippov, 1988],
using the classical approach of topological equiv-
alence [Bautin & Leontovich, 1976; Guckenheimer
& Holmes, 1983; Kuznetsov, 1998]. This allows us
to develop a nice geometrical criterion for defining
and classifying sliding bifurcations, i.e. bifurcations
in which some sliding on the discontinuity boundary
is critically involved. Secondly, using this criterion,
we derive the full catalog of the codim 1 local and
global sliding bifurcations, giving explicit topologi-
cal normal forms for all local ones. Lastly, for each
bifurcation we propose a defining system that can
be used to numerically compute the correspond-
ing bifurcation curve using standard continuation
techniques [Doedel & Kernévez, 1986; Kuznetsov
& Levitin, 1995–1997]. An interesting problem of
renewable resources management is solved to show
the power of the presented methods. Some com-
ments on the possibility of extending the analysis
to higher order systems and to higher codimen-
sion sliding bifurcations are given at the end of the
paper.

2. Preliminaries

We now consider generic planar Filippov systems
and assume, for simplicity, that there are only two
regions Si, i.e.

ẋ =

{

f (1)(x) , x ∈ S1 ,

f (2)(x) , x ∈ S2 .
(2)
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Moreover, the discontinuity boundary Σ separating
the two regions is described as

Σ = {x ∈ R
2 : H(x) = 0} ,

where H is a smooth scalar function with nonvan-
ishing gradient Hx(x) on Σ, and

S1 = {x ∈ R
2 : H(x) < 0} ,

S2 = {x ∈ R
2 : H(x) > 0} .

The boundary Σ is either closed or goes to infinity
in both directions and f (1) 6≡ f (2) on Σ.

2.1. Standard and sliding solutions

We now briefly recall how solutions of (2) can be
constructed by concatenating standard solutions in
S1,2 and sliding solutions on Σ obtained with the
well-known Filippov convex method (for details, see
[Filippov, 1964; Aubin & Cellina, 1984; Filippov,
1988; Kunze, 2000]). Let

σ(x) = 〈Hx(x), f
(1)(x)〉〈Hx(x), f (2)(x)〉 , (3)

where 〈·, ·〉 denotes the standard scalar product.
First we define the crossing set Σc ⊂ Σ as

Σc = {x ∈ Σ : σ(x) > 0} .

It is the set of all points x ∈ Σ, where the two
vectors f (i)(x) have nontrivial normal components
of the same sign. By definition, at these points the
orbit of (2) crosses Σ, i.e. the orbit reaching x from
Si concatenates with the orbit entering Sj, j 6= i,
from x.

Then, we define the sliding set Σs as the
complement to Σc in Σ, i.e.

Σs = {x ∈ Σ : σ(x) ≤ 0} .

The crossing set is open, while the sliding set is the
union of closed sliding segments and isolated sliding
points. Points x ∈ Σs, where

〈Hx(x), f (2)(x) − f (1)(x)〉 = 0

are called singular sliding points. At such points,
either both vectors f (1)(x) and f (2)(x) are tangent
to Σ, or one of them vanishes while the other is
tangent to Σ, or they both vanish.

The Filippov method associates the following
convex combination g(x) of the two vectors f (i)(x)
to each nonsingular sliding point x ∈ Σs:

g(x) = λf (1)(x) + (1 − λ)f (2)(x) ,

λ =
〈Hx(x), f (2)(x)〉

〈Hx(x), f (2)(x) − f (1)(x)〉
.

(4)

S2

S1

Σ
s

g(x)

x

H
x
(x)

f (2)(x)

f (1)(x)

Fig. 1. Filippov construction.

Moreover, excluding infinitely-degenerate cases,
g(x) and its derivatives can be defined by continuity
at all singular sliding points, which are not isolated
sliding points. As indicated in Fig. 1, at nonisolated
sliding points x ∈ Σs

〈Hx(x), g(x)〉 = 0 ,

i.e. g(x) is tangent to sliding segments of Σs. We set
g(x) = 0 at isolated singular sliding points.

Thus,

ẋ = g(x) , x ∈ Σs , (5)

defines a scalar differential equation on Σs, which
is smooth on one-dimensional sliding intervals of
Σs. Solutions of this equation are called sliding
solutions.

Special attention should be devoted to equilib-
ria of (5). Notice that, by our setting, all isolated
singular sliding points are equilibria of (5). In
accordance with [Gatto et al., 1973], equilibria of
(5), where the vectors f (i)(x) are transversal to Σs

and anti-collinear, are called pseudo-equilibria of (2)
(they are called quasi-equilibria in [Filippov, 1988]).
This implies that a pseudo-equilibrium P is an in-
ternal point of a sliding segment. An equilibrium X
of (5), where one of the vectors f (i)(X) vanishes, is
called a boundary equilibrium.

A sliding segment is delimited either by a
boundary equilibrium X, or by a point T (called
tangent point) where the vectors f (i)(T ) are nonzero
but one of them is tangent to Σ. Dealing only with
generic systems, we can exclude that equilibria of
(5) and tangent points accumulate in Σ.

Generically, the sliding segment is either stable
or unstable in the normal direction. Indeed, if

〈Hx(x), f (1)(x)〉 > 0 , 〈Hx(x), f (2)(x)〉 < 0 ,
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the sliding segment is stable, while for

〈Hx(x), f (1)(x)〉 < 0 , 〈Hx(x), f (2)(x)〉 > 0 ,

it is unstable.
It is now possible to define a unique forward

solution of (2). For this, assume that x(0) ∈ S1 and
construct the forward solution x(t) of (2) by solv-
ing the corresponding equation in S1. If this solution
does not remain in S1, it reaches the boundary Σ at
time t1, i.e. H(x(t1)) = 0. At this point, there are
two possibilities:

(A) If σ(x(t1)) > 0, i.e x(t1) ∈ Σc, then we switch
to ẋ = f (2)(x), and we integrate this equation in re-
gion S2 for t ≥ t1. In other words, the orbit crosses
Σ at x(t1).

(B) If σ(x(t1)) ≤ 0, i.e. x(t1) ∈ Σs, then we switch
to Eq. (5) on Σs thus following a sliding orbit.
This orbit degenerates to a point if g(x(t1)) = 0,
i.e. x(t1) is an equilibrium of (5). In this case, we
set x(t) = x(t1) for all t > t1. If g(x(t1)) 6= 0,
we determine whether a sliding orbit starts at x(t1)
and, if so, we follow the sliding solution x(t) for
some t > t1. This solution can remain strictly in-
side the sliding segment forever (tending toward a
pseudo-equilibrium or a singular sliding point with
g = 0). Alternatively, it can arrive at time t2 > t1
to its boundary (i.e. to a boundary equilibrium or a
tangent point). In the case of the boundary equilib-
rium, we set x(t) = x(t2) for all t > t2, while from
the tangent point we follow the unique standard or-
bit in S1 or S2 that departs from x(t2).

The same procedure can be applied to the re-
versed system (2), with f (i)(x) 7→ −f (i)(x), to
generate a unique backward solution. Although the
solutions are uniquely defined both forward and
backward in time, system (2) is not invertible in the
classical sense, since its orbits can overlap. It should
also be pointed out that unstable sliding segments
will not be observed in numerical integration of (2).

We note that it is common in the literature to
introduce a differential inclusion corresponding to
a Filippov system (2) and then consider its solu-
tions [Aubin & Cellina, 1984; Filippov, 1988]. This
approach, though attractive theoretically, leads to
the nonuniqueness of solutions and makes it difficult
to define state portraits even in the planar case.
Therefore, we do not use differential inclusions in
this paper.

2.2. Tangent points

Suppose that a tangent point T ∈ Σs is character-
ized by

〈Hx(T ), f (1)(T )〉 = 0 .

We say that this tangent point is visible (invisible)
if the orbit of ẋ = f (1)(x) starting at T belongs
to S1(S2) for all sufficiently small |t| 6= 0. Similar
definitions hold for the vector field f (2).

Suppose T = (0, 0) and assume that the discon-
tinuity boundary Σ is locally given by the equation
x2 = 0, i.e. H(x) = x2. If this is not the case, one
can always translate the origin of coordinates to
T and then introduce new coordinates (y1, y2) by
the following construction. Introduce any smooth
local parameterization y1 of Σ near the origin (with
y1 = 0 corresponding to T ) and consider orbits of
the gradient system

ẋ = Hx(x) .

Since H(x) is smooth and Hx(T ) 6= 0, this system
is smooth and its orbits cross Σ orthogonally near
T . Assign to any point x near T the y1-value at the
intersection with Σ of the orbit of the gradient sys-
tem passing through x. Next, set y2 = H(x). This
defines a local diffeomorphism x 7→ y near T .

A tangent point T of f (1) is called quadratic if
the orbit passing through T can be locally repre-
sented as x2 = (1/2)ν1x

2
1 + O(x3

1), ν1 6= 0. Under
the above assumptions,

f (1)(x) =





p1 + a1x1 + b1x2 +O(‖x‖2)

c1x1 + d1x2 +
1

2
q1x

2
1 + r1x1x2 +

1

2
s1x

2
2 +O(‖x‖3)



 ,

where p1 6= 0, and

ν1 =
c1
p1
.

If ν1 < 0, the tangent point is visible, while if ν1 > 0
it is invisible. Generically, T is not a tangent point

for f (2), so that f (2)(T ) is transversal to Σ, as well

as all nearby vectors f (2)(x), x ∈ Σ. This implies

that in a neighborhood of a generic tangent point

the orbits are like in Figs. 2(a) and 2(b) (with a
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(b)

T

S2

T

S2

S1

Σ

Σ

S1

(a)

Fig. 2. Generic (a) visible and (b) invisible tangent point.
The thick orbit is a sliding orbit.

Tε K(1)(ε)

x1

x2

S1

S2

Fig. 3. Map K(1).

possible reversal of all arrows and/or reflection with
respect to the vertical axis).

Near an invisible tangent point, a useful map

ε 7→ K(1)(ε) , ε ∈ R , (6)

can be defined along the orbits of f (1) (see Fig. 3).
When p1 > 0 (as in Fig. 3), the map is defined
for ε < 0. On the contrary, when p1 < 0, the
map is defined for ε > 0. Let us consider only the
case p1 > 0. As shown in [Filippov, 1988] (see also
[Gubar’, 1971]), map (6) is smooth near a quadratic
invisible tangent point and has the expansion

K(1)(ε) = −ε+ k
(1)
2 ε2 +O(ε3) ,

where

k
(1)
2 =

2

3

(

a1 + d1

p1
−

q1
2c1

)

.

Map (6) is particularly important for the anal-
ysis of a singular pseudo-equilibrium, called fused
focus, where an invisible tangent point of f (1) co-
incides with an invisible tangent point of f (2) (see
Sec. 3.2.4 below). This is an isolated singular sliding
point, where the Filippov vector g = 0 by definition.
In this case, a Poincaré map P can be constructed
by composing K (1) (defined for ε < 0) and K (2)

S2

T0

T0

Σ

Σ

S1

S2

S1

(a) (b)

Fig. 4. (a) Unstable and (b) stable fused focus.

(defined for ε > 0). When both invisible tangent
points are quadratic, this gives

P (ε) = ε+ (k
(1)
2 − k

(2)
2 )ε2 +O(ε3)

for ε < 0, so that the fused focus is locally stable if

k2 = k
(1)
2 − k

(2)
2 < 0 ,

and unstable if k2 > 0 (see Fig. 4). As we shall
see, k2 plays a role similar to that of the first Lya-
punov coefficient in the analysis of Hopf bifurcations
[Kuznetsov, 1998]. It should be noted that a fused
focus, which is not an equilibrium of f (1) or f (2),
should not be confused with the so-called focus–
focus boundary equilibrium [Bautin & Leontovich,
1976; Kunze, 2000].

2.3. Topological equivalence and

bifurcations

The state portrait of (2) is the union of all its
orbits in R

2. As already mentioned, these orbits
can overlap when sliding. Two Filippov systems of
the form (2) are topologically equivalent if there is a
homeomorphism h: R

2 → R
2 that maps the state

portrait of one system onto the state portrait of the
other, preserving orientation of the orbits. Notice
that all sliding segments of one system are mapped
onto sliding segments of the other. Moreover, we
require that h maps the discontinuity boundary Σ
of one system onto the discontinuity boundary of
the other system.

Now consider a Filippov system depending on
a parameter (a one-parameter family):

ẋ =

{

f (1)(x, α) , x ∈ S1(α) ,

f (2)(x, α) , x ∈ S2(α) ,
(7)

where x ∈ R
2, α ∈ R, and f (i), i = 1, 2, are smooth

functions of (x, α), while

S1(α) = {x ∈ R
2 : H(x, α) < 0} ,

S2(α) = {x ∈ R
2 : H(x, α) > 0} ,
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for some smooth function H(x, α) with Hx(x, α) 6=
0 for all (x, α) such that H(x, α) = 0.

We say that (7) exhibits a bifurcation at α = α0

if by an arbitrarily small parameter perturbation we
get a topologically nonequivalent system.

Recall that a bifurcation has codim 1 if it
appears at isolated parameter values in generic
one-parameter families. All bifurcations of (7) can
be classified as local or global. A local bifurcation
can be detected by looking at a fixed but arbi-
trarily small neighborhood of a point in the plane.
All other bifurcations will be called global in this
paper. Under this definition, all bifurcations in-
volving nonvanishing cycles are classified as global
bifurcations. Of course, we do not consider bifurca-
tions occurring in regions S1 or S2, but focus only
on codim 1 bifurcations which involve sliding on the
discontinuity boundary. Actually, the appearance or
disappearance of a sliding segment is already a bi-
furcation, since a state portrait with overlapping
orbits cannot be homeomorphically transformed
into a state portrait without overlappings.

To produce all generic one-parameter bifurca-
tions involving the discontinuity boundary Σ, we
use the following classification criterion. For a given
parameter value α, consider the sliding set Σs ⊂ Σ
and find all pseudo-equilibria and tangent points in
it. In view of our genericity assumption, these points
are in finite number but can collide when α varies,
leading to local codim 1 bifurcations. Another lo-
cal codim 1 bifurcation occurs when a standard
hyperbolic equilibrium in S1 or S2 approaches the
boundary Σ and “hits” it for some parameter value.
Obviously, there are no other local codim 1 bifur-
cations. To detect global codim 1 bifurcations in-
volving sliding, consider the so-called special orbits,
namely the orbits entering S1 or S2 from pseudo-
equilibria or tangent points. A bounded special
orbit can return in finite time to the sliding set Σs

or tend asymptotically to its ω-limit set. The re-
turn points vary with α and could “collide” with
pseudo-equilibria or tangent points in Σs for some
parameter value. Such collisions imply global bi-
furcations. Generically, an ω-limit set of a special
orbit is a stable standard equilibrium or a cycle
(which can cross Σ). Collisions of equilibria with
the discontinuity boundary have already been taken
into account. Thus, the remaining possibility is that
a nonvanishing cycle hits the sliding set Σs. Finally,
a global bifurcation can also occur when a special
orbit approaches an incoming separatrix of a stan-

dard saddle in S1 or S2 and coincides with it at
some parameter value.

The advantage of the outlined classification cri-
terion is that it does not capture global bifurcations
which are completely analogous to their smooth
counterparts, namely those bifurcations in which
critical orbits cross the discontinuity boundary sev-
eral times but do not slide.

3. Local Bifurcations

In this section we summarize results on local bifur-
cations in one-parameter Filippov systems (7). For
each bifurcation, we give (without proof) a so-called
topological normal form, i.e. a polynomial Filip-
pov system such that any generic Filippov system
satisfying the same bifurcation condition is locally
topologically equivalent to it.

3.1. Collisions of equilibria with

the boundary

Suppose that a hyperbolic equilibrium Xα of ẋ =
f (1)(x, α) exists in S1 for α < 0 and collides at α = 0
with the discontinuity boundary Σ. Moreover, as-
sume that Xα has simple eigenvalues and hits Σ
with a nonzero velocity with respect to the param-
eter at a point X0, where f (2)(x, α) is transversal to
Σ. This happens in generic one-parameter families
of planar Filippov systems. Without loss of gener-
ality, we can assume that Σ is locally a straight
line and that f (2) is orthogonal to Σ in a neighbor-
hood of X0 for small α. Indeed, after introducing a
smooth scalar parameterization y1 of Σ with y1 = 0
corresponding to X0, one can take as the second
coordinate of a point x the value y2 = H(x, α) of
the function defining Σ, and as the first coordinate
the value y1 at the intersection of the discontinuity
boundary Σ with the orbit of f (2) passing through
x. In the y-coordinates the discontinuity boundary
is given by y2 = 0, while the orbits of f (2) are
straight lines y1 = const. The map x 7→ y is a local
diffeomorphism that depends smoothly on α. The
system ẋ = f (1)(x, α) written in the y-coordinates
will obviously have a hyperbolic equilibrium collid-
ing with the discontinuity boundary.

3.1.1. Boundary focus

Assume that the colliding focus is unstable and
has counter-clockwise rotation nearby (the case of
a stable and/or clockwise focus can be immediately
understood by reversing all arrows in the figures
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Pα

X0
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Fig. 5. Boundary focus bifurcations: In cases BF1 and BF3 stable sliding cycles exist for nearby parameter values.

and/or by reflecting the figures with respect to the
vertical axis).

There are five generic critical cases: BFi, i =
1, 2, 3, 4, 5. In all cases, there is a visible tangent
point when α < 0, and an invisible tangent point
when α > 0. The cases are distinguished by the
relative position of the focus zero-isoclines and the

behavior of the orbit departing from the visible tan-
gent point into S1, as well as by the direction of the
motion in S2.

The unfoldings of these singularities are pre-
sented in Fig. 5. In cases BF1, BF2 and BF3,
there is a stable sliding orbit at α = 0 that de-
parts from the equilibrium or approaches it. By



August 26, 2003 9:41 00787

2164 Yu. A. Kuznetsov et al.

contrast, in cases BF4 and BF5, the sliding orbit is
unstable.

In case BF1, a stable sliding cycle Lα surrounds
the unstable focus Xα for α < 0. The sliding seg-
ment of the cycle ends at the visible tangent point
Tα and begins at a transverse arrival point located
between Tα and a pseudo-saddle Pα. The domain
of attraction of this cycle is bounded by the sta-
ble separatrices of Pα. When α → 0, the stable
cycle shrinks, while the three points, Xα, Tα and
Pα, collide simultaneously. For small α > 0, there
are no equilibria or cycles and the stable sliding
orbit begins at the invisible tangent point Tα. This
bifurcation entails the catastrophic disappearance
of a stable sliding cycle.

In case BF2, the orbit departing from the
visible tangent point Tα for small α < 0 returns
to Σ at the right of the pseudo-saddle Pα. Thus, no
sliding cycle exists. The state portraits for α = 0
and α > 0 are like in case BF1.

Analytically, one can distinguish the cases BF1

and BF2 as follows. Let

f (1)
x (X0, 0) =

(

a b

c d

)

,

and consider the positive half-orbit of the planar
linear system

{

ẋ1 = ax1 + bx2 ,

ẋ2 = cx1 + dx2 ,

that departs from point T on the line x2 = 1 where
ẋ2 = 0, i.e.

T =

(

−
d

c
, 1

)

.

This orbit makes a counter-clockwise excursion, and
returns to the same line x2 = 1 at point R = (θ, 1).
Case BF1 corresponds to

θ < −
b

a
,

while the opposite inequality characterizes BF2. For
the critical value

θ = −
b

a
the orbit is orthogonal to the line x2 = 1 at the
point R (see Fig. 6). This corresponds to a codim
2 singularity (degenerate boundary focus). It can be
shown that this critical value is characterized by

d− a

2ω
tg

[

ω

a+ d
ln

(

−
bc

a2

)]

= 1 , (8)

T

x1

R

ẋ2 = 0

ẋ1 = 0

x2

Fig. 6. Degenerate boundary focus.

where

ω =
1

2

√

−(a− d)2 − 4bc .

Note that a related formula on p. 246 in [Filippov,
1988] contains misprints.

In case BF3 (see Fig. 5 again), a stable sliding
cycle Lα passing through the visible tangent point
Tα surrounds the unstable focus Xα for α < 0. Con-
trary to case BF1, there is no pseudo-equilibrium
nearby. When α → 0, the stable cycle shrinks and
the focus Xα collides with the tangent point Tα. For
small α > 0, there is no cycle and all nearby orbits
tend to a stable pseudo-equilibrium Pα that exists
close to the invisible tangent point Tα. This bifurca-
tion implies the noncatastrophic disappearance of a
stable sliding cycle.

In case BF4, the visible tangent point Tα

present for small α < 0 is the starting point of an
unstable sliding orbit. Since the focus is unstable,
all orbits leave a small neighborhood of the critical
equilibrium. The same is true for α > 0 with the
only difference that a repelling pseudo-equilibrium
Pα exists near the invisible tangent point Tα.

In the last case BF5, no attractor exists near
the bifurcation, that can be seen as the collision of
a pseudo-saddle Pα with the visible tangent point
Tα and the focus Xα as α → 0. After the collision,
only an invisible tangent point Tα remains.

One can easily provide topological normal
forms for all the above cases. For example, the
system

ẋ =

{

f (1)(x) , H(x, α) < 0 ,

f (2)(x) , H(x, α) > 0 ,
(9)
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Fig. 7. Boundary node bifurcations.

where

f (1)(x) =

(

x1 − 2x2

4x1

)

,

f (2)(x) =

(

0

−1

)

, H(x, α) = x2 + α ,

is a normal form for case BF1. It is convenient to
assume that H depends on the unfolding parameter
α, while f (1) and f (2) do not. Notice that by setting

f (1)(x) =

(

x1 − 2x2

3x1

)

with f (2) and H(x, α) as above, one obtains case
BF2, while

f (1)(x) =

(

−x1 − 2x2

4x1 + 2x2

)

corresponds to BF3. Normal forms for BF4 and
BF5 can be obtained from those for BF2 and BF3,
respectively, by setting

f (2)(x) =

(

0

1

)

.

3.1.2. Boundary node

Assume that the colliding node X0 is stable.
Depending on the direction of the motion in S2,
there are two generic critical cases. The unfoldings
of the singularities BN1,2 are presented in Fig. 7.
Cases with unstable nodes or nodes with differently
inclined zero-isoclines can be reduced to the con-
sidered ones. In case BN1, the critical equilibrium
X0 is an attractor with an incoming stable sliding
orbit. In case BN2 the equilibrium X0 is unstable
but has a sector of incoming orbits (bounded by the
unstable sliding orbit and the nonleading manifold
of the node). In both cases, there is a visible tangent
point when α < 0, and an invisible tangent point
when α > 0.

In case BN1, a stable node Xα and a visible
tangent point Tα coexist for α < 0. They collide at
α = 0 and are substituted by a stable pseudo-node
Pα and an invisible tangent point Tα for α > 0.
This bifurcation illustrates how a stable node can
become a stable pseudo-node.

In case BN2, a pseudo-saddle Pα and the stable
node Xα coexist for α < 0 with the visible tangent
point Tα, while there is only a tangent point Tα for
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Fig. 8. Boundary saddle bifurcations: In cases BS1 and BS2 a stable pseudo-node disappears catastrophically, while a
standard saddle becomes a pseudo-saddle in case BS3.

α > 0. This is a catastrophic disappearance of a
stable node.

As in the previous case, it is easy to derive
topological normal forms. The normal forms for
BN1,2 are given by (9) with

f (1)(x) =

(

−3x1 − x2

−x1 − 3x2

)

,

f (2)(x) =

(

0

∓1

)

, H(x, α) = x2 + α .

3.1.3. Boundary saddle

When the colliding equilibrium is a saddle, there
are three generic critical cases (BS1, BS2 and
BS3) determined by the slope of the saddle zero-

isoclines. The corresponding unfoldings are pre-
sented in Fig. 8. All other cases (i.e. when the sad-
dle is oriented differently or the motion in S2 is
reversed) can be reduced to the considered ones. In
all cases, there is an invisible tangent point when
α < 0, and a visible tangent point when α > 0.
These points delimit the sliding segments on the
discontinuity boundary.

In case BS1, a saddle Xα coexists with a
pseudo-saddle Pα and an invisible tangent point Tα

for α < 0. These three points collide at the criti-
cal parameter value α = 0 and are substituted by a
visible tangent point Tα for α > 0. No attractor is
involved.

In case BS2, a saddle Xα coexists with an in-
visible tangent point Tα and a stable pseudo-node
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Pα for α < 0, while only a visible tangent point Tα

remains for α > 0. This is a catastrophic disappear-
ance of a stable pseudo-node.

In the last case BS3, for α < 0 a saddle Xα

coexists with an invisible tangent point Tα, while
for α > 0, there is a pseudo-saddle Pα and a visi-
ble tangent point Tα. This bifurcation shows how a
saddle can become a pseudo-saddle.

A topological normal form in case BS1, is given
by the system (9), where

f (1)(x) =

(

−x1 + 3x2

3x1 − x2

)

,

f (2)(x) =

(

0

−1

)

, H(x, α) = x2 + α .

Normal forms for BS2 and BS3 have the same f (2)

and H but

f (1)(x) =

(

−2x1 − x2

x1 + x2

)

in case BS2 and

f (1)(x) =

(

x1 − 3x2

−3x1 + x2

)

in case BS3.

3.2. Collisions of tangent points

If a smooth vector field f(x, α) is quadratically
tangent to the boundary Σ at a point Tα, then,

generically, this tangent point will slightly move
under parameter variation. In other words, the
presence of a quadratic tangent point is not a bifur-
cation. However, the collision of two tangent points
is a local codim 1 bifurcation. Moreover, two tan-
gent points of the same vector field cannot collide
if they are both visible or invisible, while tangent
points of different vector fields collide independently
of their nature. Thus, in generic one-parameter fam-
ilies of planar Filippov systems, one can expect the
following critical cases:

(1) collision of a visible and an invisible tangent
point of f (1)(x, α);

(2) collision of a visible tangent point of f (1)(x, α)
and a visible tangent point of f (2)(x, α);

(3) collision of a visible tangent point of f (1)(x, α)
and an invisible tangent point of f (2)(x, α);

(4) collision of an invisible tangent point of
f (1)(x, α) and an invisible tangent point of
f (2)(x, α).

In the following, we analyze these possibilities in
detail.

3.2.1. Double tangency

Suppose that for α < 0 the vector field f (1)(x, α)
has two quadratic tangent points: an invisible and
a visible one. Let these tangent points collide at
α = 0 forming a double tangent point T0. The or-
bit of f (1)(x, 0) passing through T0 has generically

DT1

DT2
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S2

T
2

α

S2

Σ Σ

S1

S2

Σ
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α < 0 α = 0 α > 0
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Σ
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Σ

α = 0 α > 0

T
1

α

T
2

α
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S1
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Σ

α < 0

T
1

α

Fig. 9. Double tangency bifurcations. DT1: Appearance of a stable sliding segment. DT2: Closing of a crossing window.
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a cubic inflection point. Assume also that f (1)(x, α)
is locally transversal to the boundary for α > 0 and
that the vector field f (2) is transversal to the bound-
ary near T0 for all small α. As in Sec. 3, we can
suppose, without loss of generality, that the bound-
ary Σ is a straight line and that f (2) is orthogonal
to Σ.

Under these assumptions, there are two generic
critical cases, DT1 and DT2, corresponding to
opposite inflections of the orbit passing through T0.
These critical cases are shown in Fig. 9 together
with their unfoldings.

In case DT1, a stable sliding segment exists be-
tween T 1

α and T 2
α for α < 0. At the critical value

α = 0 there is a single orbit that departs from T0

tangentially to the boundary, while all other orbits
cross Σ. For α > 0 all orbits cross Σ.

In case DT2, there are two stable sliding seg-
ments for α < 0, separated by a “crossing window”
between T 1

α and T 2
α. The sliding motions starting

on the left segment terminate at T 1
α and continue

in S1 along a standard orbit that reaches the right
sliding segment. At α = 0 the crossing window dis-
appears and an uninterrupted sliding orbit exists for
α > 0.

Topological normal forms for DT1,2 are given
by (9) with

f (1)(x, α) =

(

1

±(α+ x2
1)

)

,

f (2)(x, α) =

(

0

−1

)

, H(x) = x2 .

3.2.2. Two visible tangencies

Now assume that, for all sufficiently small α,
f (1)(x, α) has a visible quadratic tangent point

T
(1)
α ∈ Σ, while f (2)(x, α) has a visible quadratic

tangent point T
(2)
α ∈ Σ. Further, suppose that at

α = 0 these tangent points collide, i.e. T
(1)
0 = T

(2)
0 =

T0, while their relative velocity with respect to the
parameter is nonzero. As before, we can assume
that the discontinuity boundary Σ is a straight
line. It is easy to see that under these assumptions
there are two generic critical cases, V V1 and V V2,
in which the vectors f (1)(T0, 0) and f (2)(T0, 0) are
collinear or anti-collinear, so that T0 is a singular
sliding point. Figure 10 presents unfoldings of these

singularities, assuming that T
(1)
α is located to the

right of T
(2)
α for α < 0 and to the left for α > 0.

For α = 0, in case V V1 there is a sliding segment
containing the singular sliding point, while in case
V V2 only one singular sliding point is present.

In case V V1, the tangent points T
(1)
α and T

(2)
α

delimit a segment of Σ which is crossed by orbits go-
ing from S1 to S2 when α < 0, and in the opposite
direction when α > 0.

In case V V2, the tangent points T
(1)
α and

T
(2)
α delimit a stable sliding segment containing a

pseudo-saddle Pα for small α 6= 0.
Topological normal forms for cases V V1,2 are

given by (9) with

f (1)(x, α) =

(

±1

∓(α+ x1)

)

,

f (2)(x, α) =

(

1 − x1

x1

)

, H(x) = x2 .

3.2.3. One visible and one invisible

tangency

When one of the colliding quadratic tangent points

(say T
(1)
α ) is invisible, while the other (T

(2)
α ) is visi-

ble, there are three generic critical cases: Case V I1,
when the vectors f (1)(T0, 0) and f (2)(T0, 0) are
collinear, and two cases (V I2 and V I3), when they
are anti-collinear. The unfoldings of these three
singularities are shown in Fig. 11.

In case V I1, all orbits, except one, cross Σ for
α = 0. The cases V I2 and V I3 can be distinguished
by looking for α = 0 at the coefficient νi of the
quadratic term in the functions representing the or-
bit of f (i), i = 1, 2, passing through T0 (see Sec. 2.2).
In case V I2 the orbits in S1 are less bent than
those in S2, while the opposite is true in case V I3.
This results in sliding motions in the opposite di-
rections. Notice, however, that the sliding segment
is stable on one side of T0 and unstable on the
other.

Similar to the previous cases, unfolding of case
V I1 gives a sliding segment bounded by the tangent

points T
(1)
α and T

(2)
α for both α > 0 and α < 0. How-

ever, this sliding segment is unstable for α < 0 and
stable for α > 0. Unfolding of cases V I2 and V I3
opens a crossing window between T

(1)
α and T

(2)
α in

the sliding segment. In both cases, there are disjoint
sliding segments of opposite stability for α 6= 0.
Moreover, in case V I2, there exists a pseudo-saddle
for any small α 6= 0, while in case V I3 an unsta-
ble pseudo-node existing for α < 0 is substituted
by a stable pseudo-node for α > 0. In other words,
approaching the bifurcation from positive values of
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Fig. 10. Collisions of two quadratic tangencies when both tangent points are visible. V V1: Closing and opening of a crossing
window. V V2: Appearance of a stable sliding segment.
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Fig. 11. Collisions of visible and invisible tangencies.

α, we get a catastrophic disappearance of a stable
pseudo-equilibrium.

Topological normal forms for cases V Ij are

given by (9) with H(x) = x2 and the following f (k).
For V I1,2:

f (1)(x, α) =

(

±1 − x1

±(α+ x1)

)

, f (2)(x, α) =

(

1 − x1

2x1

)

,

and for V I3:

f (1)(x, α) =

(

−1 + x1

−α− 2x1

)

, f (2)(x, α) =

(

1 − x1

x1

)

.

3.2.4. Two invisible tangencies

Finally, assume that the two colliding quadratic
tangent points are invisible. There are two generic
critical cases in which f (1) and f (2) are collinear or
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Fig. 12. Collisions of two invisible tangencies.

anti-collinear at the singular sliding point T0, re-
spectively (see Fig. 12). In case II1, for α = 0 there
is a sliding segment, on which the sliding is stable
on one side of T0 and unstable on the other. In case
II2, point T0 is a fused focus (see Sec. 2.2). Suppose,
that the coefficient k2 defined in Sec. 2.2 is negative.
This implies stability of the pseudo-focus. The case
of an unstable pseudo-focus can be understood by
reversing all arrows in the portraits.

Unfolding of case II1 opens a crossing window

delimited by T
(1)
α and T

(2)
α in the sliding segment.

There are disjoint sliding segments of opposite sta-
bility for all sufficiently small α 6= 0 but no attrac-
tors are involved.

Case II2 is perhaps the less trivial local bifur-
cation in planar Filippov systems. The quadratic

tangent points T
(1)
α and T

(2)
α delimit a single sliding

segment for all small α. This segment is stable for
α < 0 and unstable for α > 0. Moreover, the sliding
segment contains a pseudo-node Pα, which is sta-
ble for α < 0 and unstable for α > 0. Finally, by
analyzing the local Poincaré return map defined on
Σ outside the sliding segment, one can prove that a
unique and stable crossing cycle Lα exists for α > 0
(see [Filippov, 1988]). This cycle shrinks together
with the sliding segment and disappears when α is
positive and tends to zero. Thus, in terms of iso-
lated invariant sets, a stable pseudo-node existing
for negative α is substituted by an unstable pseudo-
node and a stable crossing cycle. Therefore, this
bifurcation can be called supercritical pseudo-Hopf
bifurcation.

The system (9) with

f (1)(x, α) =

(

−1 − x1

−x1

)

,

f (2)(x, α) =

(

1

α− x1

)

, H(x, α) = x2 ,

is a local topological normal form for the supercrit-
ical pseudo-Hopf bifurcation (case II2).

The bifurcation diagram in the subcritical case,
corresponding to the unstable pseudo-focus (k2 >
0), can be obtained from the described one by
reversing the direction of all orbits and changing
the sign of the parameter.

Notice that a normal form for II1 can be
obtained from that for II2 by reversing f (1), i.e.
with

f (1)(x, α) =

(

1 + x1

x1

)

,

and f (2) and H as above.

3.3. Collisions of pseudo-equilibria

When α varies, two pseudo-equilibria can collide
and disappear via the standard saddle-node bifur-
cation, which can properly be called in this case
a pseudo-saddle-node bifurcation. Figure 13 illus-
trates this bifurcation in the case of a stable slid-
ing segment. We will re-encounter this bifurcation
while dealing with bifurcations of sliding cycles in
Sec. 4.2.1.
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Fig. 13. Pseudo-saddle-node bifurcation.

A topological normal form for this bifurcation
is (9), where

f (1)(x, α) =

(

α+ x2
1

1

)

,

f (2)(x, α) =

(

0

−1

)

, H(x) = x2 .

4. Global Bifurcations

4.1. Bifurcations of cycles

System (2) can have standard periodic solutions
that lie entirely in S1 or S2. All other periodic solu-
tions can be naturally subdivided into two classes:
periodic solutions which have a sliding segment in
Σ (sliding periodic solutions) and those which have
only isolated points in common with Σ (crossing
periodic solutions). Note that a crossing periodic so-
lution can pass through the boundary of the sliding
segment. Accordingly, the orbits corresponding to
periodic solutions will be called standard, sliding
and crossing cycles. Due to uniqueness of forward
solutions, sliding periodic solutions with a common
sliding piece must coincide. One can introduce a lo-
cal transversal section to a stable sliding cycle and
define the Poincaré map in the usual way forward
in time. However, the derivative of this map at the
fixed point corresponding to the cycle will be zero,
since all nearby points will be mapped into the fixed
point. This is sometimes referred to as superstability
and is related to the fact that the Poincaré map is
noninvertible in this case. On the contrary, a generic
crossing cycle has a smooth invertible Poincaré map
and is exponentially stable if the derivative µ of the
Poincaré map satisfies µ < 1, and exponentially un-

stable if µ > 1. Finally, a crossing cycle passing
through the boundary of a sliding segment is su-
perstable from both sides (see examples below).

Of course, sliding cycles can also cross Σ and
have more than one sliding segment, while cross-
ing cycles can return to Σ more than twice. In
what follows we consider the simplest possible cy-
cles and do not present state portraits that can
be obtained from the considered ones by reversing
all arrows.

4.1.1. Collision of a cycle with the

boundary (touching)

A standard piece of a cycle can collide with the
discontinuity boundary. This bifurcation is called
touching or grazing or even the sliding–grazing bi-
furcation. The simplest case is that of a standard
cycle that touches at α = 0 a sliding segment Σs

at a quadratic tangent point T0. Two generic crit-
ical cases (TC1,2) are possible here, depending on
the stability of the touching cycle L0 from inside
at α = 0. In case TC1 the cycle L0 is stable from
inside, while it is unstable from inside in case TC2.

The unfolding of TC1-singularity is presented
in the upper part of Fig. 14. For α < 0 there is a
cycle Lα ⊂ S1 which is stable and which has the
distance from Σ that is O(α) for small α. Then,
for α > 0, this cycle becomes a sliding cycle. No-
tice that stability of Lα changes from exponential
stability to superstability.

The bifurcation diagram in case TC2 is also
shown in Fig. 14. For α > 0 two cycles exist:
An unstable cycle Lu

α ⊂ S1 and a sliding (super-
stable) cycle Lα. Since for α > 0 no cycles remain,
this bifurcation resembles the standard saddle-node
bifurcation of limit cycles in smooth systems.
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4.1.2. Appearance of a double tangency

on the sliding cycle (sliding

disconnection)

Appearance of a double tangent point inside a
sliding segment is a local bifurcation discussed in
Sec. 3.2.1 (case DT2). When this happens on a
sliding cycle it causes a global change of the state
portrait, depicted in Fig. 15. Assume that a sliding
cycle Lα exists for α < 0 and that a generic double
tangent point T0 appears in the sliding segment at
α = 0. For α > 0, two visible quadratic tangent
points, T 1

α and T 2
α , appear and interrupt the sliding

motion, so that the cycle Lα now has two sliding

segments. Some authors call this rearrangement a
multi-sliding bifurcation.

The following two bifurcations are purely global
and are due to the collision of a sliding cycle with
an invisible or visible quadratic tangent point.

4.1.3. Return to an invisible tangent point

(buckling)

Assume that there exists a sliding cycle Lα for α < 0
and that, for α = 0 the standard piece of the cy-
cle returns to the sliding segment at an invisible

quadratic tangent point T
(1)
0 (see Fig. 16). If the
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Fig. 16. Buckling bifurcation.
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Fig. 17. Crossing bifurcations: SC: sliding critical cycle; CC: crossing critical cycle.

point of return of Lα on Σ passes with a nonzero
velocity from the sliding to the crossing segment
at α = 0, then for α > 0 the cycle remains but
enters S2 before returning back to the sliding seg-
ment. This is a buckling bifurcation of the sliding
cycle (also called sliding switching).

4.1.4. Return to a visible tangent point

(crossing)

The case of a periodic orbit starting at and return-
ing to the same visible quadratic tangent point at
α = 0 is more complicated. Assuming genericity
with respect to the parameter, there are two distinct
cases as shown in Fig. 17. The critical cycle L0 can
be either sliding (case SC) or crossing (case CC).

Moreover, in both cases, it is superstable from in-
side and outside (see central portraits in Fig. 17).
In all cases, there is a quadratic tangent point

T
(1)
α of f (1) for all sufficiently small |α|.

In case SC, a sliding cycle Lα with two slid-
ing segments exists for α < 0 and is substituted
by a sliding cycle with only one sliding segment for

α > 0, since the orbit crosses Σ near T
(1)
α . We call

this bifurcation simple crossing.
In case CC, for α < 0, there is a sliding

cycle Lα with a single sliding segment ending at

T
(1)
α . This sliding segment shrinks for α → 0 and

the cycle becomes for α = 0, a crossing cycle
that is superstable from both inside and outside.
For α > 0, a unique and exponentially stable
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Fig. 18. Bifurcation of a homoclinic orbit to a pseudo-saddle-node.
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Fig. 19. Bifurcation of a sliding homoclinic orbit to a pseudo-saddle.

crossing cycle exists. Therefore, this bifurcation
implies a transition from a superstable sliding cycle
to an exponentially stable crossing cycle. We call it
sliding–crossing.

In the last case CC2, a superstable sliding cycle
Ls

α coexists with an exponentially unstable crossing
cycle Lc

α for sufficiently small α < 0. The two cy-
cles collide at α = 0 forming a critical crossing cycle
L0 and then disappear for α > 0. This bifurcation,
also called sliding–crossing, implies the catastrophic
disappearance of a stable sliding cycle.

4.2. Pseudo-homoclinic bifurcations

A pseudo-equilibrium Pα of (7) can have a sliding
orbit that starts and returns back to it at α = 0.
This is possible if P0 is either a pseudo-saddle-node
or a pseudo-saddle. Moreover, a standard saddleXα

can have a homoclinic orbit containing a sliding seg-
ment at α = 0.

4.2.1. Sliding homoclinic orbit to a

pseudo-saddle-node

Appearance of a pseudo-saddle-node inside a slid-
ing segment is a local bifurcation discussed in

Sec. 3.3. If the pseudo-saddle-node appears on
a sliding cycle Lα it causes a global change of
the state portrait, as depicted in Fig. 18, where
a sliding cycle Lα exists for α < 0 and a
generic pseudo-saddle-node P0 appears in the slid-
ing segment at α = 0. Then, for α > 0, a
pseudo-saddle P 1

α and a pseudo-node P 2
α appear

and interrupt the periodic motion, so that no cy-
cle is present for α > 0. All nearby orbits ap-
proach for small α > 0 the stable pseudo-node
P 2

α . This bifurcation is completely analogous to the
standard bifurcation of an orbit homoclinic to a
saddle-node.

4.2.2. Sliding homoclinic orbit to a

pseudo-saddle

A sliding cycle Lα can collide with a pseudo-saddle.
Assuming that the orbit departing from a tangent
point misses the pseudo-saddle transversally with
respect to the parameter, we get the bifurcation
diagram shown in Fig. 19, where a sliding cycle
Lα exists for α < 0 and becomes a sliding homo-
clinic orbit at α = 0. There is no periodic orbit for
α > 0. This bifurcation is completely analogous to
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Fig. 20. Bifurcation of a sliding homoclinic orbit to a saddle.
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Fig. 21. Bifurcation of a heteroclinic orbit between pseudo-saddles.

the standard bifurcation of a homoclinic orbit to a
saddle.

4.2.3. Sliding homoclinic orbit to a saddle

A sliding cycle Lα can collide with a standard saddle
Xα, say in S1 (see Fig. 20). Generically, the cycle
existing for α < 0 touches the saddle X0 at α = 0
and then disappears for α > 0. This is another
catastrophic bifurcation.

4.3. Pseudo-heteroclinic

bifurcations

We complete our list of codim 1 global bifur-
cations, by considering also two rather simple
possibilities related to heteroclinic orbits between
pseudo-saddles and saddles. Note that there are also
trivial bifurcations involving orbits which connect
either two tangent points, or a special point with a
pseudo-node. We do not present the corresponding
diagrams here.

4.3.1. Heteroclinic connection between

two pseudo-saddles

A generic unfolding of an orbit connecting two
pseudo-saddles at α = 0 is presented in Fig. 21.

For sufficiently small |α| 6= 0, the heteroclinic con-
nection breaks down giving rise to a bifurcation.

4.3.2. Heteroclinic connection between a

pseudo-saddle and a saddle

A generic unfolding of an orbit connecting at α = 0
a pseudo-saddle with a standard saddle in S2 is
given in Fig. 22. It does not involve nearby attrac-
tors and is listed here only for completeness.

5. Numerical Analysis of

Bifurcations

One could consider (2) as the limit of a globally
smooth system in R

2 when some parameter ε→ 0.
For example, one can define a smooth system

ẋ = S(x, ε)f (1)(x) + (1 − S(x, ε))f (2)(x) , (10)

where

S(x, ε) =
1

2
−

1

π
arctan

(

H(x)

ε

)

with ε > 0. Then, as ε → 0, (10) tends toward the
discontinuous system (2). Moreover, consider a for-
ward solution x(t) of (2) and suppose that it has no
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Fig. 22. Bifurcation of a heteroclinic orbit between a pseudo-saddle and a saddle.

unstable sliding segments. Then it can be proved
that the solution xε(t) of (10) with xε(0) = x(0)
tends to x(t) uniformly on any finite time interval
[0, T ].

Therefore, one could attempt to analyze the
bifurcations of (10) using standard techniques
for smooth ODEs [Doedel & Kernévez, 1986;
Kuznetsov & Levitin, 1995–1997]. This is not easy,
since (10) is a stiff ODE and, thus, requires special
methods for its bifurcation analysis. But even worse
than that, the most interesting sliding bifurcation
phenomena are absent in (10). Thus, one has to
develop special algorithms to deal with bifurcation
analysis of Filippov systems. Below, we present such
algorithms for the planar case, indicating, whenever
possible, their applicability to the n-dimensional
case.

5.1. One-parameter continuation

5.1.1. Continuation of pseudo-equilibria

A pseudo-equilibrium is an equilibrium of system
(5) on the sliding manifold Σs. However, to set up
equations for its continuation, which are valid in the
n-dimensional case, it is more convenient to recall
that at a pseudo-equilibrium x the vectors f (1) and
f (2) are anti-collinear, namely

λ1f
(1)(x, α) + λ2f

(2)(x, α) = 0 ,

for some real λ1 and λ2 with λ1λ2 > 0. This con-
dition, together with the condition H(x, α) = 0,
gives the following defining system for the pseudo-
equilibrium:











H(x, α) = 0 ,

λ1f
(1)(x, α) + λ2f

(2)(x, α) = 0 ,

λ1 + λ2 − 1 = 0 .

(11)

The system is valid for any n ≥ 2. It is a system of
(n+ 2) scalar equations in the (n+ 3)-dimensional
space R

n+3 with coordinates (x, α, λ). Generically,
(11) defines a smooth one-dimensional manifold in
R

n+3, whose projection on the (x, α)-space gives a
branch of pseudo-equilibria, provided λ1λ2 > 0 and
both f (1) and f (2) do not vanish.

If λ1 = 0 at a point X but λ2 6= 0, then
f (2)(X,α) = 0, i.e. X is an equilibrium of f (2) at
the boundary Σ.

5.1.2. Continuation of tangent points

At a tangent point of f (1), the following two condi-
tions are satisfied:

{

H(x, α) = 0 ,

〈Hx(x, α), f (1)(x, α)〉 = 0 .
(12)

Obviously, this system defines a curve only when
the system is planar, since only in that case (12) is
a system of two equations in the three-dimensional
(x, α)-space. For three-dimensional Filippov sys-
tems, (12) defines a curve of tangent points in the
state space R

3 for a fixed parameter value α. A
similar defining system can be specified for the
tangent points of f (2).

5.1.3. Continuation of cycles

One might attempt to approximate the periodic
solutions of a Filippov system with those of its
smooth approximation (10) with sufficiently small
ε > 0. Obviously, this approach does not work well
near the discontinuity boundary. Indeed, if mesh
adaptation is used, most of the mesh points accumu-
late near switches from standard to sliding motions.
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Fig. 23. The boundary-value problems for a crossing
cycle (a) and a standard segment of a sliding cycle (b).

A simple countermeasure is to subdivide the pe-
riodic orbit into segments located entirely in S1

or S2, and sliding segments. This approach works
particularly well for the continuation of crossing
cycles that cross Σ at only two points, u(0) and
v(0) as shown in Fig. 23(a). Then the following
boundary-value problem on the unit interval [0, 1]
can be used for the continuation of the crossing
cycle:















































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

u(1) − v(0) = 0 ,

v̇ − T2f
(2)(v, α) = 0 ,

H(v(0), α) = 0 ,

v(1) − u(0) = 0 ,

(13)

where Ti is a parameter meaning the time spent
by the (T1 + T2)-periodic solution in region Si,
i = 1, 2. The boundary conditions u(1) = v(0) and
v(1) = u(0) ensure the periodicity, while the two
scalar conditions involvingH force the switch points
to belong to the boundary Σ. The whole periodic

solution corresponding to the crossing cycle is then
given by the formula:

x(t) =



















u

(

t

T1

)

, t ∈ [0, T1] ,

v

(

t− T1

T2

)

, t ∈ [T1, T1 + T2] .

Clearly, the approach is valid for any n ≥ 2. A
solution to the above boundary-value problem can
be continued using the standard software AUTO97
[Doedel & Kernévez, 1986; Doedel et al., 1997]. This
is also true for all boundary-value problems dis-
cussed below.

The continuation of cycles with sliding seg-
ments is more complex. Indeed, the computation
of such segments is equivalent to solving certain
boundary-value problems for

{

ẋ = g(x, α) ,

0 = H(x, α) ,
(14)

where g is defined by a parameter-dependent ana-
logue of (4). Note that (14) is a differential-algebraic
system that can be numerically integrated using
well-known codes, but for which boundary-value
problem solvers are hard to develop (see, however,
[Ascher & Spiteri, 1994]).

Fortunately, finding sliding periodic orbits in
the planar case is much simpler, since the sliding
segments coincide with pieces of the discontinuity
boundary Σ, as shown in Fig. 23(b). Thus, the slid-
ing segments can be computed for any fixed α by
the continuation of the curve

H(x, α) = 0 ,

and the problem is reduced to the continuation of
the standard segment of the periodic orbit. As we
have seen in the previous sections, generically, such
a standard segment departs from Σ at a visible
tangent point (in Fig. 23(b) u(0) is a visible tan-
gent point of f (1)). After a finite-time T1 (which is
considered as a parameter), the orbit returns back
to Σ at point u(1). This means that the following
boundary-value problem:























u̇− T1f
(1)(u, α) = 0 ,

H(u(1), α) = 0 ,

H(u(0), α) = 0 ,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0 ,

(15)

can be used to continue the standard segment lo-
cated in S1. Notice that the last two equations in



August 26, 2003 9:41 00787

2178 Yu. A. Kuznetsov et al.

(15) are nothing else than the defining equations
(12) of the tangent point u(0) of f (1).

5.2. Detection of bifurcations

To detect a bifurcation, a scalar test function ψ has
to be constructed, which changes its sign at the
bifurcation parameter value.

5.2.1. Test functions for local bifurcations

The most easily detectable local bifurcation is the
collision of an equilibrium with the discontinuity
boundary Σ (see Sec. 3.1). Indeed, following a stan-
dard equilibrium curve, say

f (1)(x, α) = 0 ,

one should merely monitor the test function

ψ0(x, α) = H(x, α) , (16)

which has a regular zero when the equilibrium of
f (1) hits Σ.

Other codim 1 local bifurcations occur within
the discontinuity boundary. In particular, following
a pseudo-equilibrium curve defined by (11), one can
encounter the following codim 1 singularities:

(1) collision with another pseudo-equilibrium;
(2) collision with a boundary equilibrium.

These bifurcations can be detected, respectively, as
zeroes of the test functions:

ψ1(x, α) = vn+1 (17)

and

ψ2(x, α) = λ1λ2 , (18)

where vn+1 is the α-component of the vector v ∈
R

n+3 tangent to the curve defined by (11) at point
(x, α, λ).

Other codim 1 bifurcations in Σ can be de-
tected by looking at tangent points. In particu-
lar, following a tangent point defined by (12) in
a planar system, one can encounter two codim 1
singularities:

(1) Double tangency of one vector field, say f (1),
i.e. a visible and an invisible tangent points of
f (1) collide;

(2) Collision of tangent points of different vector
fields, i.e. a tangent point of f (1) collides with
a tangent point of f (2).

These bifurcations can be detected, respectively, as
zeroes of the following test functions:

ψ3(x, α) = v3 , (19)

and

ψ4(x, α) = 〈Hx(x, α), f (2)(x, α)〉 , (20)

where v3 is the α-component of the vector v ∈ R
3

tangent to the curve defined by (12) at point (x, α).

5.2.2. Detection of global bifurcations

Global bifurcations of sliding cycles caused by lo-
cal events on a sliding segment, such as appearance
of a double tangency (see Sec. 4.1.2) or appear-
ance of a pseudo-saddle-node (see Sec. 4.2.1), can
be detected by monitoring the local test functions
described above.

Although some test functions could be con-
structed also for other global bifurcations described
in Sec. 4, the most practical method to detect
them is plotting orbits starting at visible tangent
points and at pseudo-equilibria for different param-
eter values. We will return to the continuation of
such global bifurcations later.

5.3. Two-parameter continuation of

codim 1 bifurcations

In two-parameter families of Filippov systems,
codim 1 bifurcations happen when we cross certain
curves in the parameter plane. Here we construct
defining systems which allow to compute such
curves.

5.3.1. Continuation of local bifurcations

Obviously, the defining system
{

f (1)(x, α) = 0 ,

H(x, α) = 0 ,
(21)

can be used to continue a boundary equilibrium
x ∈ R

n of f (1) with respect to two parameters,
i.e. when α ∈ R

2.
The continuation of two coinciding tangent

points of different vector fields is also straight-
forward in planar systems. Indeed, it is sufficient
to add condition ψ4 = 0 (see (20)) to system (12):











H(x, α) = 0 ,

〈Hx(x, α), f (1)(x, α)〉 = 0 ,

〈Hx(x, α), f (2)(x, α)〉 = 0 .

(22)
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Fig. 24. The boundary-value problems for (a) touching bifurcation; (b) buckling bifurcation; (c) crossing bifurcation SC;
(d) crossing bifurcation CC; (e) a homoclinic orbit to a pseudo-saddle; (f) an orbit connecting two pseudo-saddles.

The continuation of a double tangency of, say,
f (1) with respect to two parameters is somehow
more subtle. It can be done by adding to system
(12) an extra equation

d2

dt2
H(x(t), α)

∣

∣

∣

∣

t=0

= 0 ,

where x(t) is the solution of f (1) starting at the

tangent point. Thus, the defining system






















H(x, α) = 0 ,

〈Hx(x, α), f (1)(x, α)〉 = 0 ,

〈Hxx(x, α)f (1)(x, α)

+ [f
(1)
x (x, α)]THx(x, α), f (1)(x, α)〉 = 0 ,

(23)

is suitable for the two-parameter continuation of the
double tangent point.



August 26, 2003 9:41 00787

2180 Yu. A. Kuznetsov et al.

Finally, consider the two-parameter continua-
tion of a pseudo-saddle-node (see Sec. 3.3). At a
pseudo-saddle-node, the (n+ 2) × (n+ 2) Jacobian
matrix of (11) with respect to (x, λ1, λ2)

J(x, α, λ) =









HT
x 0 0

λ1f
(1)
x + λ2f

(2)
x f (1) f (2)

0 1 1









has a nontrivial null-vector v = (w, µ1, µ2)
T ∈

R
n+2: Jv = 0. Thus, the system


























































H(x, α) = 0 ,

λ1f
(1)(x, α) + λ2f

(2)(x, α) = 0 ,

λ1 + λ2 − 1 = 0 ,

〈Hx(x, α), w〉 = 0 ,

λ1f
(1)
x w + λ2f

(2)
x w + µ1f

(1) + µ2f
(2) = 0 ,

µ1 + µ2 = 0 ,

〈w,w〉 + µ2
1 + µ2

2 − 1 = 0 ,

(24)

can be used for the two-parameter continuation of
a pseudo-saddle-node. This is a system of (2n+ 5)
scalar equations in the (2n + 6)-dimensional space
with coordinates (x, α, λ, w, µ). Obviously, (24) is
valid in the general n-dimensional case.

5.3.2. Continuation of global bifurcations

Continuing global bifurcations with respect to two
parameters is easier than detecting them, since
all special points and orbits are already identified.
Moreover, the continuation of a sliding disconnec-
tion (see Sec. 4.1.2) is equivalent to that of a double
tangency, while the continuation of a sliding homo-
clinic orbit to a pseudo-saddle-node is equivalent
to the continuation of the pseudo-saddle-node it-
self. These problems have been already considered
in the previous subsection.

The two-parameter continuation of the touch-
ing bifurcation (see Sec. 4.1.1) of a cycle located in
S1 can be performed using the equations























u̇− T1f
(1)(u, α) = 0 ,

u(0) − u(1) = 0 ,

H(u(0), α) = 0 ,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0 .

(25)

Recall that T1 is an extra parameter. This defining
system can be derived by imposing u(0) = u(1) in

(15) [cf. Figs. 23(b) and 24(a)]. This system is valid
for n ≥ 2.

By contrast, buckling (see Sec. 4.1.3) and SC-
crossing (see Sec. 4.1.4) bifurcations are planar-
specific. Indeed, both bifurcations are characterized
by the condition that a standard segment of a cycle
returns to Σ at a tangent point. Thus, for example,
the following defining system (see Fig. 24(b), where
u(0) and u(1) are a visible and an invisible tangent
point of f (1), respectively) allows one to continue
the buckling bifurcation:



































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

H(u(1), α) = 0 ,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0 ,

〈Hx(u(1), α), f (2)(u(1), α)〉 = 0 ,

(26)

where T1 is an extra parameter. The same defining
system can be used for the continuation of a cross-
ing bifurcation in the case of a sliding critical cycle
(see Fig. 24(c), where u(1) is a visible tangent point
of f (2)).

In order to continue a crossing critical cycle (see
Fig. 24(d)) with respect to two parameters, a defin-
ing system should specify both standard segments
(located in S1 and S2) of the critical cycle. If the
critical cycle starts at a visible tangent point u(0)
of f (1), then it crosses the discontinuity boundary
Σ at a point u(1) = v(0) and proceeds in S2 until
it hits Σ again at v(1) = u(0). Thus, the defining
system takes the form:



























































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

u(1) − v(0) = 0 ,

v̇ − T2f
(2)(v, α) = 0 ,

H(v(0), α) = 0 ,

v(1) − u(0) = 0 ,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0 ,

(27)

where T1,2 are parameters.
The remaining global bifurcations involve ho-

moclinic and heteroclinic orbits to standard or
pseudo-saddles. A sliding homoclinic orbit to a
pseudo-saddle (see Sec. 4.2.2) can be continued
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Fig. 25. The boundary-value problems for a sliding homoclinic orbit to a saddle (a) and an orbit connecting a pseudo-saddle
to a saddle (b).

using the following defining system






































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0 ,

H(u(1), α) = 0 ,

λ1f
(1)(u(1), α) + λ2f

(2)(u(1), α) = 0 ,

λ1 + λ2 − 1 = 0 .

(28)

Such a defining system can be easily derived by
looking at Fig. 24(e), where the standard segment
of the critical orbit is located in S1 and connects
a visible tangent point u(0) of f (1) with a pseudo-
saddle u(1). The continuation of a solution to the
boundary-value problem (28) will give a parameter-
ization of the standard segment u(τ), τ ∈ [0, 1] in
S1, the time T1 spent by the standard orbit in S1,
as well as the coordinates of the tangent point u(0)
and the pseudo-saddle u(1) with its corresponding
λ1,2.

Similar defining functions can be used for the
continuation of a standard orbit connecting two
pseudo-saddles in a planar Filippov system (see
Sec. 4.3.1 and Fig. 24(f)):


















































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

λ1f
(1)(u(0), α) + λ2f

(2)(u(0), α) = 0 ,

λ1 + λ2 − 1 = 0 ,

H(u(1), α) = 0 ,

µ1f
(1)(u(1), α) + µ2f

(2)(u(1), α) = 0 ,

µ1 + µ2 − 1 = 0 .

(29)

All segments we have continued until now
correspond to finite time intervals T1,2, which were

treated as extra parameters in the boundary-value
problems above. However, this is not the case
when an orbit is asymptotic to a standard sad-
dle. We have listed two such bifurcations: A het-
eroclinic connection between a pseudo-saddle and
a standard saddle (Sec. 4.3.2) and a sliding homo-
clinic orbit to a saddle (Sec. 4.2.3). In both cases,
one can employ the so-called projection boundary
conditions at the standard saddle (see, for example,
[Kuznetsov, 1998]) and truncate the boundary-
value problem to a large but fixed time interval,
namely require that an approximating orbit seg-
ment ends at a point of the stable linear subspace of
the saddle, which is very close to the saddle itself.
In the planar case, this can be formulated in terms
of orthogonality to the adjoint unstable eigenvector.

For example, for the case of a sliding homoclinic
orbit to a saddle depicted in Fig. 25(a) where u(0)
is a tangent point of f (1), y is a standard saddle in
S1, and w is its adjoint eigenvector corresponding
to the eigenvalue ν > 0, the defining system takes
the form:



















































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

〈Hx(u(0), α), f (1)(u(0), α)〉 = 0 ,

f (1)(y, α) = 0 ,

[f
(1)
x (y, α)]Tw − νw = 0 ,

〈w,w〉 − 1 = 0 ,

〈w, y − u(1)〉 = 0 ,

(30)

where sufficiently large T1 > 0 is fixed.
Similarly, for the two-parameter continua-

tion of the heteroclinic connection between a
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pseudo-saddle and a standard saddle shown in
Fig. 25(b) one obtains the following defining system:






























































u̇− T1f
(1)(u, α) = 0 ,

H(u(0), α) = 0 ,

λ1f
(1)(u(0), α) + λ2f

(2)(u(0), α) = 0 ,

λ1 + λ2 − 1 = 0 ,

f (1)(y, α) = 0 ,

[f
(1)
x (y, α)]Tw − νw = 0 ,

〈w,w〉 − 1 = 0 ,

〈w, y − u(1)〉 = 0 ,

(31)

with a big fixed T1 > 0.

6. Example: Harvesting a

Prey Predator Community

In order to avoid the extinction of a valuable re-
source, exploitation is often forbidden when the
resource is scarce. In this context, the simplest case
of interest is that of a two population community
(prey and predator with densities x1 and x2, respec-
tively), where the predator population is harvested
only when abundant, i.e. when x2 > α, where α is
a prescribed threshold. The standard Rosenzweig–
MacArthur prey–predator model presented in many
books (see, for example, [Bazykin, 1998]) is the
most obvious candidate for describing the dynam-
ics of the two populations when x2 < α. In that
model the prey population grows logistically in the
absence of predator and each predator transforms
the harvested prey into new bornes. More precisely,
the model for x2 < α is the following:

ẋ = f (1)(x, α) , (32)

where

f (1)(x, α) =

(

x1(1 − x1) − ψ(x1)x2

ψ(x1)x2 − dx2

)

and

ψ(x1) =
ax1

b+ x1

is the functional response of the predator, namely
the amount of prey eaten by each predator in one
unit of time.

When the predator population is abundant
(x2 > α) an extra mortality must be added to the
second equation in order to take exploitation into
account. If we assume that the resource is exploited

at constant effort E, the equation for x2 > α takes
the form

ẋ = f (2)(x, α) , (33)

where

f (2)(x, α) =

(

x1(1 − x1) − ψ(x1)x2

ψ(x1)x2 − dx2 −Ex2

)

.

Since the prey equation is the same in both regions
S1 = {x : x2 < α} and S2 = {x : x2 > α}, there is a
unique nontrivial zero-isocline ẋ1 = 0, which is the
parabola

x2 =
1

a
(b+ x1)(1 − x1). (34)

By contrast, the nontrivial zero-isoclines ẋ2 = 0 are
different in the two regions. More precisely, they are
vertical straight lines given by

x1 =
bd

a− d
, x ∈ S1 ,

and

x1 =
b(d+E)

a− (d+E)
, x ∈ S2 .

From this it follows that there are two distinct
tangent points T (1) and T (2) given by the inter-
sections of the horizontal discontinuity boundary
Σ = {x : x2 = α} with the two zero-isoclines.
The horizontal segment between the tangent points
is a sliding segment Σs and contains pseudo-
equilibria if it intersects the parabola (34). In
fact, at these intersection points the tangent vec-
tors ẋ are vertical and anti-collinear (condition for
pseudo-equilibrium). The bifurcation analysis with
respect to α is therefore relatively easy and can be
performed analytically in great part.

In Figs. 26 and 27 we show the results of this
analysis for the following values of the parameters:
a = 0.3556, b = 0.33, d = 0.0444, E = 0.2067.

Figure 26 presents generic state portraits cor-
responding to different decreasing values of α,
while intermediate critical state portraits are plot-
ted in Fig. 27. All together, there are five differ-
ent bifurcations. The first [Fig. 27(a)] is a touching
bifurcation (see Sec. 4.1.1), where the classical
prey–predator limit cycle [Fig. 26(a)] becomes a
sliding cycle [Fig. 26(b)]. The second [Fig. 27(b)]
is a pseudo-saddle-node bifurcation (see Sec. 3.3):
It generates a pseudo-saddle and a stable pseudo-
node [Fig. 26(c)]. Just after that bifurcation, there
are two attractors: the stable pseudo-node and
the stable sliding cycle. The third bifurcation is
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Fig. 26. Generic state portraits of model (32)–(33): (a) a stable standard cycle at α = 2.75; (b) a stable sliding cycle at
α = 1.625; (c) a stable sliding cycle and a stable pseudo-node at α = 1.2375; (d) a stable pseudo-node at α = 1.175; (e) a
stable sliding cycle (almost invisible) and a stable pseudo-node at α = 1.02; (f) a stable pseudo-node at α = 0.9; (g) a stable
standard node at α = 0.5.
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Fig. 27. Critical state portraits of model (32), (33): (a) Touching bifurcation at α ≈ 2.440; (b) pseudo-saddle-node bifurcation
at α ≈ 1.2437; (c) sliding homoclinic orbit to a pseudo-saddle bifurcation at α ≈ 1.2277; (d) another sliding homoclinic orbit to
a pseudo-saddle (almost invisible) at α ≈ 1.03; (e) boundary focus bifurcation at α ≈ 1.01017; (f) boundary node bifurcation
at α ≈ 0.6527.
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Fig. 28. Magnification of a small sliding cycle at α = 1.02.

a global bifurcation characterized by the presence
of a sliding homoclinic orbit to the pseudo-saddle
[Fig. 27(c)]. After this bifurcation the sliding cy-
cle does not exist and the stable pseudo-node re-
mains the only attractor [Fig. 26(d)]. The fourth
bifurcation [Fig. 27(d)] is due to another sliding
homoclinic orbit to the pseudo-saddle, after which
the sliding cycle reappears but has a much smaller
size (see Figs. 26(e) and 28 for a magnification).
The fifth bifurcation [Fig. 27(e)] is a boundary fo-
cus bifurcation (see case BF1 in Sec. 3.1.1), where
the small sliding cycle shrinks and disappears. For
lower threshold values the attractor is again unique,
namely a stable pseudo-node [Fig. 26(f)], which
becomes a stable node [Fig. 26(f)] after the last
bifurcation [Fig. 27(f)], which is a boundary node
bifurcation (case BN1 in Sec. 3.1.1).

The state portraits in Fig. 26 are interesting:
They show that high degrees of protectionism (high
threshold values α) allow the ecosystem to be-
have cyclically with very large excursions of prey
and predator populations. Lower threshold values,
i.e. reasonable degrees of protectionism, prevent
the periodic and dangerous crashes of the preda-
tor population. However, for these threshold val-
ues the ecosystem can have two attractors. Finally,
for very low protectionism the ecosystem is at
the exploited equilibrium, characterized by a low
predator density. The most striking result of this
bifurcation analysis is that the discontinuous ex-
ploitation introduced with the threshold has the

power of creating multiple attractors [see Figs. 26(c)
and 26(e)], which, indeed, are not possible in the
standard Rosenzweig–MacArthur model. A deeper
understanding of the dynamics of discontinuously
exploited ecosystems requires a bifurcation analysis
also with respect to more than one parameter. This
can be done by continuation using the defining func-
tions described in Sec. 5. Such computations have
been done with respect to b and α (see Fig. 29).
Details of this analysis and a complete bifurcation
diagram of (32)–(33) will be reported elsewhere.

7. Discussion

We have presented an overview of all one-parameter
bifurcations in generic planar discontinuous piece-
wise smooth autonomous systems (here called Fi-
lippov systems). Apart from numerous applications,
there are two natural directions in which the analy-
sis presented in this paper can be extended: to more
dimensions and to higher codimensions.

As we have already mentioned in the Intro-
duction, there is a growing number of interest-
ing results on bifurcations of periodic solutions
in specific three-dimensional and in general n-
dimensional Filippov systems (see, for example
[Feigin, 1994; di Bernardo et al., 1999; di Bernardo
et al., 1998; di Bernardo et al., 1998; di Bernardo
et al., 2001], and, in particular, [di Bernardo et al.,
2002]). Much less is known about local bifurca-
tions in n-dimensional systems. Filippov [1988] has
identified codim 1 boundary equilibria and tangent
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Fig. 29. Bifurcation diagram of model (32)–(33) in the (α, b)-plane for b > 0.26. The dotted line corresponds to the one-
parameter family with b = 0.33. Bifurcation curves: HP — standard Hopf bifurcation; BF1,2 — boundary foci; BN1 —
boundary node; PSN — pseudo saddle-node; TC1 — touching; H — sliding homoclinic orbit to a pseudo-saddle. Points of
codim 2 bifurcations: A — boundary Hopf bifurcation; B — degenerate boundary focus; C — sliding homoclinic orbit to a
pseudo-saddle-node.

points in three-dimensional systems. Unfortunately,
his classification should be done from scratch for
each dimension n, since the dimension of the set of
tangent points is equal to n − 2 and thus depends
on n. If no tangent points are involved, the situa-
tion is relatively easy and one can apply standard
bifurcation theory to pseudo-equilibria within the
sliding set Σs. In generic one-parameter families of
Filippov systems, only fold and Hopf bifurcations
of pseudo-equilibria occur within Σs. In the case
of fold bifurcation, two pseudo-equilibria appear or
disappear at the bifurcation parameter value. The
Hopf case implies the appearance or disappearance
of a small periodic orbit in the sliding manifold. The
existence of tangent points makes the bifurcation
picture more complicated, since no center manifold
reduction is possible. However, many local codim 1
bifurcations involving tangent curves and sliding are
most likely treatable for n = 3.

The analysis of codim 2 local bifurcations in
planar Filippov systems seems feasible. Notice that
two such points are present in Fig. 29: A — a
standard Hopf bifurcation occurring at the dis-
continuity boundary (boundary Hopf), and B —
a degenerate boundary focus satisfying condition
(8) from Sec. 3.1.1. Generic two-parameter un-
foldings of these singularities will have bifurcation

diagrams similar to those near points A and B in
Fig. 29. However, many more codim 2 bifurcations
are present even in model (32)–(33). Another in-
teresting codim 2 case is a degenerate pseudo-Hopf
bifurcation, where k2 = 0 (see Secs. 2.2 and 3.2.4).
Its two-parameter unfolding has a curve where
two crossing cycles of opposite stability collide and
disappear.

There are other interesting topics, related to
the numerical analysis of n-dimensional Filippov
systems. For example, it would be interesting to
analyze rearrangements of one- (and, eventually,
two-parameter) bifurcation diagrams of smooth
systems defined by (10), when ε → 0+, and un-
derstand how these diagrams tend to the diagrams
of the corresponding discontinuous systems. This
seems to be a nontrivial problem, since there are
obviously no sliding motions in (10) for any ε > 0.
Asymptotic methods from the theory of singularly
perturbed ODEs might be applicable to that prob-
lem. Among others, the problem of the continuation
of sliding cycles in n-dimensional Filippov systems
as solutions of certain boundary-value problems for
differential-algebraic equations, is the most chal-
lenging one. Recall, however, that the continuation
of the grazing bifurcation (see Sec. 4.1.1) can be
done using system (25) for all n ≥ 2.
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