Lecture 1

Continuation problems. Numerical continuation of equilibria and limit cycles of ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

May 5, 2009

Contents

- 1. Equilibria of autonomous ODEs.
- 2. Algebraic continuation problems.
- 3. Moore-Penrose numerical continuation.
- 4. Limit cycles of autonomous ODEs.
- 5. Boundary-value continuation problems.
- 6. Discretization via orthogonal collocation.

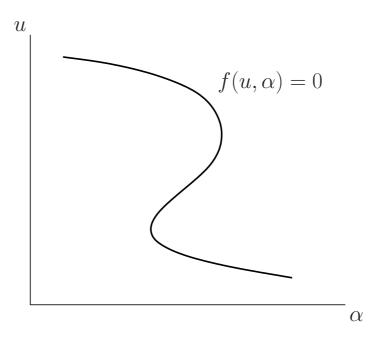
1. Equilibria of autonomous ODEs

• Consider a system of autonomous ODEs depending on one parameter:

$$\dot{u} = f(u, \alpha), \qquad u \in \mathbb{R}^n, \alpha \in \mathbb{R},$$

where $f : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ is smooth.

• Equilibrium manifold:



• Let $u_0 \in \mathbb{R}^n$ be an equilibrium at parameter value α_0 and $A_0 = f_u(u_0, \alpha_0)$.

If $\Re(\lambda) < 0$ for each eigenvalue λ of A_0 , u_0 is stable. If $\Re(\lambda) > 0$ for at least one eigenvalue λ of A_0 , u_0 is unstable.

2. Algebraic continuation problems

• Def. 1 ALCP: Find a curve $M \subset \mathbb{R}^{N+1}$, implicitly defined by a smooth function F

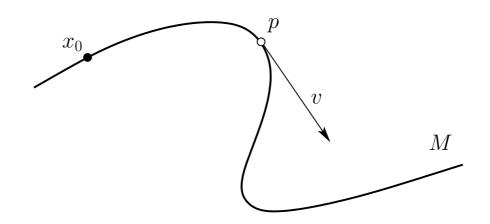
$$F(x) = 0, \quad F : \mathbb{R}^{N+1} \to \mathbb{R}^N,$$

starting from a point $x_0 \in M$.

Finding an equilibrium manifold is an example of ALCP with N = n,

$$x = (u, \alpha) \equiv \begin{pmatrix} u \\ \alpha \end{pmatrix} \in \mathbb{R}^{n+1}, \quad F(x) = f(u, \alpha).$$

• Def. 2 A point $p \in M$ is called regular for ALCP if rank $F_x(p) = N$.



 Near any regular point p, the ALCP defines a solution curve M that passes through p and is locally unique and smooth. • If $p \in M$ is a regular point, then the linear equation

$$Jv = 0, \quad J = F_x(p),$$

has a unique (modulus scaling) solution $v \in \mathbb{R}^{N+1}$.

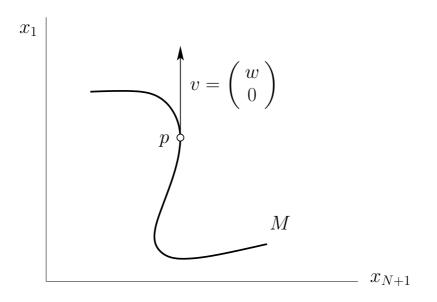
• Lemma 1 A tangent vector v to M at p satisfies

$$Jv = 0.$$

Indeed, let x = x(s) be a smooth parametrization of M, such that x(0) = p and $\dot{x}(0) = v$. The differentiation of F(x(s)) = 0 yields at s = 0:

$$\left. \frac{d}{ds} F(x(s)) \right|_{s=0} = F_x(x(0))\dot{x}(0) = Jv = 0$$

 Def. 3 A regular point p ∈ M is a limit point for ALCP with respect to a coordinate x_j if v_j = 0.



If p is a limit point w.r.t. x_{N+1} , then the $N \times N$ matrix

$$A = \left(\frac{\partial F_i(p)}{\partial x_j}\right)_{i,j=1,\dots,N}$$

has eigenvalue $\lambda = 0$. Indeed, let x = x(s) be a smooth parametrization of M, such that x(0) = p and $\dot{x}(0) = v$ with

$$v = \begin{pmatrix} w \\ 0 \end{pmatrix} \neq 0, \quad w \in \mathbb{R}^N.$$

Then

$$Jv = Aw + \frac{\partial F(p)}{\partial x_N}v_{N+1} = Aw = 0.$$

6

• Def. 4 A point $p \in M$ is called a branching point for ALCP if rank $F_x(p) < N$.

Let p = 0 be a branching point. Write

$$F(x) = Jx + \frac{1}{2}B(x, x) + O(||x||^3),$$

where $J = F_x(p)$. Introduce the null-spaces

$$\mathcal{N}(J) = \{ v \in \mathbb{R}^{N+1} : Jv = 0 \}$$

and

$$\mathcal{N}(J^{\mathsf{T}}) = \{ w \in \mathbb{R}^N : J^{\mathsf{T}}w = 0 \}.$$

Assume that

dim $\mathcal{N}(J) = 2$ and dim $\mathcal{N}(J^{\top}) = 1$. Let q_1 and q_2 span $\mathcal{N}(J)$ and φ span $\mathcal{N}(J^{\top})$. Then

 $v = \beta_1 q_1 + \beta_2 q_2, \quad w = \alpha \varphi,$ where $(\beta_1, \beta_2) \in \mathbb{R}^2, \alpha \in \mathbb{R}.$

- Suppose we have a solution curve x = x(s) passing through the branching point p = 0:
 x(0) = 0, x(0) = v.
- By differentiating F(x(s)) = 0 twice with respect to s at s = 0, taking the scalar product with φ, and using J^Tφ = 0, one proves:

Lemma 2 Any tangent vector $v \in \mathbb{R}^{N+1}$ to M at p = 0 satisfies the equation

$$\langle \varphi, B(v, v) \rangle = 0.$$

• Substituting here $v = \beta_1 q_1 + \beta_2 q_2$, we obtain the Algebraic Branching Equation:

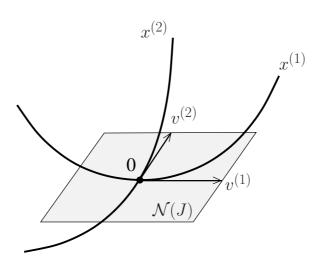
$$b_{11}\beta_1^2 + 2b_{12}\beta_1\beta_2 + b_{22}\beta_2^2 = 0,$$

where $b_{ij} = \langle \varphi, B(q_i, q_j) \rangle, \ i, j = 1, 2.$

Def. 5 A branching point, for which

(a) dim N(J) = 2 and dim N(J^T) = 1;
(b) b²₁₂ − b₁₁b₂₂ > 0,

is called a simple branching point.



• Suppose that one solution curve $x = x^{(1)}(s)$ passing through a simple branch point p = 0is known and $v^{(1)} = \dot{x}^{(1)}(0) = q_1$, so that

$$\beta_1^{(1)} = 1, \ \beta_2^{(1)} = 0.$$

Thus, $b_{11} = 0$ and $v^{(2)} = \beta_1^{(2)}q_1 + \beta_2^{(2)}q_2$ tangent to the second solution curve $x = x^{(2)}(s)$ satisfies

$$2b_{12}\beta_1^{(2)} + b_{22}\beta_2^{(2)} = 0$$

or

$$\beta_1^{(2)} = -\frac{b_{22}}{2b_{12}}\beta_2^{(2)}.$$

Lemma 3 Consider the $(N+1) \times (N+1)$ -matrix

$$D(s) = \begin{pmatrix} F_x(x^{(1)}(s)) \\ \left[\dot{x}^{(1)}(s) \right]^{\mathsf{T}} \end{pmatrix}.$$

Its determinant $\psi(s) = \det D(s)$ has a regular zero at the simple branching point.

Indeed, let $q_2 \in \mathcal{N}(J)$ be a vector orthogonal to $q_1 = v^{(1)}$. Then

$$D(0)q_2=0,$$

so D(0) is singular and has eigenvalue $\lambda(0) = 0$.

Moreover, one can show that this eigenvalue is simple and its smooth continuation $\lambda = \lambda(s)$ for D(s) satisfies

$$\dot{\lambda}(0) = \frac{\langle \varphi, B(q_1, q_2) \rangle}{\langle p, q_2 \rangle} = \frac{b_{12}}{\langle p, q_2 \rangle} \neq 0,$$

where $D^{\mathsf{T}}(0)p = 0$ with $p = \begin{pmatrix} \varphi \\ 0 \end{pmatrix}$.

Thus $\dot{\psi}(0) \neq 0$.

3. Moore-Penrose numerical continuation

• Numerical solution of the ALCP means computing a **sequence of points**

$$x^{(1)}, x^{(2)}, x^{(3)}, \dots$$

approximating the curve M with desired accuracy, given an **initial point** $x^{(0)}$ that is sufficiently close to x_0 .

• Predictor-corrector method:

- Tangent prediction: $X^0 = x^{(i)} + h_i v^{(i)}$.

Newton-Moore-Penrose corrections towards
 M:

$$(X^k, V^k), \ k = 1, 2, 3, \dots$$

- Adaptive step-size control.

- Def. 6 Let J be an $N \times (N+1)$ matrix with rank J = N. Its Moore-Penrose inverse is $J^+ = J^{\top} (JJ^{\top})^{-1}$.
- To compute J^+b efficiently, set up the system for $x \in \mathbb{R}^{N+1}$:

$$\begin{cases} Jx = b, \\ v^{\mathsf{T}}x = 0, \end{cases}$$

where $b \in \mathbb{R}^N$ and $v \in \mathbb{R}^{N+1}$, Jv = 0, ||v|| = 1. Then $x = J^+b$ is a solution to this system, since

$$JJ^+b = b, v^\top J^+b = (Jv)^\top [(JJ^\top)^{-1}b] = 0.$$

• Let $x^{(i)} \in \mathbb{R}^{N+1}$ be a regular point on the curve

$$F(x) = 0, f : \mathbb{R}^{N+1} \to \mathbb{R}^N,$$

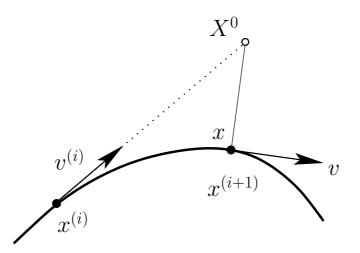
and $v^{(i)} \in \mathbb{R}^{N+1}$ be the tangent vector to this curve at $x^{(i)}$ such that

$$F_x(x^{(i)})v^{(i)} = 0, ||v^{(i)}|| = 1.$$

For the next point $x^{(i+1)} \in \mathbb{R}^N$ on the curve, solve the optimization problem

$$\min_{x} \{ \|x - X^{0}\| \mid F(x) = 0 \},\$$

i.e. look for a point $x \in M$ which is nearest to X^0 :



This is equivalent to solving the system

$$\begin{cases} F(x) = 0, \\ v^{\mathsf{T}}(x - X^0) = 0, \end{cases}$$

where $v \in \mathbb{R}^N$ satisfies $F_x(x)v = 0$ with ||v|| = 1and X^0 is the prediction. The linearization of the system about X^0 is

$$\begin{cases} F(X^{0}) + F_{x}(X^{0})(X - X^{0}) = 0, \\ (V^{0})^{\mathsf{T}}(X - X^{0}) = 0, \end{cases}$$

or

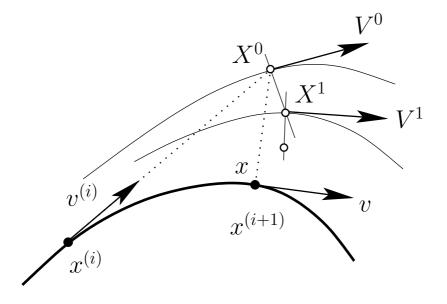
$$\begin{cases} F_x(X^0)(X - X^0) = -F(X^0), \\ (V^0)^{\mathsf{T}}(X - X^0) = 0, \end{cases}$$

where $F_x(X^0)V^0 = 0$ with $||V^0|| = 1$. Thus

$$X = X^{0} - F_{x}^{+}(X^{0})F(X^{0})$$

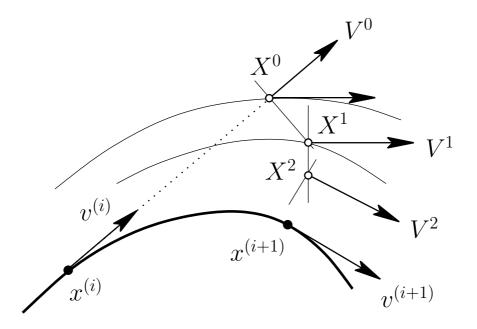
leading to the Moore-Penrose corrections:

$$X^{k+1} = X^k - F_x^+(X^k)F(X^k), \ k = 0, 1, 2, \dots,$$



where $V^k \in \mathbb{R}^{N+1}$ such that $F_x(X^k)V^k = 0$ with $||V^k|| = 1$ should be used to compute $F_x^+(X^k)$.

Approximate V^k : $F_x(X^{k-1})V^k = 0$.



Implementation: Iterate for k = 0, 1, 2, ...

$$J = F_x(X^k), \quad B = \begin{pmatrix} J \\ V^k \\ V^k \end{pmatrix},$$
$$R = \begin{pmatrix} JV^k \\ 0 \end{pmatrix}, \quad Q = \begin{pmatrix} F(X^k) \\ 0 \end{pmatrix},$$
$$W = V^k - B^{-1}R, \quad V^{k+1} = \frac{W}{\|W\|}$$
$$X^{k+1} = X^k - B^{-1}Q.$$

If $||F(X^k)|| < \varepsilon_0$ and $||X^{k+1} - X^k|| < \varepsilon_1$ then $x^{(i+1)} = X^{k+1}, \quad v^{(i+1)} = V^{k+1}.$

4. Limit cycles of autonomous ODEs

• Assume, the ODE system

$$\dot{u} = f(u, \alpha), \quad u \in \mathbb{R}^n, \ \alpha \in \mathbb{R},$$

has at α_0 an isolated periodic orbit (**limit** cycle) L_0 . Let $u_0(t+T_0) = u_0(t)$ denote the corresponding periodic solution with minimal period T_0

• Introduce the matrix

$$A(t) = f_u(u_0(t), \alpha_0), \quad A(t+T_0) = A(t),$$

and consider a matrix M(t) which satisfies

$$\dot{M} = A(t)M, \quad M(0) = I_n,$$

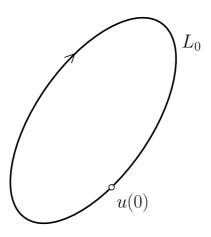
where I_n is the identity $n \times n$ matrix.

Def. 7 The eigenvalues $\mu_1, \mu_2, \ldots, \mu_n = 1$ of the monodromy matrix $M(T_0)$ are called the multipliers.

If $|\mu| < 1$ for each multiplier of $M(T_0)$ except $\mu_n = 1$, L_0 is stable. If $|\mu| > 1$ for at least one multiplier of $M(T_0)$,

 L_0 is unstable.

• Let L_0 be a cycle of period T_0 at α_0 and $u_0(t)$ its corresponding solution.



• Consider a **periodic boundary-value prob**lem on [0, 1]:

$$\begin{cases} \dot{w} - T_0 f(w, \alpha) = 0, \\ w(0) - w(1) = 0. \end{cases}$$

Clearly, $w(\tau) = u_0(T_0\tau + \sigma_0)$, $\alpha = \alpha_0$ is a solution to this BVP for any phase shift σ_0 .

Let v(τ) be a smooth period-1 function. To fix σ₀, impose the integral phase condition:

$$\Psi[w] = \int_0^1 \langle w(\tau), \dot{v}(\tau) \rangle d\tau = 0$$

Lemma 4 The condition

$$\int_0^1 \langle w(\tau), \dot{v}(\tau) \rangle d\tau = 0$$

is a necessary condition for the L_2 -distance

$$\rho(\sigma) = \int_0^1 \|w(\tau + \sigma) - v(\tau)\|^2 d\tau$$

between 1-periodic smooth functions w and v to achieve a local minimum with respect to possible shifts σ at $\sigma = 0$.

Since
$$||w||^2 = \langle w, w \rangle$$
,

$$\frac{1}{2}\dot{\rho}(0) = \int_0^1 \langle w(\tau + \sigma) - v(\tau), \dot{w}(\tau + \sigma) \rangle d\tau \Big|_{\sigma=0}$$

$$= \int_0^1 \langle w(\tau) - v(\tau), \dot{w}(\tau) \rangle d\tau$$

$$= \int_0^1 \langle w(\tau), \dot{w}(\tau) \rangle d\tau - \int_0^1 \langle v(\tau), \dot{w}(\tau) \rangle d\tau$$

$$= \frac{1}{2} \int_0^1 d||w(\tau)||^2 - \int_0^1 \langle v(\tau), \dot{w}(\tau) \rangle d\tau$$

$$= \int_0^1 \langle w(\tau), \dot{v}(\tau) \rangle d\tau .$$

5. Boundary-value continuation problems

 Def. 8 BVCP: Find a branch of solutions (u(τ), β) to the following boundary-value problem with integral constraints

$$\begin{cases} \dot{u}(\tau) - H(u(\tau), \beta) = 0, \quad \tau \in [0, 1], \\ B(u(0), u(1), \beta) = 0, \\ \int_0^1 C(u(\tau), \beta) \, d\tau = 0, \end{cases}$$

starting from a given solution $(u_0(\tau), \beta_0)$. Here $u \in \mathbb{R}^{n_u}, \beta \in \mathbb{R}^{n_\beta}$ and

 $H: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\beta} \to \mathbb{R}^{n_u}, \\B: \mathbb{R}^{n_u} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_\beta} \to \mathbb{R}^{n_b}, \\C: \mathbb{R}^{n_u} \times \mathbb{R}^{n_\beta} \to \mathbb{R}^{n_c}$

are smooth functions.

• The BVCP is (formally) well posed if

$$n_{\beta} = n_b + n_c - n_u + 1.$$

6. Discretization via orthogonal collocation

- Mesh points: $0 = \tau_0 < \tau_1 < \ldots < \tau_N = 1$.
- Basis points:

$$\tau_{i,j} = \tau_i + \frac{j}{m}(\tau_{i+1} - \tau_i),$$

where $i = 0, 1, \dots, N - 1, \ j = 0, 1, \dots, m.$

• Approximation:

$$u^{(i)}(\tau) = \sum_{j=0}^{m} u^{i,j} l_{i,j}(\tau), \quad \tau \in [\tau_i, \tau_{i+1}],$$

where $l_{i,j}(\tau)$ are the Lagrange basis polynomials

$$l_{i,j}(\tau) = \prod_{k=0,k\neq j}^{m} \frac{\tau - \tau_{i,k}}{\tau_{i,j} - \tau_{i,k}}$$

and $u^{i,m} = u^{i+1,0}$.

• Orthogonal collocation:

$$F: \begin{cases} \left(\sum_{j=0}^{m} u^{i,j} l'_{i,j}(\zeta_{i,k})\right) - H\left(\sum_{j=0}^{m} u^{i,j} l_{i,j}(\zeta_{i,k}),\beta\right) = 0, \\ B(u^{0,0}, u^{N-1,m},\beta) = 0, \\ \sum_{i=0}^{N-1} \sum_{j=0}^{m} \omega_{i,j} C(u^{i,j},\beta) = 0, \end{cases} \end{cases}$$

where $\zeta_{i,k}$, k = 1, 2, ..., m, are the **Gauss points** (roots of the Legendre polynomials relative to the interval $[\tau_i, \tau_{i+1}]$), and $\omega_{i,j}$ are the **Lagrange quadrature coefficients**.

• Approximation error: Introduce

$$h = \max_{i=1,2,...,N} |\tau_i - \tau_{i-1}|$$

- in the basis points:

$$||u(\tau_{i,j}) - u^{i,j}|| = O(h^m)$$

- in the mesh points:

$$||u(\tau_i) - u^{i,0}|| = O(h^{2m})$$

• BVCP for the **limit cycle branch** with $\alpha \in \mathbb{R}$:

$$\begin{cases} \dot{w}(\tau) - Tf(w(\tau), \alpha) = 0, \ \tau \in [0, 1], \\ w(0) - w(1) = 0, \\ \int_0^1 \langle w(\tau), \dot{v}(\tau) \rangle \ d\tau = 0. \end{cases}$$

• Corresponding HUGE ALCP:

 $F(x) = 0, \quad x = (\{w^{j,k}\}, T, \alpha) \in \mathbb{R}^{mnN+n+2}$ where $j = 0, 1, \dots, N-1, \ k = 0, 1, \dots, m$.

• The linearization of BVCP with respect to (w, T, α) :

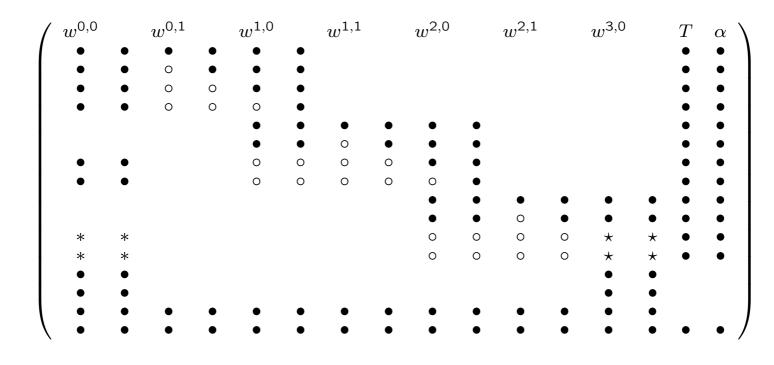
$$\left[egin{array}{cccc} D-Tf_w(w,lpha) & -f(w,lpha) & -Tf_lpha(w,lpha) \ \delta_0-\delta_1 & 0 & 0 \ & ext{Int}_{\dot v} & 0 & 0 \end{array}
ight]$$

produces a sparse Jacobian matrix F_x :

($w^{0,0}$		$w^{0,1}$		$w^{1,0}$		$w^{1,1}$		$w^{2,0}$		$w^{2,1}$		w ^{3,0}		T	α
	•	•	•	•	•	•									•	
	•	•	•	•	•	•									•	•
	•	•	•	•	•	•	•	•	•	•					•	
					•	•	•	•	•	•					•	•
					•	•	•	•	•	•					•	•
									•	•	•	•	•	•	•	•
									•	•	•	•	•	•	•	•
	_	_							•	•	•	•	•	•	٠	•
	•	•											•	•		
	٠	•	•	•	•	•	٠	•	•	•	•	•	٠	•)

Computation of the multipliers

• After Gauss elimination:



• Let P_0 be the matrix block marked by *'s and P_1 the matrix block marked by *'s. We have $w^{0,0} = w(0), w^{N,0} = w(1)$ implying

 $P_0w(0) + P_1w(1) = P_0u(0) + P_1u(T) = 0$, so that $M = -P_1^{-1}P_0$ is the numerical approximation of the monodromy matrix M(T)and its eigenvalues are the numerical approximations of the cycle multipliers.