Lecture 2

Equilibrium bifurcations of ODEs and their numerical analysis

Yu.A. Kuznetsov (Utrecht University, NL)

May 7, 2009

Contents

- Equilibria of ODEs and their simplest (codim
 bifurcations
- Detection of fold (LP) and Andronov-Hopf
 (H) bifurcations
- 3. Continuation of LP and H bifurcations
- 4. Computation of normal forms for LP and H bifurcations
- 5. Detection of codim 2 bifurcations

1. Equilibria of ODEs and their simplest (codim 1) bifurcations

• Consider a smooth ODE system

$$\dot{u} = f(u, \alpha), \quad u \in \mathbb{R}^n, \alpha \in \mathbb{R}^m$$

• An equilibrium u_0 satisfies

$$f(u_0,\alpha_0)=0$$

and its Jacobian matrix $A = f_u(u_0, \alpha_0)$ has eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$.

• Critical cases:

- Fold (LP): $\lambda_1 = 0;$

- Andronov-Hopf (H): $\lambda_{1,2} = \pm i\omega_0$, $\omega_0 > 0$.

• Generic LP bifurcation: $\lambda_1 = 0$

Collision of two equilibria.

• Generic H bifurcation: $\lambda_{1,2} = \pm i\omega_0$

Birth of a limit cycle.

2. Detection of LP and H bifurcations

• Monitor eigenvalues of $A(u, \alpha) = f_u(u, \alpha)$ along the **equilibrium curve**

$$f(u, \alpha) = 0, \qquad u \in \mathbb{R}^n, \ \alpha \in \mathbb{R}.$$

- Test function for LP: $\psi_{LP} = V_{n+1}$, the α component of the normalized tangent vector
 to the equilibrium curve in the (u, α) -space.
- Test function for H:

$$\psi_H = \det(2A(u,\alpha) \odot I_n),$$

where \odot denotes the **bialternate matrix prod**uct with elements

$$(A \odot B)_{(i,j),(k,l)} = \frac{1}{2} \left\{ \begin{vmatrix} a_{ik} & a_{il} \\ b_{jk} & b_{jl} \end{vmatrix} + \begin{vmatrix} b_{ik} & b_{il} \\ a_{jk} & a_{jl} \end{vmatrix} \right\},$$

where $i > j, \ k > l.$

Wedge product of vectors

- Two index pairs (i, j), (k, l) are listed in the lexicographic order if either i < k or (i = k and j < l).
- The wedge product of two vectors $v, w \in \mathbb{C}^n$ is a vector $v \wedge w \in \mathbb{C}^m$, $m = \frac{n(n-1)}{2}$, with the components:

$$(v \wedge w)_{(i,j)} = v_i w_j - v_j w_i, \quad n \ge i > j \ge 1,$$

listed in the lexicographic order of their index pairs.

• For any $v, w, w^{1,2} \in \mathbb{C}^n$, $\lambda \in \mathbb{C}$: $v \wedge w = -w \wedge v$ and

 $v \wedge (\lambda w) = \lambda(v \wedge w), v \wedge (w^1 + w^2) = v \wedge w^1 + v \wedge w^2.$

• If $e^i \in \mathbb{C}^n$, $n \ge i \ge 1$, form a basis in \mathbb{C}^n , then $e^i \wedge e^j \in \mathbb{C}^m$, $n \ge i > j \ge 1$, form a basis in \mathbb{C}^m .

Bialternate matrix product

• The matrix of the linear transformation of \mathbb{C}^m defined by

$$(v \wedge w) \mapsto (A \odot B)(v \wedge w) = \frac{1}{2}(Av \wedge Bw - Aw \wedge Bv)$$

in the standard basis $\{e^i \wedge e^j\}$ is called the **bialternate product** of two matrices $A, B \in \mathbb{C}^{n \times n}$.

- Stéphanos Theorem If $A \in \mathbb{C}^{n \times n}$ has eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$, then
 - (*i*) $A \odot A$ has eigenvalues $\lambda_i \lambda_j$,
 - (*ii*) $2A \odot I_n$ has eigenvalues $\lambda_i + \lambda_j$,

where $n \ge i > j \ge 1$.

Indeed, if $\{v^i\}$ are linearly-independent eigenvectors of A, then $v^i \wedge v^j$ is an eigenvector of both $A \odot A$ and $2A \odot I_n$.

• For two nonsingular matrices A and B:

$$(AB) \odot (AB) = (A \odot A)(B \odot B),$$

$$(A \odot A)^{-1} = A^{-1} \odot A^{-1}.$$

3. Continuation of LP and Hopf bifurcations

- 3.1. Bordering technique
- 3.2. Continuation of LP bifurcation
- 3.3. Continuation of Hopf bifurcation

3.1. Bordering technique

Let $M \in \mathbb{R}^{n \times n}$, $v_j, b_j, c_j \in \mathbb{R}^n$, $g_{ij}, d_{ij} \in \mathbb{R}$

• Suppose the following system has invertible matrix:

$$\left(\begin{array}{cc} M & b_1 \\ c_1^\mathsf{T} & d_{11} \end{array}\right) \left(\begin{array}{c} v_1 \\ g_{11} \end{array}\right) = \left(\begin{array}{c} 0 \\ 1 \end{array}\right).$$

Then *M* has rank defect 1 if and only if $g_{11} =$ 0. Indeed, by Cramer's rule

$$g_{11} = \frac{\det M}{\det \begin{pmatrix} M & b_1 \\ c_1^{\mathsf{T}} & d_{11} \end{pmatrix}}.$$

Suppose the following system has invertible matrix:

$$\begin{pmatrix} M & b_1 & b_2 \\ c_1^{\mathsf{T}} & d_{11} & d_{12} \\ c_2^{\mathsf{T}} & d_{21} & d_{22} \end{pmatrix} \begin{pmatrix} v_1 & v_2 \\ g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Then M has rank defect 2 if and only if

$$g_{11} = g_{12} = g_{21} = g_{22} = 0.$$

3.2. Continuation of LP bifurcation

- At a generic LP bifurcation $A(u, \alpha) = f_u(u, \alpha)$ has rank defect 1.
- Defining system: $x = (u, \alpha) \in \mathbb{R}^{n+2}$

$$\begin{cases} f(u,\alpha) = 0, \\ G(u,\alpha) = 0, \end{cases}$$

where G is computed by solving the *bordered* system

$$\begin{pmatrix} A(u,\alpha) & p_1 \\ q_1^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} q \\ G \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Vectors $q_1, p_1 \in \mathbb{R}^n$ are adapted along the LP-curve to make the matrix of the linear system nonsingular.
- (G_u, G_α) can be computed efficiently using the adjoint linear system.

Derivatives of G

The $\alpha\text{-derivative}$ of the bordered system

$$\begin{pmatrix} A(u,\alpha) & p_1 \\ q_1^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} q_\alpha \\ G_\alpha \end{pmatrix} + \begin{pmatrix} A_\alpha(u,\alpha) & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} q \\ G \end{pmatrix}$$
$$= \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

implies

$$\begin{pmatrix} A(u,\alpha) & w_1 \\ q_1^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} q_\alpha \\ G_\alpha \end{pmatrix} = -\begin{pmatrix} A_\alpha(u,\alpha) & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} q \\ G \end{pmatrix}$$

Multiplication from the left by $(p^{\top} h)$ satisfying

$$\begin{pmatrix} A^{\mathsf{T}}(u,\alpha) & q_1 \\ p_1^{\mathsf{T}} & 0 \end{pmatrix} \begin{pmatrix} p \\ h \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

gives

$$G_{\alpha} = -p^{\mathsf{T}} A_{\alpha}(u, \alpha) q = -\langle p, A_{\alpha}(u, \alpha) q \rangle.$$

3.3. Continuation of Hopf bifurcation

- At a generic Hopf bifurcation $A^2(u, \alpha) + \omega_0^2 I_n$ has rank defect 2.
- Defining system: $x = (u, \alpha, \kappa) \in \mathbb{R}^{n+3}$

$$\begin{cases} f(u,\alpha) = 0, \\ G_{11}(u,\alpha,\kappa) = 0, \\ G_{22}(u,\alpha,\kappa) = 0, \end{cases}$$

where $\kappa = \omega_0^2$ and G_{ij} are computed by solving

$$\begin{pmatrix} A^{2}(u,\alpha) + \kappa I_{n} & p_{1} & p_{2} \\ q_{1}^{\mathsf{T}} & 0 & 0 \\ q_{2}^{\mathsf{T}} & 0 & 0 \end{pmatrix} \begin{pmatrix} r & s \\ G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- Vectors $q_{1,2}, p_{1,2} \in \mathbb{R}^n$ are adapted to ensure unique solvability.
- Efficient computation of derivatives of G_{ij} is possible.

Remarks on continuation of bifurcations

- For each defining system holds: Simplicity of the bifurcation + Transversality ⇒ Regularity of the defining system.
- Border adaptation using solutions of the adjoint linear system.
- Alternatives to bordering for LP:

$$\begin{cases} f(u,\alpha) = 0, \\ f_u(u,\alpha)q = 0, \\ \langle q,q_0 \rangle - 1 = 0 \end{cases} \text{ or } \begin{cases} f(u,\alpha) = 0, \\ \det(f_u(u,\alpha)) = 0. \end{cases}$$

• Alternatives to bordering for H:

$$\begin{cases} f(u,\alpha) = 0, \\ f_u(u,\alpha)q + \omega p = 0, \\ f_u(u,\alpha)p - \omega q = 0, \\ f_u(u,\alpha)p - \omega q = 0, \\ \langle q, q_0 \rangle + \langle p, p_0 \rangle - 1 = 0, \\ \langle q, p_0 \rangle - \langle q_0, p \rangle = 0 \end{cases}$$

or

$$\begin{cases} f(u,\alpha) = 0, \\ \det(2f_u(u,\alpha) \odot I_n) = 0. \end{cases}$$

4. Computation of normal forms for LP and Hopf bifurcations

- 4.1. Normal forms on center manifolds
- 4.2. Fredholm's Alternative
- 4.3. Critical LP-coefficient
- 4.4. Critical H-coefficient
- 4.5. Approximation of multilinear forms by finite differences

4.1. Normal forms on center manifolds

• LP: $\dot{\xi} = \beta + b\xi^2$, $b \neq 0$

Equilibria: $\beta + b\xi^2 = 0 \Rightarrow \xi_{1,2} = \pm \sqrt{-\frac{\beta}{b}}$ • H: $\dot{\xi} = (\beta + i\omega)\xi + c\xi|\xi|^2$, $l_1 = \frac{1}{\omega}\Re(c) \neq 0$

Limit cycle:

$$\begin{cases} \dot{\rho} = \rho(\beta + \Re(c)\rho^2), \\ \dot{\varphi} = \omega + \Im(c)\rho^2, \end{cases} \Rightarrow \rho_0 = \sqrt{-\frac{\beta}{\Re(c)}} \\ 15 \end{cases}$$

4.2. Fredholm's Alternative

• Lemma 1 The linear system Ax = b with $b \in \mathbb{R}^n$ and a singular $n \times n$ real matrix A is solvable if and only if $\langle p, b \rangle = 0$ for all p satisfying $A^{\top}p = 0$.

Indeed, $\mathbb{R}^n = L \oplus R$ with $L \perp R$, where

$$L = \mathcal{N}(A^{\mathsf{T}}) = \{ p \in \mathbb{R}^n : A^T p = 0 \}$$

and

 $R = \{ x \in \mathbb{R}^n : x = Ay \text{ for some } y \in \mathbb{R}^n \}.$

The proof is completed by showing that the orthogonal complement L^{\perp} to L coincides with R.

• In the complex case:

$$\begin{array}{rcl} \mathbb{R}^n & \Rightarrow & \mathbb{C}^n \\ \langle p, b \rangle & = & \bar{p}^{\mathsf{T}} b \\ A^{\mathsf{T}} & \Rightarrow & A^* = \bar{A}^{\mathsf{T}} \end{array}$$

4.3. Critical LP-coefficient b

• Let
$$Aq = A^T p = 0$$
 with $\langle q, q \rangle = \langle p, q \rangle = 1$.

• Write the RHS at the bifurcation as

$$F(u) = Au + \frac{1}{2}B(u, u) + O(||u||^3),$$

and locally represent the center manifold W_0^c as the graph of a function $H: \mathbb{R} \to \mathbb{R}^n$,

$$u = H(\xi) = \xi q + \frac{1}{2}h_2\xi^2 + O(\xi^3), \ \xi \in \mathbb{R}, \ h_2 \in \mathbb{R}^n.$$

The restriction of $\dot{u} = F(u)$ to W_0^c is

$$\dot{\xi} = G(\xi) = b\xi^2 + O(\xi^3).$$

• The invariance of the center manifold $H_{\xi}(\xi)\dot{\xi} = F(H(\xi))$ implies

$$H_{\xi}(\xi)G(\xi) = F(H(\xi))$$

Substitute all expansions into this **homolog**ical equation and collect the coefficients of the ξ^{j} -terms.

We have

$$A(\xi q + \frac{1}{2}h_2\xi^2) + \frac{1}{2}B(\xi q, \xi q) + O(|\xi|^3)$$

= $b\xi^2 q + b\xi^3 h_2 + O(|\xi|^4)$

- The ξ -terms give the identity: Aq = 0.
- The ξ^2 -terms give the equation for h_2 :

$$Ah_2 = -B(q,q) + 2bq.$$

It is singular and its **Fredholm solvability**

$$\langle p, -B(q,q) + 2bq \rangle = 0$$

implies

$$b = \frac{1}{2} \langle p, B(q, q) \rangle$$

4.4. Critical H-coefficient c

•
$$Aq = i\omega_0 q, A^{\top}p = -i\omega_0 p, \langle q, q \rangle = \langle p, q \rangle = 1.$$

• Write

$$F(u) = Au + \frac{1}{2}B(u, u) + \frac{1}{3!}C(u, u, u) + O(||u||^4)$$

and locally represent the center manifold W_0^c
as the graph of a function $H : \mathbb{C} \to \mathbb{R}^n$,

$$u = H(\xi, \overline{\xi}) = \xi q + \overline{\xi} \overline{q} + \sum_{2 \le j+k \le 3} \frac{1}{j!k!} h_{jk} \xi^j \overline{\xi}^k + O(|\xi|^4).$$

The restriction of $\dot{u} = F(u)$ to W_0^c is

$$\dot{\xi} = G(\xi, \overline{\xi}) = i\omega_0 \xi + c\xi |\xi|^2 + O(|\xi|^4).$$

• The invariance of W_0^c

$$H_{\xi}(\xi,\overline{\xi})\dot{\xi} + H_{\overline{\xi}}(\xi,\overline{\xi})\dot{\overline{\xi}} = F(H(\xi,\overline{\xi}))$$

implies

$$H_{\xi}(\xi,\overline{\xi})G(\xi,\overline{\xi}) + H_{\overline{\xi}}(\xi,\overline{\xi})\overline{G}(\xi,\overline{\xi}) = F(H(\xi,\overline{\xi})).$$

• Quadratic ξ^2 - and $|\xi|^2$ -terms give

$$h_{20} = (2i\omega_0 I_n - A)^{-1}B(q,q),$$

 $h_{11} = -A^{-1}B(q,\overline{q}).$

• Cubic $w^2\overline{w}$ -terms give the singular system

$$(i\omega_0 I_n - A)h_{21} = C(q, q, \overline{q})$$

+ $B(\overline{q}, h_{20}) + 2B(q, h_{11})$
- $2cq.$

The solvability of this system implies

$$c = \frac{1}{2} \langle p, C(q, q, \overline{q}) \\ + B(\overline{q}, (2i\omega_0 I_n - A)^{-1} B(q, q)) \\ - 2B(q, A^{-1} B(q, \overline{q})) \rangle$$

• The first Lyapunov coefficient

$$l_1 = \frac{1}{\omega_0} \Re(c).$$

4.5. Approximation of multilinear forms by finite differences

• Finite-difference approximation of directional derivatives:

$$B(q,q) = \frac{1}{h^2} [f(u_0 + hq, \alpha_0) + f(u_0 - hq, \alpha_0)] + O(h^2) C(r,r,r) = \frac{1}{8h^3} [f(u_0 + 3hr, \alpha_0) - 3f(u_0 + hr, \alpha_0)] + 3f(u_0 - hr, \alpha_0) - f(u_0 - 3hr, \alpha_0)] + O(h^2).$$

• Polarization identities:

$$B(q,r) = \frac{1}{4} \left[B(q+r,q+r) - B(q-r,q-r) \right],$$

$$C(q,q,r) = \frac{1}{6} [C(q+r,q+r,q+r) - C(q-r,q-r,q-r)] - \frac{1}{3} C(r,r,r).$$

5. Detection of codim 2 bifurcations

- codim 2 cases along the LP-curve:
 - Bogdanov-Takens (BT): $\lambda_{1,2} = 0$ $(\psi_{BT} = \langle p, q \rangle \text{ with } \langle q, q \rangle = \langle p, p \rangle = 1)$
 - fold-Hopf (ZH): $\lambda_1 = 0, \lambda_{2,3} = \pm i\omega_0$ $(\psi_{ZH} = \det(2A \odot I_n))$

- cusp (CP): $\lambda_1 = 0, b = 0 \ (\psi_{CP} = b)$

- Critical cases along the H-curve:
 - Bogdanov-Takens (BT): $\lambda_{1,2} = 0$ ($\psi_{BT} = \kappa$)
 - fold-Hopf (ZH): $\lambda_{1,2} = \pm i\omega_0, \lambda_3 = 0$ $(\psi_{ZH} = \det A)$
 - double Hopf (HH): $\lambda_{1,2} = \pm i\omega_0, \lambda_{3,4} = \pm i\omega_1$ $(\psi_{HH} = \det(2A^{\perp} \odot I_{n-2}))$
 - Bautin (GH): $\lambda_{1,2} = \pm i\omega_0, l_1 = 0$ $(\psi_{GH} = l_1)$