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1. INTRODUCTION

Reliable numerical tools for simulation of mechanical (e.g., gears and brakes)
and electrical (e.g., relay systems and DC-DC converters) systems play an
important part in the analysis and development of such systems. What
characterises these systems is that they are often modelled by sets of ordinary
differential equations (ODEs) of varied complexity. There is a wide variety of
numerical methods for solving ODEs and many of them are routinely used in es-
tablished software, for example, MATLAB [Shampine and Reichelt 1997; Ashino
et al. 2000]. However, most of these algorithms require that the ODEs are suf-
ficiently smooth, while more realistic models such as those mentioned above
typically include some kind of discontinuities. Systems with discontinuities are
often referred to as piecewise smooth (PWS) systems, where the discontinuities
could be either in the states or in the right hand sides (the vector field or its
derivatives) of the ODEs (see e.g., Filippov [1988]). These kinds of systems re-
quire special numerical treatment during simulation which will be apparent
below.

There are obvious differences in the treatment of systems with state jumps
(e.g., due to impacts in mechanical systems) and discontinuous vector fields
(e.g., due to switches in electronics). In the present paper we will focus on
the latter type, usually referred to as Filippov systems (see Filippov [1988],
Leine and Nijmeijer [2004]). The most important feature of Filippov systems is
the possibility of motions constrained to some subset of the state space. Such
constrained motion is often referred to as sliding [di Bernardo et al. 1999,
2002] (or sticking in the context of friction systems [Galvanetto and Bishop
2000; Galvanetto 2001]).

A first step towards understanding dynamics of piecewise smooth systems
is often to perform direct numerical simulation (DNS), where it is of great im-
portance that the time and location of any nonsmooth events are resolved as
accurately as possible, for example, in a nonsmooth system solver [Gear and
Østerby 1984]. This idea can be compared with another idea for simulating
nonsmooth systems, which is to recast the nonsmoothness in terms of a comple-
mentarity system formulation [Brogliato 2003]. Then one can use time stepping
methods accompanied with linear complementarity problem (LCP) solvers to
simulate the systems without the need for accurate event detection. That is,
the solver can only note that one or more events have occurred during a time
step without finding the actual event time and location (see further Moreau
[1999], Jean [1999]). Such methods have proven to be effective in simulating
mechanical systems with a large number of constraints. However, they suffer
from the disadvantage that they are typically only low-order algorithms and
nonsmooth events can be lost. The focus of this work is to accurately detect
the interaction of smooth and nonsmooth dynamics. Therefore we require high
order algorithms to solve the smooth vector fields, a way of stabilising the slid-
ing flow, and an accurate event detection algorithm. Such a simulator can then
be used to compute Poincaré maps and to continue limit-cycles and their slid-
ing bifurcations under parameter changes in general Filippov systems, as fixed
points of these maps. Up to now, most analysis of Filippov systems has been
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(semi-)analytic, and usually limited to small systems [di Bernardo et al. 2002].
However, a numerical tool that has successfully been implemented to analyse
Filippov systems is SLIDECONT [Dercole and Kuznetsov 2005]. It is based on
the widely used numerical package AUTO [Doedel et al. 1997] that can continue
solutions to nonlinear boundary-value problems via orthogonal collocation. To
some extent, SLIDECONT has the ability to continue equilibria, limit cycles, and
their sliding bifurcations, but to date it still lacks the capability to perform DNS
of Filippov systems and automatically switch between sliding and nonsliding
motions. In this paper an algorithm for simulation of Filippov systems will be
presented that precisely fills this gap; that is, it solves for the sliding flow di-
rectly and automatically switches between free and constrained motion. Since
only smooth systems are to be solved numerically, well known methods together
with appropriate error estimates can be applied between the switches.

The rest of the article is organized as follows. In Section 2 we introduce and
define Filippov systems and explain what characterises them. A description
of the numerical algorithm for simulating these Filippov systems is presented
in Section 3. Three examples, a dry-friction oscillator, a relay feedback system
and a drill-string model, are presented in Section 4, along with instructions for
users who want to use the downloadable programs. The actual MATLAB files used
for simulation of Filippov systems are presented and explained in Appendix A,
including instructions for potential users. Finally, in Section 5 we summarise
this paper with some concluding remarks regarding the proposed algorithm,
for example, we mention situations where the algorithm might possibly face
some problems. We also discuss future work on methods to locate and continue
limit cycles and sliding bifurcations of Filippov systems.

2. FILIPPOV SYSTEMS

As mentioned in Section 1 we will consider dynamical systems defined by dis-
continuous vector fields, so called Filippov systems. What characterises such a
system is the division of the state space into disjoint subregions, such that in
each such region the defining vector field is smooth. The boundaries between
the different regions will be referred to as discontinuity surfaces. In this sec-
tion only a brief introduction to Filippov systems will be given, and for a more
thorough exposition of this topic see Filippov [1988], di Bernardo et al. [2002],
Kuznetsov et al. [2003], Leine and Nijmeijer [2004].

A general dynamical system can be written as

ẋ = f (x), x ∈ Rn, (1)

where the vector field f (x) can be either smooth or piecewise smooth. Let us first
assume that the state space consists of only two regions, Si and Sj , separated
by a discontinuity surface �ij, which is defined by a smooth scalar function hij(x)
such that

�ij = {x ∈ Rn | hij(x) = 0}, (2)

and where

Si = {x ∈ Rn | hij(x) > 0} and Sj = {x ∈ Rn | hij(x) < 0}. (3)
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Fig. 1. The vector fields Fi and F j near a stable sliding region �̂ij (left) and some corresponding
trajectories (right).

Hence, (1) can be rewritten as

ẋ =
{

Fi(x), x ∈ Si,
F j (x), x ∈ Sj ,

(4)

where Fi and F j are sufficiently smooth. In the rest of this article it is also
assumed that Fi and F j are defined in the whole state space, even if they are
only used in their respective regions.

If the vector fields Fi and F j are locally both pointing away from or both
pointing towards the discontinuity surface �ij the dynamics is assumed to be
locally constrained to the surface, as depicted in the left part of Figure 1, and
the motion is said to be sliding. The open subset �̂ij of the surface �ij where the
vector fields are both pointing towards or away from �ij is often referred to as
the sliding surface. In Figure 1 the sliding surface �̂ij ⊂ �ij is a line segment
between two points, �̂−

ij and �̂+
ij .

For notational reasons, it is useful here to define the Lie derivative LF (h)(x)
of a smooth function h(x) along a smooth vector field F (x) as

LF (h)(x) := d
dt

h(ξ (t))
∣∣∣∣
t=0

= dh(x)
dx

dξ (t)
dt

∣∣∣∣
t=0

=
〈
dh(x)

dx
, F (x)

〉
, (5)

where ξ (t) a solution to ξ̇ = F (ξ ) that satisfies ξ (0) = x (see, e.g., Arnol’d [1973]).
Thus, if it holds that

LFi−F j (hij)(x) < 0, x ∈ �̂ij, (6)

then �̂ij is stable, while if

LFi−F j (hij)(x) > 0, x ∈ �̂ij, (7)

the sliding surface is unstable.
Using Utkin’s equivalent control [Utkin 1992] the dynamical system (4) can

be extended to include the vector field on the sliding surface such that

ẋ = Fij(x), x ∈ �̂ij, (8)

where

Fij(x) = Fi(x) + F j (x)
2

+ F j (x) − Fi(x)
2

μij(x), (9)
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and −1 ≤ μij(x) ≤ 1. Since the motion is constrained to �̂ij, Fij must be tangent
to �̂ij, i.e., LFij (hij)(x) = 0, which yields

μij(x) = −LFi+F j (hij)(x)
LF j −Fi (hij)(x)

. (10)

It is notable that Fij = Fi and Fij = F j when μij(x) = −1 and μij(x) = 1,
respectively, and also LF j −Fi (hij)(x) �= 0 for x ∈ �̂ij since the vector fields always
point toward or away from the discontinuity surface. The surfaces defining the
borders of the sliding surface are thus given by

�̂−
ij = {x ∈ �̂ij | μij(x) = −1} and �̂+

ij = {x ∈ �̂ij | μij(x) = 1}. (11)

These borders are composed of so called tangent points [Kuznetsov et al. 2003]
and will be referred to as tangent surfaces (cf. the points �̂−

ij and �̂−
ij in Figure 1).

We next define solutions of the Filippov system (4) by concatenating standard
solutions in Si and Sj and (maximal) sliding solutions in �̂ij (see the right part
of Figure 1). To assure the uniqueness of such a solution, it is sufficient to
assume that it does not visit points of �ij, where both vectors Fi and F j are
tangent to �ij. In what follows, we call such solutions and their corresponding
orbits generic.

Finally, let us discuss briefly a relationship between the above described
construction and the commonly used Filippov’s convex method [Filippov 1988]
(see further Section 3.2). The original Filippov approach consists of replacing
(4) by the differential inclusion

ẋ ∈

⎧⎪⎨
⎪⎩

{Fi(x)}, x ∈ Si,
co(Fi(x), F j (x)), x ∈ �ij,
{F j (x)}, x ∈ Sj ,

(12)

where co(Fi, F j ) is the minimal closed convex set containing Fi and F j ; that is,

co(Fi, F j ) = { f ∈ Rn : f = Fi + λ(F j − Fi), λ ∈ [0, 1]}.
A solution to this differential inclusion is an absolutely continuous function
x(t) that satisfies (12) for almost all t from its domain of definition. Under
assumed smoothness of Fij and hij, Theorem 2 by Filippov [1988] (Chapter 2,
pp. 110–111) implies forward uniqueness of those solutions to (12), which do
not visit unstable sliding surfaces, and those points of �ij where both vectors
Fi and F j are tangent to �ij. Moreover, this unique solution coincides with the
one constructed above. It should be noted that in Filippov’s approach solutions
starting at unstable sliding surfaces are not unique, while they generically
have this property in our formulation, where they are constrained to �̂ij. This
difference is not important in most applications, since solutions starting away
from the unstable sliding surface can never reach it.

3. THE EVENT-DRIVEN SIMULATION METHOD

Under some circumstances (e.g., if small linear systems are considered) it is
certainly possible to find explicit expressions for the solutions of the ODE that
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describes sliding if the vector fields in the non-sliding regions are given. How-
ever, the idea here is to present a numerical algorithm where the user only
provides the different vector fields and information about the discontinuity
surfaces and then the vector fields for the sliding regions are automatically
computed by a routine which uses Equations (2), (8)–(10). The method that has
been chosen here to simulate Filippov systems is similar to the hybrid system
approach, where integrations of smooth ODEs are mixed with discrete maps
and vector field switches. In practice, it means that an initial value problem is
solved for one of the possible smooth dynamical systems given in Equation (1)
until the orbit reaches one of the predefined surfaces. At such a point the vector
field is possibly switched, depending on the state at that time instance (see
further Section 3.1.1).

Because of our choice of strategy to integrate Filippov systems, it is very
important to have a reliable ODE solver that is accompanied by an accurate
routine to locate discontinuity and tangent surface crossings (see Section 2).
In what follows a surface crossing will be called an event and a scalar function
defining an event surface is referred to as the event function. The existence of
event detection routines will be here assumed. For instance in MATLAB event
detection routines are built-in and can easily be used together with the likewise
built-in ODE solvers to integrate orbits and to locate events along them as
precisely as the accuracy of MATLAB allows (for more details of the MATLAB ODE
routines, see Shampine and Reichelt [1997], Ashino et al. [2000]). However,
standard methods, for example, secant type methods, can easily be implemented
and have proven to be fast and reliable. The type of events to be detected also
play an important role in how to numerically deal with them and how sensitive
the event detection needs to be.

In Section 3.1 we will focus on the basic ideas behind the simulation algo-
rithm for one discontinuity surface and also give a schematic description on
how the algorithm works. However, in Section 3.2 we give a short explanation
on how to extend this method with further surfaces, and in Section 4.3 a system
with two discontinuity surfaces will be presented and numerically examined.

3.1 Algorithm for a Single Discontinuity Surface

We can write the full dynamical system with one discontinuity surface �ij as

ẋ =
⎧⎨
⎩

Fi(x), x ∈ Si,
F̂ij(x), x ∈ �̂ij,
F j (x), x ∈ Sj ,

(13)

where the sliding vector field Fij(x) is given by (9). In addition, since the dynam-
ics is constrained to �̂ij during sliding, we substitute Fij(x) by its regularization
F̂ij(x) in order to avoid drift away from �̂ij. How this is done is discussed and
explained further in appendix B.

As mentioned in Section 2 the state space for a Filippov system with one
discontinuity surface is locally divided into three disjoint regions, namely, Si,
Sj , and �ij. Further, as seen in Figure 2, the state space can also be divided
into two regions, M̂ij and Mij, by the two extended tangent surfaces �−

ij and �+
ij ,
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Fig. 2. The different regions that the state space is divided into in a neighbourhood of the sliding
surface �̂ij.

which are defined by

�−
ij = {x ∈ Rn | μij(x) = −1} = {x ∈ Rn | LFi (hij) = 0}, (14)

�+
ij = {x ∈ Rn | μij(x) = 1} = {x ∈ Rn | LF j (hij) = 0}, (15)

where μij is defined as in Equation (10). For later reference, by using (14) and
(15) the two regions M̂ij and Mij are defined as

M̂ij = {x ∈ Rn | |μij(x)| < 1} and Mij = {x ∈ Rn | |μij(x)| ≥ 1}. (16)

Notice the similarity with the tangent surfaces defined in Equation (11). Also,
since it is assumed that Fi and F j are defined in the whole state space, μij is
defined everywhere except for points where both Fi and F j are tangent to the
surface hij(x) = const. Recall that a subset of such points have been excluded
from generic orbits in Section 2.

This division into disjoint subregions makes it relatively straightforward to
implement in a numerical algorithm and reduces the number of checks that
have to be made every time the discontinuity surface �ij is crossed. Also,
since we are always looking for the surfaces given by LFi (hij)(x) = 0 and
LF j (hij)(x) = 0 it makes the algorithm more robust for the location of events
for orbits that hit the discontinuity surface almost tangentially.

3.1.1 Event Location, Event Functions, and Event Variables. When simu-
lating Filippov systems using an event-driven scheme it is important to locate
events, for example, discontinuity surface or a tangent surface crossing, as ac-
curately as possible (within a given tolerance). Therefore, to make an automatic
algorithm robust, specific events need to be predefined as region-dependent. If
it is assumed that a system has a total of m possible events in each region then
an event list e(x, t) can be defined as

e(x, t) = (e1(x, t), . . . , em(x, t)), (17)

where each element ek(x, t) ∈ R is an event function that defines an event
surface that can be reached by the state vector or the time.
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Here we define the event functions as

e1(x, t) := hij(x), e2(x, t) := LFi (hij)(x), e3(x, t) := LF j (hij)(x),

(cf. Equations (2), (14), and (15)).
In order for the solver to know what vector field to use and what events to

look for, a number of event variables will be introduced. Thus, to keep track of
which of the regions Si, Sj , and �̂ij the state variable x(t) is in we introduce the
event variables s1, s2, and s3, respectively. Further, to keep track of if the state
variable is in Mij or M̂ij we introduce the event variables s4 and s5, respectively.
Letting sij = (s1, s2, s3, s4, s5)T and using the same state space division as in
Figure 2 we can give the event variables the following values

s1(x) =
{

1, x ∈ Si,
−1, x /∈ Si,

s2(x) =
{

1, x ∈ Sj ,
−1, x /∈ Sj ,

(18)

s3(x) =
{

1, x ∈ �̂ij,
−1, x /∈ �̂ij,

(19)

s4(x) =
{

1, x ∈ Mij,
−1, x /∈ Mij,

s5(x) =
{

1, x ∈ M̂ij,
−1, x /∈ M̂ij.

(20)

Depending on in what region x(t) is in and to what region it continues the
event parameters are changed at that event accordingly. For instance, assume
x ∈ Si ∪ M̂ij before it crosses the discontinuity surface �ij then we will have

sij = (1, −1, −1, −1, 1)

before the crossing and

sij = (−1, −1, 1, −1, 1)

after. This means that the orbit is sliding along �̂ij after the surface crossing
and this information is passed to the solver so that the correct vector field is
used in the solving process.

Following this discussion, each of our original event functions ek can be seen
as one of two different kinds, namely e+

k (x, t) and e−
k (x, t), where the former

corresponds to one in which the surface crossings are only detected when ek is
increasing and the latter when ek is decreasing.

In Table I we have listed what surface to look for in each region, the list of
event variables in each region, and also from which direction a zero crossing
of an event function is to be looked for. A dash in the table means that there
is no need to look for this zero crossing since this event cannot happen unless
another event has occurred first.

3.1.2 User-Defined Event Functions. Often dynamical systems are trans-
formed from nonautonomous to autonomous form by extending the state vari-
ables by adding the (scaled) time as a new variable. Typically, if a system is
periodic, for instance due to a periodic forcing, with period T it might be of
interest to locate the end of the period, where time could for instance be reset
to zero, see, for example, Section 4.1. Also, a specific time is often used as a
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Table I. Event Variables and Functions

x ∈ sij = e1 e2 e3

Si ∪ Mij (1, −1, −1, 1, −1) e−
1 = 0 e±

2 = 0 e±
3 = 0

Si ∪ M̂ij (1, −1, −1, −1, 1) e−
1 = 0 e±

2 = 0 e∓
3 = 0

S j ∪ Mij (−1, 1, −1, 1, −1) e+
1 = 0 e±

2 = 0 e±
3 = 0

S j ∪ M̂ij (−1, 1, −1, −1, 1) e+
1 = 0 e±

2 = 0 e∓
3 = 0

�̂ij (−1, −1, 1, −1, 1) − e±
2 = 0 e∓

3 = 0

Poincaré section when analysing recurrent dynamics. For instance, if we as-
sume xk is the state variable of the (scaled) time and tP is the time that is of
interest, we can then introduce a surface �P defined by the function hP (x) = 0,
where hP (x) = xk − tP . Then it is only necessary to look for �P for increasing
values of hP (x). Notice that it is possible to introduce any other event function
of the user’s preference, for example to define other Poincaré surfaces.

3.1.3 The Algorithm. In the flow chart in Figure 3 we present an overview
of the algorithm for simulating Filippov systems with one discontinuity surface.
A description of what the program does in the different boxes is explained in
Algorithm 1. Notice that this overview assumes that an event location routine
is built in together with the ODE solver.

Algorithm I. A description of the numbered boxes in the flow chart in Figure 3 is given
here.

1. Initialize the program with solver type, solver properties, names of user-created
files, parameter values, initial conditions and simulation time.

2. Find the initial event variables si for i = 1, . . . , 5.
3. Solve the current ODE until an event occurs or if the final simulation time has been

reached. Use vector field Fi if s1 = 1, F j if s2 = 1 and F̂ij if s3 = 1.
4. Check if the current time is equal to the final time.
5. Check in which region the state is in by using the event variables si .
6. –8. Check which event that occurred.
9. Set s1 = −s1 and s2 = −s2 since we are moving from region Si ∪ Mij to Sj ∪ Mij (or

Sj ∪ Mij to Si ∪ Mij), and then continue to A. (See Figure 2.)
10. Set s4 = −s4 and s5 = −s5 since we are moving from region Si ∪ Mij to Si ∪ M̂ij (or

Sj ∪ Mij to Sj ∪ M̂ij), and continue to A. (See Figure 2.)
11. Set s1 = −1, s2 = −1 and s3 = −s3 since we are moving from region Si ∪ M̂ij to �̂ij

(or Sj ∪ M̂ij to �̂ij), and continue to A. (See Figure 2.)
12. Set s4 = −s4 and s5 = −s5 since we are moving from region Si ∪ M̂ij to Si ∪ Mij (or

Sj ∪ M̂ij to Sj ∪ Mij), and continue to A. (See Figure 2.)
13. Set s1 = −s1, s3 = −s3, s4 = −s4 and s5 = −s5 since we are moving from region �̂ij to

Si ∪ Mij, and continue to A. (See Figure 2.)
14. Set s2 = −s2, s3 = −s3, s4 = −s4 and s5 = −s5 since we are moving from region �̂ij to

Sj ∪ Mij, and continue to A. (See Figure 2.)
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START 1. 2. 3.

4.

5.

6. 7. 8.

9. 10. 11. 12. 13. 14.

A

A STOP
YES

NO

s4 = 1, s3 = −1 s5 = 1, s3 = −1 s3 = 1

e1 = 0
e2 = 0 or
e3 = 0 e1 = 0

e2 = 0 or
e3 = 0 e2 = 0 e3 = 0

Fig. 3. A schematic flow chart of the algorithm for simulation of Filippov systems with one dis-
continuity surface. A description of the numbered boxes is given in Algorithm 1.

3.2 A Number of Discontinuity Surfaces

In the previous discussion we have considered only one discontinuity surface.
However, it is straightforward to extend the methods to an arbitrary number
of surfaces. The only thing one has to do is to ensure uniqueness of orbits con-
strained to the discontinuity surfaces. This is done by only considering a special
class of Filippov systems where the vector fields in the different regions of state
space are linearly dependent, as we shall see. To simulate orbits along the var-
ious discontinuity surfaces we will here use Filippov’s convex method instead
of Utkin’s equivalence method (as was the case in Section 2) to show how that
approach can be implemented but also since it is slightly more straightforward.
Notice also that the notation in this section therefore differs somewhat from
the one-surface case.

Assume we have a general dynamical system (1) and M discontinuity sur-
faces �i defined by M functions hi(x) = 0. These surfaces divide the state
space into a number of disjoint sets, where the vector fields are different. As
mentioned above we have specific rules on what the vector fields can be to guar-
antee uniqueness of orbits constrained to the discontinuity surfaces. The idea
we propose here is to introduce a base vector field that is valid when hi(x) > 0
for all i and for each surface crossing we make an addition �i to the base vec-
tor field that is used after the surface crossing. Using this idea and Filippov’s
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convex method, the vector field for the whole domain, including the sliding
regions, can be written as

F (x) = F orig(x) +
M∑

i=1

�i(x)μi(x), (21)

where

μi(x) =
⎧⎨
⎩

1, hi(x) < 0,
[0, 1] hi(x) = 0,

0, hi(x) > 0.

(22)

For each surface we have thus defined a function μi(x), in a similar way to the
single surface case, that determines the active vector field (cf. Equations (9)
and (12)).

In the same way as described earlier in Section 3.1.1 the program has to keep
track of whether surfaces have been crossed or not, so that the correct values
of the μis are used, and thus the correct vector field is integrated. The only
difference from the one-surface case is that each discontinuity surface requires
its own set of event variables and event functions.

Since sliding can occur along more than one discontinuity surface simulta-
neously, the values of the corresponding μi ∈ [0, 1] have to be determined. This
can be done by using the same approach as in the one-surface case. To give an
example, and without lack of generality, assume that the orbit will slide along
the surfaces �i and � j . Then we know that hi(x) = 0 and h j (x) = 0, respec-
tively, and we want LF (hi)(x) = 0 and LF (h j )(x) = 0 to hold. By using these
conditions, eqs. (21) and (22) we get that(

μi(x)
μ j (x)

)
= −

(
L�i hi(x) L� j hi(x)
L�i h j (x) L� j h j (x)

)−1 (
LF̃ (hi)(x)
LF̃ (h j )(x)

)
, (23)

where

F̃ (x) = Forig(x) +
M∑

k=1, k �=i, j

�k(x)μk(x). (24)

Furthermore, a similar regularization of the sliding vector field as discussed
in Appendix B (see especially Equation (50)) is possible by introducing M con-
stants Ci, where each such constant has a positive value if the systems is sliding
along the ith surface and is zero otherwise.

The main disadvantage with this approach is that the number of surfaces
and event locations grow quickly with the number of discontinuity surfaces
which naturally increases the simulation time. However, this approach for two
surfaces has been implemented in the drill-string example in Section 4.3.

4. EXAMPLES

In this section we will present some results obtained by using the implemented
programs described in this paper, and presented in Appendix A, to simulate
three different systems. These systems have been chosen to highlight the vari-
ety of Filippov systems and different dynamical behaviour that the simulation
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tool can handle. The first system is a nonlinear dry-friction oscillator with
one discontinuity surface that has a rich dynamics and characteristic stick-
slip motion. The second system is a linear relay feedback system with one
discontinuity surface that exhibits chaotic behaviour. The third example is a
nonlinear drill-string system with two discontinuity surfaces. For these ex-
amples we will give all necessary information so that the MATLAB simulation
routines in Appendix A can be used. In all examples the ODE-solver ode45
(4th-order Runge-Kutta) has been used with MATLAB’s built-in event detec-
tion routines. Also, all files used in these examples can be downloaded from
http://www.maths-physics.nuigalway.ie/users/Piiroinen/Filippov/.

4.1 A Dry-Friction Oscillator

Stick-slip motion is a well-known, but not fully understood, behaviour in many
mechanical systems with friction. The most simple examples showing this kind
of behaviour are dry-friction oscillators. Therefore they have drawn a lot of
attention and been widely studied. Here we will focus on an undamped dry-
friction oscillator with one degree of freedom given by

ÿ + y = sin(ωt) − F sgn( ẏ), (25)

where ω is the forcing frequency and F is the magnitude of the Coloumb friction
force. This system has been described by Feigin [1994] and extensively analysed
by Kowalczyk [2003] and Kowalczyk and Piiroinen [2006].

To be able to use the proposed strategy for integrating (25) we will consider
the equivalent autonomous first order system

ẋ =
⎛
⎝ ẋ1

ẋ2
ẋ3

⎞
⎠ =

⎛
⎝ x2

−x1 + sin(x3) − F sgn(x2)
ω

⎞
⎠ , (26)

where x = (x1, x2, x3)T = ( y , ẏ , ωt mod 2π )T . This implies that the disconti-
nuity surface �12 is defined as

�12 = {x ∈ R3 | H12(x) = 0},
which divides the state space into two disjoint regions

S1 = {x ∈ R3 | H12(x) > 0}, S2 = {x ∈ R3 | H12(x) < 0},
where

H12(x) = x2.

Now it is easy to rewrite (26) as

ẋ =
{

F1(x), x ∈ S1
F2(x), x ∈ S2, (27)

where

F1 =
⎛
⎝ x2

−x1 + sin(x3) − F
ω

⎞
⎠ , F2 =

⎛
⎝ x2

−x1 + sin(x3) + F
ω

⎞
⎠ .
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Fig. 4. Bifurcation diagram and time histories for the dry-friction oscillator. (a) A brute-force
bifurcation diagram for recurrent motions, where x2 is plotted against 1/ω at the Poincaré section
x3 = 2π . The parameter values at the indicated points I, II, and III, are (F = 0.4, ω = 0.5),
(F = 0.4, ω = 3) and (F = 0.4, ω = 6), respectively. The panels (b), (c) and (d) show the limit cycles
corresponding respectively to the points I, II, and III.

The first approach to analyse the dynamics of a system of this kind is often to
make a parameter sweep and create a brute-force bifurcation diagram, which
could reveal stable attractors for the given parameter ranges. In Figure 4(a)
a brute-force bifurcation diagram of the system (27) is depicted, where the
parameter F was kept fixed at 0.4 and the frequency ω varied. For each value of
the frequency the system was integrated for 500 forcing periods (corresponding
to an integration time 500×2π/ω); for the final 100 periods the variable x2 was
recorded and plotted every time the orbit reached the Poincaré section defined
by the function

hP (x) = x3 − 2π.

It is clear from Figure 4(a) that we have a large effect at ω = 1 due to resonance,
as expected. Further we see that there are drastic changes in the bifurcation di-
agram at 1/ω ≈ 1.8 and 1/ω ≈ 4.8. To understand how the dynamics differ from
one parameter range to the next the limit cycles corresponding to the frequen-
cies at the Roman numerals I, II, and III in Figure 4(a) were located and are
shown in Figure 4(b), (c), and (d), respectively. In Figure 4(b), where 1/ω = 0.5,
we see a limit cycle without any sliding segments, but as we increase 1/ω to 3
(point II in Figure 4(a)) we clearly see in Figure 4(c) that the limit cycle has two
segments of sliding motion. Finally, as we increase 1/ω further to 6 (point III
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in Figure 4(a)) the limit cycle includes an even greater number of sliding seg-
ments, as seen in Figure 4(d). These results indicate that at least two nonsmooth
transitions (or sliding bifurcations [Kuznetsov et al. 2003], [di Bernardo et al.
2002]) have occurred along the parameter sweep. The proposed simulation al-
gorithm can now be extended to accurately detect where these transitions occur.
In fact, in Kowalczyk and Piiroinen [2006] the transitions points of this partic-
ular system are accurately detected and the sliding bifurcations are continued
under parameter variations, and a two-parameter bifurcation diagram (in F
and ω) is presented to show how the sliding bifurcations organise the global
dynamics.

This particular example shows that the proposed algorithm can be used not
only for direct numerical simulations of systems with sliding motion but also
as a building block for continuation algorithms that follow branches of sliding
bifurcations. The results have helped us to understand what happens to the
dynamics in mechanical systems with sliding segments (also referred to as
stick-slip motion).

4.2 A Relay Feedback System

Relay feedback is one of the most commonly used control techniques in practical
applications, such as temperature control and mechanical and electromechani-
cal systems. A single-input single-output relay feedback system can be written
as

ẋ = Ax + Bu, (28)
y = Cx, (29)
u = −sgn( y), (30)

or

ẋ =
{

Ax − B, Cx > 0
Ax + B, Cx < 0 (31)

where x ∈ Rn is the state vector, and A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are constant
matrices. Here we will take a closer look at a particular system analysed by di
Bernardo et al. [2001], where

A =
⎛
⎝ −(2ζω + 1) 1 0

−(2ζω + ω2) 0 1
−ω2 0 0

⎞
⎠ , B =

⎛
⎝ 1

−2σ

1

⎞
⎠ and C =

⎛
⎝ 1

0
0

⎞
⎠ , (32)

and where x = (x1, x2, x3)T is the state vector and k ∈ R is the control parameter.
From this we can also conclude that the discontinuity surface �12 is defined
by

�12 = {x ∈ R3 | H12(x) = 0}, (33)

and the two disjoint regions are thus given by

S1 = {x ∈ R3 | H12(x) > 0} and S2 = {x ∈ R3 | H12(x) < 0}, (34)
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Fig. 5. State-space and time-history diagrams for the relay feedback system. (a) A state space
diagram and (b) a time-history diagram of the state variable x1 showing the eventual stable periodic
motion, for ζ = 0.05 and ω = 25.

where

H12(x) = x1. (35)

To be able to use our method we write the dynamical system (31) as

ẋ =
{

F1(x), x ∈ S1,
F2(x), x ∈ S2, (36)

where the two vector fields are

F1(x) =
⎛
⎝ −(2ζω + 1)x1 + x2 − 1

−(2ζω + ω2)x1 + x3 + 2
−ω2x1 + x2 − 1

⎞
⎠ , F2(x) =

⎛
⎝ −(2ζω + 1)x1 + x2 + 1

−(2ζω + ω2)x1 + x3 − 2
−ω2x1 + x2 + 1

⎞
⎠ .

(37)

In Figure 5(a) we see the dynamics, and eventually the limit cycle, for a par-
ticular parameter combination (ζ = 0.05, ω = 25) showing both unconstrained
and sliding motions. The initial condition is on the sliding surface, as seen in
Figure 5. This does not represent a problem for the simulator. Note also the
large number of events that take place per period including 18 separate depar-
tures from the sliding surface.

A brute force bifurcation diagram, where ζ = −0.07 was held fixed and σ

varied, is shown in Figure 6(a). There we see a period-adding sequence where
high periodic motion or chaos is observed between periodic windows, and where
each period include many intervals of sliding motion. Similar period-adding
behaviour can also be seen in impacting systems and piecewise linear maps. In
Figure 6(b) chaotic motion is depicted for ζ = −0.07 and σ = 10 to highlight
the great complexity of the motion.

Here we have shown that the simulation method can be used to analyse sys-
tems with a high number of sliding segments per period by calculating bifurca-
tion diagrams. Together with a continuation code, as discussed in Section 4.1,
a bifurcation diagram constitutes a powerful tool to analyse linear Filippov
system that arise in many electronic systems.
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Fig. 6. State-space and time-history diagrams for the relay feedback system. (a) A bifurcation
diagram showing x1 versus ω for ζ = −0.07, where the Poincaré surface is given by LF1 (H)(x) = 0.
(b) A state space diagram for ζ = −0.07, ω = 10), where the initial condition is taken to be on the
sliding surface.

4.3 A Drill-String System

A simple model of the motion of a drill-string consists of two discs separated by
a string with a brake connected to the lower disc. The upper disc represents a
rotary table to which a drive motor is connected via a gear box and the string.
The lower disc represents the drill-string with the bottom-hole-assembly at the
drill-rig and the additional brake implements the friction forces between the
drill bit and the bore hole. Such a drill-string system is described by Mihajlovic
et al. [2006] and modeled by

Juθ̈u + kθ (θu − θl ) + Tfu (θu) = kmu, (38)
Jl θ̈l − kθ (θu − θl ) + Tfl (θl ) = 0, (39)

where θu (θl ), Ju (Jl ) and Tf u (Tf l ) are respectively the angle, the moment of
inertia and friction torque of the upper (lower) disc. Furthermore, kθ is the
torsional stiffness of the drill string, u is the input voltage and km is a motor
constant. Making the assumption used by Mihajlovic et al. [2006] on the friction
laws at the upper and lower discs, we have

Tfu(θ̇u) =
{

T+
fu = Tsup + bupθ̇u, θ̇u > 0

T−
fu = −Tsun + bunθ̇u, θ̇u < 0 (40)

and

Tfl(θ̇l ) =

⎧⎪⎪⎨
⎪⎪⎩

T+
fl = Tsl + T1

(
1 + 2

1 + eβ1 θ̇l

)
+ T2

(
1 + 2

1 + eβ2 θ̇l

)
, θ̇l > 0,

T−
fl = −Tsl − T1

(
1 + 2

1 + e−β1 θ̇l

)
− T2

(
1 + 2

1 + e−β2 θ̇l

)
, θ̇l < 0,

(41)

where bup, bun, Tsup, Tsun, Tsl , T1, T2, β1 and β2 are all constants. By letting

x = (x1, x2, x3)T = (θu − θl , θ̇u, θ̇l )T
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the drill-string system ((38)–(39)) can be written as

ẋ =

⎛
⎜⎜⎜⎝

x2 − x3
km

Ju
u − kθ

Ju
x1 − 1

Ju
Tf u(x2)

kθ x1 − 1
Jl

Tf l (x3)

⎞
⎟⎟⎟⎠ . (42)

From Equations (40) and (41), we can determine that there are two discontinu-
ity surfaces �1 and �2 defined by

�1 = {x ∈ R3 | H1(x) = 0}, �2 = {x ∈ R3 | H2(x) = 0}, (43)

where

H1(x) = x2 and H2(x) = x3. (44)

Notice that we are using the methodology and notation introduced in
Section 3.2. Now it is straightforward to write (42) in our preferred format:

ẋ = F1(x) + �1(x)μ1(x) + �2(x)μ2(x), (45)

where

F1(x) =

⎛
⎜⎜⎜⎝

x1 − x2
km

Ju
u − kθ

Ju
x1 − T+

f u(x2)

kθ

Jl
x1 − T+

f l (x3)

⎞
⎟⎟⎟⎠ , (46)

�1(x) =
⎛
⎝ 0

T+
f u(x2) − T−

f u(x2)
0

⎞
⎠ and �2(x) =

⎛
⎝ 0

0
T+

f l (x2) − T−
f l (x2)

⎞
⎠ . (47)

Here it is important to point out that the four possible vector fields are linearly
dependent, so that we have a uniquely defined sliding vector field in the inter-
section between discontinuity surfaces. Since this system has two discontinuity
surfaces, due to the Coloumb friction models at the upper and lower discs, it
it possible for the discontinuity surfaces to cross, which practically means that
the upper and lower disc can get stuck at the same time. However, for the ex-
ample examined here limit cycles with sliding along one surface (�2) only has
been found. In Figure 7 we show four limit cycles I, II, III, and IV corresponding
to output voltages u = 1, u = 3, u = 3 and u = 5, respectively. The limit cycle
I does not have any sliding segments but as the voltage is increased to 2 the
limit cycle has undergone a grazing-sliding bifurcation and both the periodic
solutions II and III clearly have a sliding segment. As the voltage is increased
further the limit cycle changes its character via a switching-sliding bifurca-
tion. As seen in Figure 7(b) the limit cycle has an extra discontinuity surface
crossing, but the number of sliding segments remains the same.

This is a good example where numerical experiments show how dynamics
change under parameter variations, thus giving an impulse for further analyt-
ical and numerical investigation.
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Fig. 7. State-space diagrams for the drill-string system. (a) A projection of the state diagram
showing x3 against x1 for four limit cycles ‘I’, ‘II’, ‘III’ and ‘IV’ corresponding to u = 1, u = 2,
u = 3 and u = 5, respectively. (b) A close up of panel (a) to show the transformation from the
non-sliding limit cycle to sliding limit cycles via two sliding bifurcations. The rest of the system
parameters are km = 3.5693, kθ = 0.078, Ju = 0.4765, Jl = 0.0326, Tsup = 0.3216, Tsun = 0.3026,
bup = bun = 1.9667, Tsl = 0.0940, T1 = 0.0826, T2 = −0.2910, β1 = 6.3598 and β2 = 0.0786

5. CONCLUSIONS AND OUTLOOK

The introduced methods give a simple way to automatically simulate generic
orbits of Filippov systems using a hybrid system approach, and where the user
only has to introduce information about the vector fields and discontinuity
surfaces. Although many research groups have developed simulation environ-
ments for specific nonsmooth problems, the authors are unaware of a general
Filippov system solver, such as the one proposed here. Therefore we hope that
this software, and the ideas upon which it is built, will be used by both applied
mathematicians and engineers for such simulations, and hopefully make the
whole community think of these problems in a more general setting.

The obvious strength of the proposed simulation code is that it is relatively
simple to use, as long as the user has some knowledge of MATLAB. One problem
with the hybrid system approach though is that the combinatoric complexity
of the code grows quickly as the number of discontinuity surfaces is increased.
Also, we choose MATLAB since it is relatively simple to test ideas, implement code
and use the final product. The downside is of course that MATLAB is much slower
than an equivalent program written in, for instance, C, C++ or FORTRAN. So
if the code is to be used for larger-scale problems, for example, with many dis-
continuity surfaces, such an implementation is preferable. Also, for even more
efficient calculations it would be useful to have a script that initially generates
a code for the user-specific problem, in terms of the state space dimension and
the number of discontinuity surfaces.

As with any hybrid method a potentially dangerous phenomenon is chatter
or Zeno phenomenon [Budd and Dux 1994], that is, the appearance of infinitely
many switches in a finite time interval. The way to deal with this is to include an
additional local map to step over the tail of the chatter sequence. Another possi-
ble problem can occur for a point on the discontinuity surface, where two vectors
fields are tangent to the discontinuity surface and the sliding vector field is not
defined, see (10). In generic planar Filippov systems without parameters, these

ACM Transactions on Mathematical Software, Vol. 34, No. 3, Article 13, Publication date: May 2008.



An Event-Driven Method to Simulate Filippov Systems • 13:19

singular sliding points do not appear. However, they appear in generic one-
parameter families of planar Filippov systems as collisions of tangent points
(see Kuznetsov et al. [2003]), as well as in generic n-dimensional parameter-
independent Filippov systems with n ≥ 3 and their families as intersections of
the tangent surfaces (see, e.g., Filippov [1988](Chapter 5)). Therefore, it is also
necessary to describe the behaviour of the proposed method near such singu-
larities. In planar Filippov systems, singular sliding points nonisolated in the
sliding surface are not harmful, since the sliding vector field can be extended
by continuity to these points (if we neglect infinitely wdegenerate cases, see
[Kuznetsov et al. 2003]). Note that isolated singular sliding points are usu-
ally considered as equilibria. Numerical experiments show that our method,
indeed, steps over non-isolated singular points correctly. In multidimensional
Filippov systems, the situation is more involved and requires additional the-
oretical analysis. However, preliminary numerical experiments demonstrate
robust behaviour of the code also in these cases.

As mentioned earlier, the algorithm can also be used as a building block
for a continuation algorithm that follow both periodic orbits in one parame-
ter and codimension-one bifurcations in two parameters, using Poincaré maps
(i.e., shooting). Such an implementation will be discussed in future works
[Kowalczyk and Piiroinen 2006]. We also hope to develop an interactive general
simulation and continuation environment that supports both discontinuous
vector fields and state jumps, so that the user specifies a surface as continuous,
Filippov, or impacting.

APPENDIXES

A. HOW TO USE THE CODE

The method described in the present paper in the case of a single discontinuity
surface has been implemented in MATLAB. Here we will give some details on how
to use the programs. Templates for the files can be found in Piiroinen [2007].
There one can also find the files used for the examples in Section 4, including
the drill-string example with two discontinuity surfaces.

The program consists of three files,

run_oscillator.m
filippov.m
vectorfields.m

and possibly the optional files

pfunction.m
jacobians.m

The file run_oscillator.m is the main program in which integration time, pa-
rameters, initial conditions, names of the vector field, Jacobian matrix, and
Poincaré function files, the name of the ODE solver and its properties (e.g., error
tolerances) are introduced by the user. Notice that as with any Matlab simula-
tion one should use the solver that fits the problem best, for example, ode15s for
stiff problems, and the error tolerances should also be changed depending on the
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amount of accuracy that is expected. This run_oscillator.m file also calls the
file filippov.m, which takes care of the event handling and also calls the MATLAB

built-in ODE solver and event detector. In the vector field file vectorfields.m,
which is used by filippov.m, the user adds the different vector fields, the func-
tion defining the discontinuity surface, the normal to the discontinuity surface,
and possibly the function defining a Poincaré surface. In pfunction.m the user
defines the action to be taken at the Poincaré surface. Finally, to make location
of near-grazing trajectories within the sliding surface more robust the Jaco-
bian matrices corresponding to the different vector fields can be added in the
file jacobians.m. In many cases this is not necessary, but if one expects to have
adding-sliding bifurcations this is a good idea.

It has to be noted that no particular effort has been made to optimize the
code at this stage. The main reason is to make it as transparent as possible so
that users can make suitable changes themselves.

Let us now show explicitly what to write in the different files specified by the
user. The system we will use in this exposition is the same dry-friction oscillator
as described in Section 4.1, where a more thorough introduction to this system
is presented. Let the dynamical system be given by

ẋ =
{

F1(x), x2 > 0,
F2(x), x2 < 0, (48)

where x = (x1, x2, x3)T ,

F1(x) =
⎛
⎝ x2

−x1 + sin(x3) − F
ω

⎞
⎠ , F2(x) =

⎛
⎝ x2

−x1 + sin(x3) + F
ω

⎞
⎠ , (49)

and F and ω are constants. The user needs to adjust the different files as
follows.

run oscillator.m

The following has to be given by the user:

ODE-solver
solver = ’ode45’; (The choice of MATLAB ODE solver.)

MATLAB’s ODE-solver properties
opts = odeset(’RelTol’,1e-6,’AbsTol’,1e-6,’MaxStep’,0.1);

Name of the vector field file
vfields = ’vectorfields’;

Name of the Jacobians file
vfields = ’jacobians’;

Name of the Poincaré function file
pfunction = ’pfunction’;

Filippov parameter (See appendix B)
C = 1;

Parameter list
F = 0.4; omega = 1/3; params = [F,omega];
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Initial conditions
y0 = [1,2,0];

Integration time
T = 2*pi/omega*10; tspan = [0,T]; (10 periods of the periodic forcing.)

The output that will be given by filippov.m is a list of the time t, and the
corresponding values of the states y, the times te at the events, the state vector
ye at the events, an index list ie of the events, and the event variables se at
the events (cf. the event handling in MATLAB).

vectorfields.m

In this file the user has to specify the following:

Parameters
F = params(1); omega = params(2);

The two vector fields
F1 = [y(2);-y(1)+sin(y(3))-F;omega]; (H > 0)
F2 = [y(2);-y(1)+sin(y(3))+F;omega]; (H < 0)

The function defining the discontinuity surface
H = y(2);

The gradient of H
dH = [0,1,0];

The Poincaré surface
h = y(3)-2*pi; (The system is 2π -periodic in x3.)

Location direction for the Poincaré section
hdir = 1;

jacobians.m

In this file the user has to specify the following:

Parameters
(No parameters needed)

The two Jacobians
J1 = [0,1,0; -1,0,cos(y(3)); 0,0,0]; (H > 0)
J2 = J1; (H < 0)

The second derivative of H
d2H = zeros(3,3);

pfunction.m

In this file the user has to specify the following:

Parameters
(No parameters needed)

Action at Poincaré section
y1 = [y(1),y(2),0]; (Reset of the scaled time.)
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Sj

Si

Σij

Fig. 8. The sliding vector fields Fij (left) and F̂ij (right) in a neighbourhood of the discontinuity
surface �ij.

B. REGULARIZING THE SLIDING VECTOR FIELD

Since a numerically constructed sliding solution might not follow the disconti-
nuity surface exactly, we have to consider the vector field Fij not only for x ∈ �̂ij
but in a neighbourhood of �̂ij. Under the above introduced genericity condi-
tions, Equations (9) and (10) can be used to define the vector field Fij in such
a neighbourhood, if we formally allow |μij(x)| to be greater than 1. Note that
orbits of the extended vector field Fij pass through the boundary of the siding
surface �̂ij, i.e., the tangent surfaces �̂±

ij . This property, that is illustrated in
Figure 8 (left), is essential for the event detection and location described in the
next section. However, this extended vector field has a family of invariant sur-
faces hij = const, one of which is �ij given by hij = 0. Therefore, for a numerical
solution of the sliding equation, there is the (unwanted) possibility of drifting
away from the discontinuity surface, to one of the other invariant surfaces.
This occurs due to accumulation of numerical errors combined with the neutral
stability of the surface �̂ij for ẋ = Fij(x) (see the left panel of Figure 8). One
way to avoid such a drift is to make the sliding surface �̂ij attracting as long
as the motion governed by the sliding vector field (9) is constrained to it. This
can be done by introducing a new sliding vector field F̂ij by adding a small term
to the original vector field Fij that makes the sliding surface locally attractive
(see the right panel of Figure 8). For example, this vector field can be defined
as

F̂ij(x) = Fij(x) − Chij(x)
(

dhij

dx
(x)

)T

, (50)

where C is a positive constant. It is clear that �̂ij is locally attracting since the
new term is orthogonal to �̂ij and points towards the surface. Furthermore, for
x ∈ �̂ij, we have

Chij(x)
(

dhij

dx
(x)

)T

= 0,

which is exactly what we want since the extra term does not interfere with the
sliding vector field as long as the solution stays on �ij. It is always possible to
choose C > 0 such that the motion in the normal direction will be faster than
sliding along the discontinuity surface. However, one should avoid choosing C
too big because in this case the ODE system ẋ = F̂ij(x) becomes stiff. Simi-
lar techniques to make constraint surfaces attractive are used in numerical
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integration of differential-algebraic equations (DAEs) (see, e.g., [Ascher and
Petzold 1998]).

When |μij(x)| > 1 for x ∈ �ij, then the motion will not be locally constrained
to �ij, and we note that Fij = F̂ij = Fi if μij = −1 and Fij = F̂ij = F j if μij = −1.
Therefore, to compute a solution passing through a point where |μij(x)| > 1, we
must switch to Fi if μij(x) < −1 and F j if μij(x) > 1.
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