Lecture 2

Equilibrium bifurcations of ODEs and their numerical analysis

Yu.A. Kuznetsov (Utrecht University, NL)

May 7, 2009

Contents

1. Equilibria of ODEs and their simplest (codim 1) bifurcations
2. Detection of fold (LP) and Andronov-Hopf (H) bifurcations
3. Continuation of LP and H bifurcations
4. Computation of normal forms for LP and H bifurcations
5. Detection of codim 2 bifurcations

1. Equilibria of ODEs and their simplest (codim 1) bifurcations

- Consider a smooth ODE system

$$
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R}^{m} .
$$

- An equilibrium u_{0} satisfies

$$
f\left(u_{0}, \alpha_{0}\right)=0
$$

and its Jacobian matrix $A=f_{u}\left(u_{0}, \alpha_{0}\right)$ has eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$.

- Critical cases:

- Fold (LP): $\lambda_{1}=0$;
- Andronov-Hopf (H): $\lambda_{1,2}= \pm i \omega_{0}$, $\omega_{0}>0$.
- Generic LP bifurcation: $\lambda_{1}=0$

$\alpha<\alpha_{0}$

$\alpha=\alpha_{0}$

$\alpha>\alpha_{0}$

Collision of two equilibria.

- Generic H bifurcation: $\lambda_{1,2}= \pm i \omega_{0}$

Birth of a limit cycle.
2. Detection of LP and H bifurcations

- Monitor eigenvalues of $A(u, \alpha)=f_{u}(u, \alpha)$ along the equilibrium curve

$$
f(u, \alpha)=0, \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R}
$$

- Test function for LP: $\psi_{L P}=V_{n+1}$, the α component of the normalized tangent vector to the equilibrium curve in the (u, α)-space.
- Test function for H :

$$
\psi_{H}=\operatorname{det}\left(2 A(u, \alpha) \odot I_{n}\right),
$$

where \odot denotes the bialternate matrix product with elements
$(A \odot B)_{(i, j),(k, l)}=\frac{1}{2}\left\{\left|\begin{array}{ll}a_{i k} & a_{i l} \\ b_{j k} & b_{j l}\end{array}\right|+\left|\begin{array}{cc}b_{i k} & b_{i l} \\ a_{j k} & a_{j l}\end{array}\right|\right\}$,
where $i>j, k>l$.

- Two index pairs $(i, j),(k, l)$ are listed in the lexicographic order if either $i<k$ or ($i=k$ and $j<l$).
- The wedge product of two vectors $v, w \in$ \mathbb{C}^{n} is a vector $v \wedge w \in \mathbb{C}^{m}, m=\frac{n(n-1)}{2}$, with the components:

$$
(v \wedge w)_{(i, j)}=v_{i} w_{j}-v_{j} w_{i}, \quad n \geq i>j \geq 1
$$

listed in the lexicographic order of their index pairs.

- For any $v, w, w^{1,2} \in \mathbb{C}^{n}, \lambda \in \mathbb{C}: v \wedge w=-w \wedge v$ and
$v \wedge(\lambda w)=\lambda(v \wedge w), \quad v \wedge\left(w^{1}+w^{2}\right)=v \wedge w^{1}+v \wedge w^{2}$.
- If $e^{i} \in \mathbb{C}^{n}, n \geq i \geq 1$, form a basis in \mathbb{C}^{n}, then $e^{i} \wedge e^{j} \in \mathbb{C}^{m}, n \geq i>j \geq 1$, form a basis in \mathbb{C}^{m}.

Bialternate matrix product

- The matrix of the linear transformation of \mathbb{C}^{m} defined by
$(v \wedge w) \mapsto(A \odot B)(v \wedge w)=\frac{1}{2}(A v \wedge B w-A w \wedge B v)$ in the standard basis $\left\{e^{i} \wedge e^{j}\right\}$ is called the bialternate product of two matrices $A, B \in$ $\mathbb{C} n \times n$
- Stéphanos Theorem If $A \in \mathbb{C}^{n \times n}$ has eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then
(i) $A \odot A$ has eigenvalues $\lambda_{i} \lambda_{j}$,
(ii) $2 A \odot I_{n}$ has eigenvalues $\lambda_{i}+\lambda_{j}$,
where $n \geq i>j \geq 1$.
Indeed, if $\left\{v^{i}\right\}$ are linearly-independent eigenvectors of A, then $v^{i} \wedge v^{j}$ is an eigenvector of both $A \odot A$ and $2 A \odot I_{n}$.
- For two nonsingular matrices A and B :

$$
\begin{aligned}
(A B) \odot(A B) & =(A \odot A)(B \odot B) \\
(A \odot A)^{-1} & =A^{-1} \odot A^{-1}
\end{aligned}
$$

3. Continuation of LP and Hopf bifurcations

3.1. Bordering technique
3.2. Continuation of LP bifurcation
3.3. Continuation of Hopf bifurcation

3.1. Bordering technique

Let $M \in \mathbb{R}^{n \times n}, \quad v_{j}, b_{j}, c_{j} \in \mathbb{R}^{n}, g_{i j}, d_{i j} \in \mathbb{R}$

- Suppose the following system has invertible matrix:

$$
\left(\begin{array}{cc}
M & b_{1} \\
c_{1}^{\top} & d_{11}
\end{array}\right)\binom{v_{1}}{g_{11}}=\binom{0}{1} .
$$

Then M has rank defect 1 if and only if $g_{11}=$ 0 . Indeed, by Cramer's rule

$$
g_{11}=\frac{\operatorname{det} M}{\operatorname{det}\left(\begin{array}{cc}
M & b_{1} \\
c_{1}^{\top} & d_{11}
\end{array}\right)} .
$$

- Suppose the following system has invertible matrix:

$$
\left(\begin{array}{ccc}
M & b_{1} & b_{2} \\
c_{1}^{\top} & d_{11} & d_{12} \\
c_{2}^{\top} & d_{21} & d_{22}
\end{array}\right)\left(\begin{array}{cc}
v_{1} & v_{2} \\
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{cc}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then M has rank defect 2 if and only if

$$
g_{11}=g_{12}=g_{21}=g_{22}=0 .
$$

3.2. Continuation of LP bifurcation

- At a generic LP bifurcation $A(u, \alpha)=f_{u}(u, \alpha)$ has rank defect 1 .
- Defining system: $x=(u, \alpha) \in \mathbb{R}^{n+2}$

$$
\left\{\begin{array}{l}
f(u, \alpha)=0, \\
G(u, \alpha)=0,
\end{array}\right.
$$

where G is computed by solving the bordered system

$$
\left(\begin{array}{cc}
A(u, \alpha) & p_{1} \\
q_{1}^{\top} & 0
\end{array}\right)\binom{q}{G}=\binom{0}{1}
$$

- Vectors $q_{1}, p_{1} \in \mathbb{R}^{n}$ are adapted along the LP-curve to make the matrix of the linear system nonsingular.
- $\left(G_{u}, G_{\alpha}\right)$ can be computed efficiently using the adjoint linear system.

Derivatives of G

The α-derivative of the bordered system

$$
\begin{aligned}
\left(\begin{array}{cc}
A(u, \alpha) & p_{1} \\
q_{1}^{\top} & 0
\end{array}\right)\binom{q_{\alpha}}{G_{\alpha}} & +\left(\begin{array}{cc}
A_{\alpha}(u, \alpha) & 0 \\
0 & 0
\end{array}\right)\binom{q}{G} \\
& =\binom{0}{0}
\end{aligned}
$$

implies
$\left(\begin{array}{cc}A(u, \alpha) & w_{1} \\ q_{1}^{\top} & 0\end{array}\right)\binom{q_{\alpha}}{G_{\alpha}}=-\left(\begin{array}{cc}A_{\alpha}(u, \alpha) & 0 \\ 0 & 0\end{array}\right)\binom{q}{G}$
Multiplication from the left by ($p^{\top} h$) satisfying

$$
\left(\begin{array}{cc}
A^{\top}(u, \alpha) & q_{1} \\
p_{1}^{\top} & 0
\end{array}\right)\binom{p}{h}=\binom{0}{1}
$$

gives

$$
G_{\alpha}=-p^{\top} A_{\alpha}(u, \alpha) q=-\left\langle p, A_{\alpha}(u, \alpha) q\right\rangle
$$

3.3. Continuation of Hopf bifurcation

- At a generic Hopf bifurcation $A^{2}(u, \alpha)+\omega_{0}^{2} I_{n}$ has rank defect 2 .
- Defining system: $x=(u, \alpha, \kappa) \in \mathbb{R}^{n+3}$

$$
\left\{\begin{array}{r}
f(u, \alpha)=0, \\
G_{11}(u, \alpha, \kappa)=0, \\
G_{22}(u, \alpha, \kappa)=0,
\end{array}\right.
$$

where $\kappa=\omega_{0}^{2}$ and $G_{i j}$ are computed by solving
$\left(\begin{array}{ccc}A^{2}(u, \alpha)+\kappa I_{n} & p_{1} & p_{2} \\ q_{1}^{\top} & 0 & 0 \\ q_{2}^{\top} & 0 & 0\end{array}\right)\left(\begin{array}{cc}r & s \\ G_{11} & G_{12} \\ G_{21} & G_{22}\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right)$

- Vectors $q_{1,2}, p_{1,2} \in \mathbb{R}^{n}$ are adapted to ensure unique solvability.
- Efficient computation of derivatives of $G_{i j}$ is possible.
- For each defining system holds: Simplicity of the bifurcation + Transversality \Rightarrow Regularity of the defining system.
- Border adaptation using solutions of the adjoint linear system.
- Alternatives to bordering for LP:

$$
\left\{\begin{array} { r }
{ f (u , \alpha) = 0 , } \\
{ f _ { u } (u , \alpha) q = 0 , } \\
{ \langle q , q _ { 0 } \rangle - 1 = 0 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{r}
f(u, \alpha)=0 \\
\operatorname{det}\left(f_{u}(u, \alpha)\right)=0
\end{array}\right.\right.
$$

- Alternatives to bordering for H :

$$
\left\{\begin{aligned}
f(u, \alpha) & =0, \\
f_{u}(u, \alpha) q+\omega p & =0, \\
f_{u}(u, \alpha) p-\omega q & =0, \\
\left\langle q, q_{0}\right\rangle+\left\langle p, p_{0}\right\rangle-1 & =0, \\
\left\langle q, p_{0}\right\rangle-\left\langle q_{0}, p\right\rangle & =0
\end{aligned}\right.
$$

or

$$
\left\{\begin{aligned}
f(u, \alpha) & =0, \\
\operatorname{det}\left(2 f_{u}(u, \alpha) \odot I_{n}\right) & =0 .
\end{aligned}\right.
$$

4. Computation of normal forms for LP and Hopf bifurcations

4.1. Normal forms on center manifolds
4.2. Fredholm's Alternative
4.3. Critical LP-coefficient
4.4. Critical H-coefficient
4.5. Approximation of multilinear forms by finite differences

4.1. Normal forms on center manifolds

- LP: $\dot{\xi}=\beta+b \xi^{2}, b \neq 0$

Equilibria: $\beta+b \xi^{2}=0 \Rightarrow \xi_{1,2}= \pm \sqrt{-\frac{\beta}{b}}$

- $\mathrm{H}: \dot{\xi}=(\beta+i \omega) \xi+c \xi|\xi|^{2}, l_{1}=\frac{1}{\omega} \Re(c) \neq 0$

$l_{1}<0$

$$
l_{1}>0
$$

Limit cycle:

$$
\left\{\begin{array}{rl}
\dot{\rho} & =\rho\left(\beta+\Re(c) \rho^{2}\right), \\
\dot{\varphi} & =\omega+\Im(c) \rho^{2},
\end{array} \Rightarrow \rho_{0}=\sqrt{-\frac{\beta}{\Re(c)}}\right.
$$

4.2. Fredholm's Alternative

- Lemma 1 The linear system $A x=b$ with $b \in \mathbb{R}^{n}$ and a singular $n \times n$ real matrix A is solvable if and only if $\langle p, b\rangle=0$ for all p satisfying $A^{\top} p=0$.

Indeed, $\mathbb{R}^{n}=L \oplus R$ with $L \perp R$, where

$$
L=\mathcal{N}\left(A^{\top}\right)=\left\{p \in \mathbb{R}^{n}: A^{T} p=0\right\}
$$

and

$$
R=\left\{x \in \mathbb{R}^{n}: x=A y \text { for some } y \in \mathbb{R}^{n}\right\} .
$$

The proof is completed by showing that the orthogonal complement L^{\perp} to L coincides with R.

- In the complex case:

$$
\begin{aligned}
\mathbb{R}^{n} & \Rightarrow \mathbb{C}^{n} \\
\langle p, b\rangle & =\bar{p}^{\top} b \\
A^{\top} & \Rightarrow A^{*}=\bar{A}^{\top}
\end{aligned}
$$

- Let $A q=A^{T} p=0$ with $\langle q, q\rangle=\langle p, q\rangle=1$.
- Write the RHS at the bifurcation as

$$
F(u)=A u+\frac{1}{2} B(u, u)+O\left(\|u\|^{3}\right),
$$

and locally represent the center manifold W_{0}^{c} as the graph of a function $H: \mathbb{R} \rightarrow \mathbb{R}^{n}$,
$u=H(\xi)=\xi q+\frac{1}{2} h_{2} \xi^{2}+O\left(\xi^{3}\right), \quad \xi \in \mathbb{R}, h_{2} \in \mathbb{R}^{n}$.
The restriction of $\dot{u}=F(u)$ to W_{0}^{c} is

$$
\dot{\xi}=G(\xi)=b \xi^{2}+O\left(\xi^{3}\right) .
$$

- The invariance of the center manifold $H_{\xi}(\xi) \dot{\xi}=$ $F(H(\xi))$ implies

$$
H_{\xi}(\xi) G(\xi)=F(H(\xi))
$$

Substitute all expansions into this homological equation and collect the coefficients of the ξ^{j}-terms.

We have

$$
\begin{gathered}
A\left(\xi q+\frac{1}{2} h_{2} \xi^{2}\right)+\frac{1}{2} B(\xi q, \xi q)+O\left(|\xi|^{3}\right) \\
=b \xi^{2} q+b \xi^{3} h_{2}+O\left(|\xi|^{4}\right)
\end{gathered}
$$

- The ξ-terms give the identity: $A q=0$.
- The ξ^{2}-terms give the equation for h_{2} :

$$
A h_{2}=-B(q, q)+2 b q .
$$

It is singular and its Fredholm solvability

$$
\langle p,-B(q, q)+2 b q\rangle=0
$$

implies

$$
b=\frac{1}{2}\langle p, B(q, q)\rangle
$$

4.4. Critical \mathbf{H}-coefficient c

- $A q=i \omega_{0} q, A^{\top} p=-i \omega_{0} p,\langle q, q\rangle=\langle p, q\rangle=1$.
- Write

$$
F(u)=A u+\frac{1}{2} B(u, u)+\frac{1}{3!} C(u, u, u)+O\left(\|u\|^{4}\right)
$$

and locally represent the center manifold W_{0}^{c} as the graph of a function $H: \mathbb{C} \rightarrow \mathbb{R}^{n}$,

$$
\begin{aligned}
u=H(\xi, \bar{\xi})= & \xi q+\bar{\xi} \bar{q}+ \\
& \sum_{2 \leq j+k \leq 3} \frac{1}{j!k!} h_{j k} \xi^{j} \bar{\xi}^{k}+O\left(|\xi|^{4}\right) .
\end{aligned}
$$

The restriction of $\dot{u}=F(u)$ to W_{0}^{c} is

$$
\dot{\xi}=G(\xi, \bar{\xi})=i \omega_{0} \xi+c \xi|\xi|^{2}+O\left(|\xi|^{4}\right) .
$$

- The invariance of W_{0}^{c}

$$
H_{\xi}(\xi, \bar{\xi}) \dot{\xi}+H_{\bar{\xi}}(\xi, \bar{\xi}) \dot{\bar{\xi}}=F(H(\xi, \bar{\xi}))
$$

implies

$$
H_{\xi}(\xi, \bar{\xi}) G(\xi, \bar{\xi})+H_{\bar{\xi}}(\xi, \bar{\xi}) \bar{G}(\xi, \bar{\xi})=F(H(\xi, \bar{\xi})) .
$$

- Quadratic ξ^{2} - and $|\xi|^{2}$-terms give

$$
\begin{aligned}
& h_{20}=\left(2 i \omega_{0} I_{n}-A\right)^{-1} B(q, q), \\
& h_{11}=-A^{-1} B(q, \bar{q})
\end{aligned}
$$

- Cubic $w^{2} \bar{w}$-terms give the singular system

$$
\begin{aligned}
\left(i \omega_{0} I_{n}-A\right) h_{21}= & C(q, q, \bar{q}) \\
& +B\left(\bar{q}, h_{20}\right)+2 B\left(q, h_{11}\right) \\
& -2 c q .
\end{aligned}
$$

The solvability of this system implies

$$
\begin{aligned}
c= & \frac{1}{2}\langle p, C(q, q, \bar{q}) \\
& +B\left(\bar{q},\left(2 i \omega_{0} I_{n}-A\right)^{-1} B(q, q)\right) \\
& \left.-2 B\left(q, A^{-1} B(q, \bar{q})\right)\right\rangle
\end{aligned}
$$

- The first Lyapunov coefficient

$$
l_{1}=\frac{1}{\omega_{0}} \Re(c) .
$$

4.5. Approximation of multilinear forms by finite differences

- Finite-difference approximation of directional derivatives:

$$
\begin{aligned}
B(q, q)= & \frac{1}{h^{2}}\left[f\left(u_{0}+h q, \alpha_{0}\right)+f\left(u_{0}-h q, \alpha_{0}\right)\right] \\
& +O\left(h^{2}\right) \\
C(r, r, r)= & \frac{1}{8 h^{3}}\left[f\left(u_{0}+3 h r, \alpha_{0}\right)-3 f\left(u_{0}+h r, \alpha_{0}\right)\right. \\
& \left.+3 f\left(u_{0}-h r, \alpha_{0}\right)-f\left(u_{0}-3 h r, \alpha_{0}\right)\right] \\
& +O\left(h^{2}\right) .
\end{aligned}
$$

- Polarization identities:

$$
\begin{aligned}
& B(q, r)=\frac{1}{4}[B(q+r, q+r)-B(q-r, q-r)] \\
& C(q, q, r)= \frac{1}{6}[C(q+r, q+r, q+r) \\
&-C(q-r, q-r, q-r)] \\
&-\frac{1}{3} C(r, r, r) .
\end{aligned}
$$

5. Detection of codim 2 bifurcations

- codim 2 cases along the LP-curve:
- Bogdanov-Takens (BT): $\lambda_{1,2}=0$ ($\psi_{B T}=\langle p, q\rangle$ with $\langle q, q\rangle=\langle p, p\rangle=1$)
- fold-Hopf (ZH): $\lambda_{1}=0, \lambda_{2,3}= \pm i \omega_{0}$ $\left(\psi_{Z H}=\operatorname{det}\left(2 A \odot I_{n}\right)\right)$
$-\operatorname{cusp}(C P): \lambda_{1}=0, b=0\left(\psi_{C P}=b\right)$
- Critical cases along the H -curve:
- Bogdanov-Takens (BT): $\lambda_{1,2}=0$ ($\psi_{B T}=\kappa$)
- fold-Hopf (ZH): $\lambda_{1,2}= \pm i \omega_{0}, \lambda_{3}=0$ ($\psi_{Z H}=\operatorname{det} A$)
- double Hopf (HH): $\lambda_{1,2}= \pm i \omega_{0}, \lambda_{3,4}=$ $\pm i \omega_{1}$

$$
\left(\psi_{H H}=\operatorname{det}\left(2 A^{\perp} \odot I_{n-2}\right)\right.
$$

- Bautin (GH): $\lambda_{1,2}= \pm i \omega_{0}, l_{1}=0$ ($\psi_{G H}=l_{1}$)

