Lecture 4

Numerical local bifurcation analysis of iterated maps

Yu.A. Kuznetsov (Utrecht University, NL)

May 19, 2009

Contents

1. Fixed points and cycles. Critical stability cases.
2. Detection of codim 1 bifurcations
3. Continuation of codim 1 bifurcations
4. Normal forms for codim 1 bifurcations
5. Computation of the critical NF-coefficients
6. Detection of codim 2 bifurcations

1. Fixed points and cycles

- Consider a family of smooth maps

$$
x \mapsto f(x, \alpha) \equiv f_{(\alpha)}(x), \quad x \in \mathbb{R}^{n}, \alpha \in \mathbb{R}
$$

- A fixed point x_{0} satisfies $f\left(x_{0}, \alpha\right)=x_{0}$. A k-cycle $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{k-1}\right\}$ satisfies

$$
\left.\begin{array}{rl}
f\left(x_{0}, \alpha_{0}\right) & = \\
f\left(x_{1}, \alpha_{0}\right) & = \\
\cdots & x_{2} \\
f\left(x_{k-1}, \alpha_{0}\right) & =x_{0}
\end{array}\right\} \Rightarrow f_{(\alpha)}^{k}\left(x_{0}\right)=x_{0}
$$

All points $x_{j}, j=0,1, \ldots, k-1$ of the cycle are assumed to be different.

- Fixed point manifold:

Critical stability cases

- Let $x_{0} \in \mathbb{R}^{n}$ be a fixed point at parameter value α_{0} and $A_{0}=f_{x}\left(x_{0}, \alpha_{0}\right)$.

If $|\mu|<1$ for each eigenvalue (multiplier) μ of A_{0}, x_{0} is stable.
If $|\mu|>1$ for at least one eigenvalue μ of A_{0}, x_{0} is unstable.

- Critical cases:

- Fold (LP): $\mu_{1}=1$;
- Flip (PD): $\mu_{1}=-1$;
- Neimark-Sacker (NS): $\mu_{1,2}=\mathrm{e}^{ \pm i \theta_{0}}$, $0<\theta_{0}<\pi$.

2. Detection of codim 1 bifurcations

- Test functions:

$$
\left.\begin{array}{rl}
\psi_{1} & =\operatorname{det}\binom{f_{x}}{v^{\top}} \\
f_{\alpha}
\end{array}\right)=v_{n+1} .
$$

where $A(x, \alpha)=f_{x}(x, \alpha), v \in \mathbb{R}^{n+1}$ is the normalized tangent vector to the fixed point manifold,

$$
m=\frac{n(n-1)}{2}
$$

and \odot stands for the bialternate matrix product.

- Singularities:
- branching point $\mathrm{BP}\left(\psi_{1}=0\right)$
$-\mathrm{LP}: \mu_{1}=1\left(\psi_{2}=0, \psi_{1} \neq 0\right)$
$-\mathrm{PD}: \mu_{1}=-1\left(\psi_{3}=0\right)$
- NS: $\mu_{1} \mu_{2}=1\left(\psi_{4}=0\right)$

3. Continuation of codim 1 bifurcations

LP and PD curves:

- ALCP with $(x, \alpha) \in \mathbb{R}^{n+2}$

$$
\left\{\begin{array}{r}
f(x, \alpha)-x=0 \\
\operatorname{det}\left(A(u, \alpha) \mp I_{n}\right)=0
\end{array}\right.
$$

have disadvantages. Consider an equivalent defining ALCP:

$$
\left\{\begin{array}{r}
f(x, \alpha)-x=0 \\
g(x, \alpha)=0
\end{array}\right.
$$

where $g(x, \alpha)$ is obtained from the bordered system:

$$
\left(\begin{array}{cc}
B(x, \alpha) & w_{0} \\
v_{0}^{\top} & 0
\end{array}\right)\binom{v}{g}=\binom{0}{1}
$$

with $B(x, \alpha)=A(x, \alpha) \mp I_{n}$. The vectors $v_{0}, w_{0} \in \mathbb{R}^{n}$ are selected to make

$$
M(x, \alpha)=\left(\begin{array}{cc}
B(x, \alpha) & w_{0} \\
v_{0}^{\top} & 0
\end{array}\right)
$$

nonsingular. Then

$$
g(x, \alpha)=\frac{\operatorname{det} B(x, \alpha)}{\operatorname{det} M(x, \alpha)}
$$

- Let z be a component of x or α. The derivative g_{z} can be expressed explicitly as

$$
g_{z}=-w^{\top} B_{z}(x, \alpha) v
$$

where $\left(\begin{array}{ll}w & h)^{\top} \text { is the solution to }\end{array}\right.$

$$
M^{\top}\binom{w}{h}=\binom{0}{1}
$$

- Alternative ALCPs:

$$
(x, v, \alpha) \in \mathbb{R}^{2 n+2}
$$

Fold (LP):

$$
\left\{\begin{array}{r}
f(x, \alpha)-x=0 \\
A(x, \alpha) v-v=0 \\
\left\langle v_{0}, v\right\rangle-1=0
\end{array}\right.
$$

Flip:

$$
\left\{\begin{array}{r}
f(x, \alpha)-x=0 \\
A(x, \alpha) v+v=0 \\
\left\langle v_{0}, v\right\rangle-1=0
\end{array}\right.
$$

Neimark-Sacker (NS) curve:

The $n \times n$-matrix

$$
C(x, \alpha, \kappa)=A^{2}(x, \alpha)-2 \kappa A(x, \alpha)+I_{n}
$$

with $\kappa=\cos \theta_{0}$ has rank $n-2$ at the NeimarkSacker point, where $A=f_{x}$ has two simple complex eigenvalues $\mu_{1,2}=e^{ \pm i \theta_{0}}$.

- ALCP with $(x, \alpha, \kappa) \in \mathbb{R}^{n+3}$

$$
\left\{\begin{array}{l}
f(x, \alpha)-x=0 \\
g_{11}(x, \alpha, \kappa)=0 \\
g_{22}(x, \alpha, \kappa)=0
\end{array}\right.
$$

where $g_{k k}(x, \alpha, \kappa)$ are obtained by solving the double-bordered system:

$$
\left(\begin{array}{ccc}
C(x, \alpha, \kappa) & W_{1} & W_{2} \\
V_{1}^{\top} & 0 & 0 \\
V_{2}^{\top} & 0 & 0
\end{array}\right)\left(\begin{array}{cc}
H_{1} & H_{2} \\
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Here the vectors V_{j}, W_{j} are selected to make this linear system nonsingular. At a NeimarkSacker point, all $g_{i j}=0$.

Alternative defining ALCPs:

- Single bordered: $(x, \alpha) \in \mathbb{R}^{n+2}$

$$
\left\{\begin{aligned}
f(x, \alpha)-x & =0 \\
g(x, \alpha) & =0
\end{aligned}\right.
$$

where $g(x, \alpha)$ is obtained from the bordered system:
$\left(\begin{array}{cc}A(x, \alpha) \odot A(x, \alpha)-I_{m} & W_{0} \\ V_{0}^{\top} & 0\end{array}\right)\binom{V}{g}=\binom{0}{1}$,
where $V \in \mathbb{R}^{m}$ and $V_{0}, W_{0} \in \mathbb{R}^{m}$ are selected to make the system nonsingular.

- Extended system: $(x, v, \kappa, \alpha) \in \mathbb{R}^{2 n+3}$

$$
\left\{\begin{array}{r}
f(x, \alpha)-x=0 \\
\left(A^{2}(x, \alpha)-2 \kappa A(x, \alpha)+I_{n}\right) v=0 \\
\left\langle v_{0}, v\right\rangle-1=0 \\
\left\langle v_{1}, v\right\rangle=0
\end{array}\right.
$$

where $v_{0,1} \in \mathbb{R}^{n}$ are not orthogonal to

$$
\mathcal{N}\left(A^{2}(u, \alpha)-2 \kappa A(u, \alpha)+I_{n}\right)
$$

4. Normal forms for codim 1 bifurcations

- Fold (LP) normal form:

$$
\xi \mapsto \beta+\xi+b(\beta) \xi^{2} \equiv f_{(\beta)}(\xi), \quad \xi, \beta \in \mathbb{R},
$$

where $b(0)>0$.

- At $\beta=0$ this map has fixed point $\xi_{0}=0$ with multiplier $\mu=1$.

$\beta<0$

$\beta=0$

$\beta>0$

For $\beta<0$ there are two fixed points

$$
\xi_{1,2}(\beta)= \pm \sqrt{-\frac{\beta}{b(\beta)}} .
$$

For $\beta>0$ the map has no fixed points.

- Flip (PD) normal form

$\xi \mapsto-(1+\beta) \xi+c(\beta) \xi^{3} \equiv f_{(\beta)}(\xi), \quad \xi, \beta \in \mathbb{R}$.
where $c(0) \neq 0$. At $\beta=0$ this map has fixed point $\xi_{0}=0$ with multiplier $\mu=-1$.

If $c(0)>0$, the second iterate $f_{(\beta)}^{2}$ has two stable fixed points for $\beta>0$, namely

$$
\xi_{1,2}= \pm \sqrt{\frac{\beta}{c(\beta)}}
$$

$\beta<0$

$\beta=0$

$\beta>0$

The map $f_{(\beta)}$ has the stable 2-cycle $\left\{\xi_{1}, \xi_{2}\right\}$.

- Neimark-Sacker (NS) normal form

$\xi \mapsto e^{i \theta(\beta)} \xi\left(1+\beta+d(\beta)|\xi|^{2}\right)+O\left(|\xi|^{4}\right), \quad \xi \in \mathbb{C}, \beta \in \mathbb{R}$,
where $0<\theta<\pi$ and $a(0)=\Re(d(0)) \neq 0$.
At $\beta=0$ the corresponding real planar map has fixed point $(0,0)$ with multipliers $\mu_{1,2}=$ $e^{ \pm i \theta(0)}$. Using $\xi=\rho e^{i \varphi}$ we obtain

$$
\left\{\begin{aligned}
\rho & \mapsto \rho\left(1+\beta+a(\beta) \rho^{2}\right)+O\left(\rho^{4}\right) \\
\varphi & \mapsto \varphi+\theta(\beta)+O\left(\rho^{2}\right)
\end{aligned}\right.
$$

where $a(\beta)=\Re(d(\beta))$ and the O-terms are 2π-periodic in φ.

$$
\begin{array}{ll}
\Im(\xi) & \Im(\xi)
\end{array}
$$

$\beta<0$

If $a(0)<0$, the real planar map has for $\beta>0$ a stable closed invariant curve near

$$
\rho_{0}(\beta)=\sqrt{-\frac{\beta}{a(\beta)}}
$$

Remarks on the normal forms

1. The LP and PD normal forms are topological normal forms, i.e. any one-dimensional map near the corresponding bifurcation can be transformed to them plus higher-order terms in ξ, which are irrelevant for the orbit topology.
2. In the NS-case:

- Only planar maps without strong resonances, i.e. for which

$$
e^{i \nu \theta(0)} \neq 1 \quad \text { for } \quad \nu=1,2,3,4,
$$

can be transformed near the NS-bifurcation to the above given normal form.

- Even in the absence of strong resonances, the orbit topology depends on the $O\left(|\xi|^{4}\right)-$ terms. Generically, there are either two k-cycles with some $k \geq 5$ in the closed invariant curve or all orbits are dense there.

5. Computation of the critical NF-coefficients

- Write the critical map with $F(0)=0$ as

$$
\tilde{x}=F(x), \quad x \in \mathbb{R}^{n}
$$

and restrict it to its $n_{c^{-}}$-dimensional center manifold:

$$
\begin{equation*}
x=H(\xi), \quad H: \mathbb{R}^{n_{c}} \rightarrow \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

- Assume that the restricted map is put into the normal form

$$
\tilde{\xi}=G(\xi), \quad G: \mathbb{R}^{n_{c}} \rightarrow \mathbb{R}^{n_{c}}
$$

The invariancy of $\mathrm{CM}, \tilde{x}=H(\tilde{\xi})$, gives the homological equation:

$$
F(H(\xi))=H(G(\xi))
$$

- Substitute the Taylor expansions:

$$
\begin{gathered}
F(x)=A x+\frac{1}{2} B(x, x)+\frac{1}{6} C(x, x, x)+O\left(\|x\|^{4}\right) \\
G(\xi)=\sum_{|\nu| \geq 1} \frac{1}{\nu!} g_{\nu} \xi^{\nu}, \quad H(\xi)=\sum_{|\nu| \geq 1} \frac{1}{\nu!} h_{\nu} \xi^{\nu}
\end{gathered}
$$

and collect ξ^{ν}-terms with the multi-index ν. All appearing linear systems for h_{ν} are solvable.

Fold (LP) bifurcation

Let $q, p \in \mathbb{R}^{n}$ satisfy

$$
A q=q, \quad A^{\top} p=p, \quad\langle q, q\rangle=\langle p, q\rangle=1
$$

Expand

$$
F(H)=A H+\frac{1}{2} B(H, H)+O\left(\|H\|^{3}\right)
$$

and parametrize the center manifold:

$$
H(\xi)=\xi q+\frac{1}{2} h_{2} \xi^{2}+O\left(\xi^{3}\right), \quad \xi \in \mathbb{R}, h_{2} \in \mathbb{R}^{n}
$$

The critical normal form is

$$
\tilde{\xi}=G(\xi)=\xi+b \xi^{2}+O\left(\xi^{3}\right)
$$

The equation $F(H(\xi))=H(G(\xi))$ reads as

$$
\begin{aligned}
& A\left(\xi q+\frac{1}{2} h_{2} \xi^{2}+\cdots\right)+\frac{1}{2} B(\xi q+\cdots, \xi q+\cdots)+\cdots \\
& \quad=\left(\xi+b \xi^{2}+\cdots\right) q+\frac{1}{2} h_{2}(\xi+\cdots)^{2}+\cdots
\end{aligned}
$$

The ξ^{2}-terms give the equation for h_{2} :

$$
\left(A-I_{n}\right) h_{2}=-B(q, q)+2 b q
$$

It is singular but solvable, thus

$$
b=\frac{1}{2}\langle p, B(q, q)\rangle
$$

Flip (PD) bifurcation

Let $q, p \in \mathbf{R}^{n}$ satisfy

$$
A q=-q, \quad A^{T} p=-p, \quad\langle q, q\rangle=\langle p, q\rangle=1 .
$$

Expand
$F(H)=A H+\frac{1}{2} B(H, H)+\frac{1}{6} C(H, H, H)+O\left(\|H\|^{4}\right)$,
and parametrize the center manifold as

$$
H(\xi)=\xi q+\frac{1}{2} h_{2} \xi^{2}+\frac{1}{6} h_{3} \xi^{3}+O\left(\xi^{4}\right)
$$

where $\xi \in \mathbb{R}, h_{2,3} \in \mathbb{R}^{n}$. The critical normal form is

$$
\tilde{\xi}=G(\xi)=-\xi+c \xi^{3}+O\left(\xi^{4}\right) .
$$

The ξ^{2}-terms in the homological equation give for h_{2} :

$$
\left(A-I_{n}\right) h_{2}=-B(q, q)
$$

Since $\mu=1$ is not an eigenvalue of A, the matrix ($A-I_{n}$) is nonsingular. Thus,

$$
h_{2}=-\left(A-I_{n}\right)^{-1} B(q, q) .
$$

The ξ^{3}-terms in the homological equation give the linear system for h_{3} :

$$
\left(A+I_{n}\right) h_{3}=6 c q-C(q, q, q)-3 B\left(q, h_{2}\right) .
$$

This system is singular, since $\left(A+I_{n}\right) q=0$, so it has a solution only if

$$
\left\langle p, 6 c q-C(q, q, q)-3 B\left(q, h_{2}\right)\right\rangle=0
$$

which implies

$$
c=\frac{1}{6}\langle p, C(q, q, q)\rangle+\frac{1}{2}\left\langle p, B\left(q, h_{2}\right)\right\rangle .
$$

Taking into account $h_{2}=-\left(A-I_{n}\right)^{-1} B(q, q)$, we get the invariant formula for the flip normal form coefficient:
$c=\frac{1}{6}\langle p, C(q, q, q)\rangle-\frac{1}{2}\left\langle p, B\left(q,\left(A-I_{n}\right)^{-1} B(q, q)\right)\right\rangle$.
Notice that all expressions can be evaluated in the original basis.

Neimark-Sacker (NS) bifurcation

Introduce two complex eigenvectors:

$$
A q=e^{i \theta_{0}} q, \quad A^{\top} p=e^{-i \theta_{0}} p,\langle q, q\rangle=\langle p, q\rangle=1,
$$

The homological equation takes the form

$$
F(H(\xi, \bar{\xi}))=H(G(\xi, \bar{\xi})),
$$

where

$$
\begin{aligned}
& H(\xi, \bar{\xi})=\xi q+\bar{\xi} \bar{q} \\
& +\sum_{2 \leq j+k \leq 3} \frac{1}{j!k!} h_{j k} \xi^{j} \bar{\xi}^{k}+O\left(|\xi|^{4}\right), \\
& F(H)=A H+\frac{1}{2} B(H, H)+\frac{1}{6} C(H, H, H)+O\left(\|H\|^{4}\right), \\
& \text { and }
\end{aligned}
$$

$$
G(\xi, \bar{\xi})=e^{i \theta_{0}} \xi+\frac{1}{2} G_{21} \xi|\xi|^{2}+O\left(|\xi|^{4}\right)
$$

Quadratic terms give

$$
\begin{aligned}
h_{20} & =\left(e^{2 i \theta_{0}} I_{n}-A\right)^{-1} B(q, q) \\
h_{11} & =\left(I_{n}-A\right)^{-1} B(q, \bar{q})
\end{aligned}
$$

While the $\xi^{2} \bar{\xi}$-terms give the singular system

$$
\begin{aligned}
\left(e^{i \theta_{0}} I_{n}-A\right) h_{21} & =C(q, q, \bar{q})+B\left(\bar{q}, h_{20}\right) \\
& +2 B\left(q, h_{11}\right)-G_{21} q
\end{aligned}
$$

The solvability of this system is equivalent to $\left\langle p, C(q, q, \bar{q})+B\left(\bar{q}, h_{20}\right)+2 B\left(q, h_{11}\right)-G_{21} q\right\rangle=0$, so the cubic normal form coefficient can be expressed as

$$
\begin{aligned}
G_{21} & =\left\langle p, C(q, q, \bar{q})+B\left(\bar{q},\left(e^{2 i \theta_{0}} I_{n}-A\right)^{-1} B(q, q)\right)\right. \\
& \left.+2 B\left(q,\left(I_{n}-A\right)^{-1} B(q, \bar{q})\right)\right\rangle
\end{aligned}
$$

Then the direction of the Neimark-Sacker bifurcation is determined by

$$
a=\frac{1}{2} \Re\left(e^{-i \theta_{0}} G_{21}\right)
$$

Detection of codim 2 bifurcations

Codim 2 bifurcations along the LP-curve:

- Test functions:

$$
\begin{aligned}
& \psi_{1}=2 a=\langle p, B(q, q)\rangle, \quad\langle q, q\rangle=\langle p, q\rangle=1, \\
& \psi_{2}=\langle p, q\rangle,\langle q, q\rangle=\langle p, p\rangle=1, \\
& \psi_{3}=\operatorname{det}\left(A+I_{n}\right), \\
& \psi_{4}=\operatorname{det}\left(A \odot A-I_{m}\right), \\
& \text { where } m=\frac{1}{2} n(n-1) \text { and } \\
& \qquad A q=q, A^{\top} p=p .
\end{aligned}
$$

- Singularities:

```
- cusp ( \(\psi_{1}=0\) )
- 1:1 resonance ( \(\psi_{2}=0\) )
- fold-flip ( \(\psi_{3}=0\) )
- fold-NS \(\left(\psi_{4}=0, \psi_{2} \neq 0\right)\)
```


Codim 2 bifurcations along the PD-curve:

- Test functions:

$$
\begin{aligned}
\psi_{1}= & 6 b=\langle p, C(q, q, q)\rangle \\
& -3\left\langle p, B\left(q,\left(A-I_{n}\right)^{-1} B(q, q)\right)\right\rangle \\
& \langle q, q\rangle=\langle p, q\rangle=1 \\
\psi_{2}= & \langle p, q\rangle, \quad\langle q, q\rangle=\langle p, p\rangle=1 \\
\psi_{3}= & \operatorname{det}\left(A-I_{n}\right) \\
\psi_{4}= & \operatorname{det}\left(A \odot A-I_{m}\right)
\end{aligned}
$$

where $m=\frac{1}{2} n(n-1)$ and

$$
A q=-q, \quad A^{\top} p=-p
$$

- Singularities:
- generalized flip ($\psi_{1}=0$)
$-1: 2$ resonance $\left(\psi_{2}=0\right)$
- fold-flip $\left(\psi_{3}=0\right)$
$-\mathrm{flip-NS}\left(\psi_{4}=0, \psi_{2} \neq 0\right)$

Codim 2 bifurcations along the NS-curve:

- Test functions:

$$
\begin{aligned}
\psi_{1} & =\Re\left(e^{-i \theta_{0}} G_{21}\right), \\
\psi_{2} & =\kappa-1, \\
\psi_{3} & =\operatorname{det}\left(A-I_{n}\right), \\
\psi_{4} & =\operatorname{det}\left(A+I_{n}\right), \\
\psi_{5} & =\operatorname{det}\left(A^{\perp} \odot A^{\perp}-I_{m}\right), \\
\psi_{6} & =\kappa+1, \\
\psi_{7} & =\kappa+\frac{1}{2}, \\
\psi_{8} & =\kappa,
\end{aligned}
$$

where A^{\perp} is the restriction of A to the orthogonal complement to the critical NS-eigenspace; $m=\frac{1}{2}(n-2)(n-3)$.

- Singularities:
- generalized NS ($\psi_{1}=0$)
- fold-NS ($\psi_{3}=0, \psi_{2} \neq 0$)
- flip-NS ($\psi_{4}=0, \psi_{6} \neq 0$)
- double NS ($\psi_{5}=0$)
- 1:1 resonance ($\psi_{2}=\psi_{3}=0$)
- 1:2 resonance ($\psi_{4}=\psi_{6}=0$)
- 1:3 resonance ($\psi_{7}=0$)
- 1:4 resonance ($\psi_{8}=0$)

