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1. Equilibria of ODEs and their simplest

(codim 1) bifurcations

• Consider a smooth ODE system

u̇ = f(u, α), u ∈ R
n, α ∈ R

m.

• An equilibrium u0 satisfies

f(u0, α0) = 0

and its Jacobian matrix A = fu(u0, α0) has

eigenvalues {λ1, λ2, . . . , λn}.

• Critical cases:

λ1

λ2

λ1

– Fold (LP): λ1 = 0;

– Andronov-Hopf (H): λ1,2 = ±iω0,

ω0 > 0.
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• Generic LP bifurcation: λ1 = 0
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• Generic H bifurcation: λ1,2 = ±iω0
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Birth of a limit cycle.
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2. Detection of LP and H bifurcations

• Monitor eigenvalues of A(u,α) = fu(u, α)

along the equilibrium curve

f(u, α) = 0, u ∈ R
n, α ∈ R.

• Test function for LP: ψLP = Vn+1, the α-

component of the normalized tangent vector

to the equilibrium curve in the (u, α)-space.

• Test function for H:

ψH = det(2A(u, α) � In),

where � denotes the bialternate matrix prod-

uct with elements

(A�B)(i,j),(k,l) =
1

2
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where i > j, k > l.

5



Wedge product of vectors

• Two index pairs (i, j), (k, l) are listed in the

lexicographic order if either i < k or (i = k

and j < l).

• The wedge product of two vectors v,w ∈

Cn is a vector v ∧ w ∈ Cm, m = n(n−1)
2 , with

the components:

(v ∧ w)(i,j) = viwj − vjwi, n ≥ i > j ≥ 1,

listed in the lexicographic order of their index

pairs.

• For any v,w, w1,2 ∈ Cn, λ ∈ C: v∧w = −w∧v

and

v∧(λw) = λ(v∧w), v∧(w1+w2) = v∧w1+v∧w2.

• If ei ∈ Cn, n ≥ i ≥ 1, form a basis in Cn, then

ei ∧ ej ∈ Cm, n ≥ i > j ≥ 1, form a basis in

Cm.
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Bialternate matrix product

• The matrix of the linear transformation of

Cm defined by

(v∧w) 7→ (A�B)(v∧w) =
1

2
(Av∧Bw−Aw∧Bv)

in the standard basis {ei ∧ ej} is called the

bialternate product of two matrices A,B ∈
Cn×n.

• Stéphanos Theorem If A ∈ Cn×n has eigen-

values λ1, λ2, . . . , λn, then

(i) A�A has eigenvalues λiλj,

(ii) 2A� In has eigenvalues λi + λj,

where n ≥ i > j ≥ 1.

Indeed, if {vi} are linearly-independent eigen-

vectors of A, then vi ∧ vj is an eigenvector

of both A�A and 2A� In.

• For two nonsingular matrices A and B:

(AB) � (AB) = (A�A)(B �B),

(A�A)−1 = A−1 �A−1.
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3. Continuation of LP and Hopf bifurcations

3.1. Bordering technique

3.2. Continuation of LP bifurcation

3.3. Continuation of Hopf bifurcation
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3.1. Bordering technique

Let M ∈ Rn×n, vj, bj, cj ∈ Rn, gij, dij ∈ R

• Suppose the following system has invertible

matrix:
(

M b1
cT1 d11

)(

v1
g11

)

=

(

0
1

)

.

Then M has rank defect 1 if and only if g11 =

0. Indeed, by Cramer’s rule

g11 =
detM

det

(

M b1
cT1 d11

).

• Suppose the following system has invertible

matrix:






M b1 b2
cT1 d11 d12

cT2 d21 d22













v1 v2
g11 g12
g21 g22






=







0 0
1 0
0 1






.

Then M has rank defect 2 if and only if

g11 = g12 = g21 = g22 = 0.

9



3.2. Continuation of LP bifurcation

• At a generic LP bifurcation A(u, α) = fu(u, α)

has rank defect 1.

• Defining system: x = (u, α) ∈ Rn+2

{

f(u, α) = 0,
G(u, α) = 0,

where G is computed by solving the bordered

system
(

A(u,α) p1
qT1 0

)(

q

G

)

=

(

0
1

)

• Vectors q1, p1 ∈ Rn are adapted along the

LP-curve to make the matrix of the linear

system nonsingular.

• (Gu, Gα) can be computed efficiently using

the adjoint linear system.
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Derivatives of G

The α-derivative of the bordered system
(

A(u,α) p1
qT1 0

)(

qα
Gα

)

+

(

Aα(u, α) 0
0 0

)(

q

G

)

=

(

0
0

)

implies
(

A(u,α) w1

qT1 0

)(

qα
Gα

)

= −

(

Aα(u, α) 0
0 0

)(

q

G

)

Multiplication from the left by (pT h) satisfying
(

AT(u, α) q1
pT1 0

)(

p

h

)

=

(

0
1

)

gives

Gα = −pTAα(u, α)q = −〈p,Aα(u, α)q〉.
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3.3. Continuation of Hopf bifurcation

• At a generic Hopf bifurcation A2(u, α)+ω2
0In

has rank defect 2.

• Defining system: x = (u, α, κ) ∈ Rn+3











f(u, α) = 0,
G11(u, α, κ) = 0,
G22(u, α, κ) = 0,

where κ = ω2
0 and Gij are computed by solv-

ing






A2(u, α) + κIn p1 p2
qT1 0 0

qT2 0 0













r s

G11 G12
G21 G22






=







0 0
1 0
0 1







• Vectors q1,2, p1,2 ∈ Rn are adapted to ensure

unique solvability.

• Efficient computation of derivatives of Gij is

possible.
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Remarks on continuation of bifurcations

• For each defining system holds: Simplicity

of the bifurcation + Transversality ⇒ Reg-

ularity of the defining system.

• Border adaptation using solutions of the ad-

joint linear system.

• Alternatives to bordering for LP:










f(u, α) = 0,
fu(u, α)q = 0,
〈q, q0〉 − 1 = 0

or

{

f(u, α) = 0,
det(fu(u, α)) = 0.

• Alternatives to bordering for H:






























f(u, α) = 0,
fu(u, α)q + ωp = 0,
fu(u, α)p− ωq = 0,

〈q, q0〉 + 〈p, p0〉 − 1 = 0,
〈q, p0〉 − 〈q0, p〉 = 0

or
{

f(u, α) = 0,
det(2fu(u, α) � In) = 0.
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4. Computation of normal forms for LP and

Hopf bifurcations

4.1. Normal forms on center manifolds

4.2. Fredholm’s Alternative

4.3. Critical LP-coefficient

4.4. Critical H-coefficient

4.5. Approximation of multilinear forms by finite

differences
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4.1. Normal forms on center manifolds

• LP: ξ̇ = β + bξ2, b 6= 0

ξ ξ

00

b < 0 b > 0

ββ

Equilibria: β + bξ2 = 0 ⇒ ξ1,2 = ±
√

−β
b

• H: ξ̇ = (β + iω)ξ + cξ|ξ|2, l1 = 1
ω
<(c) 6= 0

=(ξ)

β

<(ξ)

β

l1 < 0

=(ξ)

<(ξ)

l1 > 0

Limit cycle:
{

ρ̇ = ρ(β + <(c)ρ2),

ϕ̇ = ω+ =(c)ρ2,
⇒ ρ0 =

√

−
β

<(c)
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4.2. Fredholm’s Alternative

• Lemma 1 The linear system Ax = b with

b ∈ Rn and a singular n × n real matrix A

is solvable if and only if 〈p, b〉 = 0 for all p

satisfying ATp = 0.

Indeed, Rn = L⊕R with L ⊥ R, where

L = N (AT) = {p ∈ R
n : ATp = 0}

and

R = {x ∈ R
n : x = Ay for some y ∈ R

n}.

The proof is completed by showing that the

orthogonal complement L⊥ to L coincides

with R.

• In the complex case:

R
n ⇒ C

n

〈p, b〉 = p̄Tb

AT ⇒ A∗ = ĀT
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4.3. Critical LP-coefficient b

• Let Aq = ATp = 0 with 〈q, q〉 = 〈p, q〉 = 1.

• Write the RHS at the bifurcation as

F (u) = Au+
1

2
B(u, u) +O(‖u‖3),

and locally represent the center manifold W c
0

as the graph of a function H : R → Rn,

u = H(ξ) = ξq+
1

2
h2ξ

2+O(ξ3), ξ ∈ R, h2 ∈ R
n.

The restriction of u̇ = F (u) to W c
0 is

ξ̇ = G(ξ) = bξ2 +O(ξ3).

• The invariance of the center manifold Hξ(ξ)ξ̇ =

F (H(ξ)) implies

Hξ(ξ)G(ξ) = F (H(ξ))

Substitute all expansions into this homolog-

ical equation and collect the coefficients of

the ξj-terms.
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We have

A(ξq +
1

2
h2ξ

2) +
1

2
B(ξq, ξq) +O(|ξ|3)

= bξ2q + bξ3h2 + O(|ξ|4)

• The ξ-terms give the identity: Aq = 0.

• The ξ2-terms give the equation for h2:

Ah2 = −B(q, q) + 2bq.

It is singular and its Fredholm solvability

〈p,−B(q, q) + 2bq〉 = 0

implies

b =
1

2
〈p,B(q, q)〉
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4.4. Critical H-coefficient c

• Aq = iω0q,A
Tp = −iω0p, 〈q, q〉 = 〈p, q〉 = 1.

• Write

F (u) = Au+
1

2
B(u, u)+

1

3!
C(u, u, u)+O(‖u‖4)

and locally represent the center manifold W c
0

as the graph of a function H : C → Rn,

u = H(ξ, ξ) = ξq + ξ q +
∑

2≤j+k≤3

1

j!k!
hjkξ

jξk +O(|ξ|4).

The restriction of u̇ = F (u) to W c
0 is

ξ̇ = G(ξ, ξ) = iω0ξ + cξ|ξ|2 +O(|ξ|4).

• The invariance of W c
0

Hξ(ξ, ξ)ξ̇ +H
ξ
(ξ, ξ)ξ̇ = F (H(ξ, ξ))

implies

Hξ(ξ, ξ)G(ξ, ξ)+H
ξ
(ξ, ξ)G(ξ, ξ) = F (H(ξ, ξ)).
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• Quadratic ξ2- and |ξ|2-terms give

h20 = (2iω0In −A)−1B(q, q),

h11 = −A−1B(q, q).

• Cubic w2w-terms give the singular system

(iω0In −A)h21 = C(q, q, q)

+ B(q, h20) + 2B(q, h11)

− 2cq.

The solvability of this system implies

c =
1

2
〈p, C(q, q, q)

+ B(q, (2iω0In −A)−1B(q, q))

− 2B(q, A−1B(q, q))〉

• The first Lyapunov coefficient

l1 =
1

ω0
<(c).
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4.5. Approximation of multilinear forms by

finite differences

• Finite-difference approximation of directional

derivatives:

B(q, q) =
1

h2
[f(u0 + hq, α0) + f(u0 − hq, α0)]

+ O(h2)

C(r, r, r) =
1

8h3
[f(u0 + 3hr, α0)−3f(u0 + hr, α0)

+ 3f(u0 − hr, α0) − f(u0 − 3hr, α0)]

+ O(h2).

• Polarization identities:

B(q, r) =
1

4
[B(q + r, q+ r) −B(q − r, q − r)] ,

C(q, q, r) =
1

6
[C(q+ r, q + r, q+ r)

− C(q − r, q − r, q − r)]

−
1

3
C(r, r, r).
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5. Detection of codim 2 bifurcations

• codim 2 cases along the LP-curve:

– Bogdanov-Takens (BT): λ1,2 = 0

(ψBT = 〈p, q〉 with 〈q, q〉 = 〈p, p〉 = 1)

– fold-Hopf (ZH): λ1 = 0, λ2,3 = ±iω0

(ψZH = det(2A� In))

– cusp (CP): λ1 = 0, b = 0 (ψCP = b)

• Critical cases along the H-curve:

– Bogdanov-Takens (BT): λ1,2 = 0

(ψBT = κ)

– fold-Hopf (ZH): λ1,2 = ±iω0, λ3 = 0

(ψZH = detA)

– double Hopf (HH): λ1,2 = ±iω0, λ3,4 =

±iω1

(ψHH = det(2A⊥ � In−2)

– Bautin (GH): λ1,2 = ±iω0, l1 = 0

(ψGH = l1)
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