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1. Fixed points and cycles

• Consider a family of smooth maps

x 7→ f(x, α) ≡ f(α)(x), x ∈ R
n, α ∈ R,

• A fixed point x0 satisfies f(x0, α) = x0.

A k-cycle {x0, x1, x2, . . . , xk−1} satisfies

f(x0, α0) = x1
f(x1, α0) = x2

· · ·
f(xk−1, α0) = x0



















⇒ fk(α)(x0) = x0

All points xj, j = 0,1, . . . , k − 1 of the cycle

are assumed to be different.

• Fixed point manifold:

α

x

f (x, α) − x = 0
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Critical stability cases

• Let x0 ∈ Rn be a fixed point at parameter

value α0 and A0 = fx(x0, α0).

If |µ| < 1 for each eigenvalue (multiplier) µ

of A0, x0 is stable.

If |µ| > 1 for at least one eigenvalue µ of A0,

x0 is unstable.

• Critical cases:

1 −1

µ1 θ0

µ1

µ1

µ2

– Fold (LP): µ1 = 1;

– Flip (PD): µ1 = −1;

– Neimark-Sacker (NS): µ1,2 = e±iθ0,

0 < θ0 < π.
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2. Detection of codim 1 bifurcations

• Test functions:

ψ1 = det

(

fx fα
vT

)

ψ2 = vn+1

ψ3 = det(A(x, α) + In)

ψ4 = det(A(x, α) ⊙ A(x, α) − Im),

where A(x, α) = fx(x, α), v ∈ Rn+1 is the

normalized tangent vector to the fixed point

manifold,

m =
n(n− 1)

2
,

and ⊙ stands for the bialternate matrix

product.

• Singularities:

– branching point BP (ψ1 = 0)

– LP: µ1 = 1 (ψ2 = 0, ψ1 6= 0)

– PD: µ1 = −1 (ψ3 = 0)

– NS: µ1µ2 = 1 (ψ4 = 0)
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3. Continuation of codim 1 bifurcations

LP and PD curves:

• ALCP with (x, α) ∈ Rn+2

{

f(x, α) − x = 0
det(A(u, α) ∓ In) = 0

have disadvantages. Consider an equivalent

defining ALCP:
{

f(x, α) − x = 0
g(x, α) = 0

where g(x, α) is obtained from the bordered

system:
(

B(x, α) w0

vT0 0

)(

v

g

)

=

(

0
1

)

,

with B(x, α) = A(x, α) ∓ In. The vectors

v0, w0 ∈ Rn are selected to make

M(x, α) =

(

B(x, α) w0

vT0 0

)

nonsingular. Then

g(x, α) =
detB(x, α)

detM(x, α)
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• Let z be a component of x or α. The deriva-

tive gz can be expressed explicitly as

gz = −wTBz(x, α)v,

where (w h)T is the solution to

MT

(

w

h

)

=

(

0
1

)

.

• Alternative ALCPs:

(x, v, α) ∈ R
2n+2

Fold (LP):










f(x, α) − x = 0
A(x, α)v − v = 0

〈v0, v〉 − 1 = 0

Flip:










f(x, α) − x = 0
A(x, α)v+ v = 0

〈v0, v〉 − 1 = 0
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Neimark-Sacker (NS) curve:

The n× n-matrix

C(x, α, κ) = A2(x, α) − 2κA(x, α) + In

with κ = cos θ0 has rank n − 2 at the Neimark-

Sacker point, where A = fx has two simple com-

plex eigenvalues µ1,2 = e±iθ0.

• ALCP with (x, α, κ) ∈ Rn+3











f(x, α) − x = 0,
g11(x, α, κ) = 0,
g22(x, α, κ) = 0,

where gkk(x, α, κ) are obtained by solving the

double-bordered system:






C(x, α, κ) W1 W2

V T
1 0 0

V T
2 0 0













H1 H2
g11 g12
g21 g22





 =







0 0
1 0
0 1





 .

Here the vectors Vj,Wj are selected to make

this linear system nonsingular. At a Neimark-

Sacker point, all gij = 0.
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Alternative defining ALCPs:

• Single bordered: (x, α) ∈ Rn+2

{

f(x, α) − x = 0
g(x, α) = 0,

where g(x, α) is obtained from the bordered

system:
(

A(x, α) ⊙ A(x, α) − Im W0

V T
0 0

)(

V

g

)

=

(

0
1

)

,

where V ∈ Rm and V0,W0 ∈ Rm are selected

to make the system nonsingular.

• Extended system: (x, v, κ, α) ∈ R2n+3



















f(x, α) − x = 0

(A2(x, α) − 2κA(x, α) + In)v = 0
〈v0, v〉 − 1 = 0

〈v1, v〉 = 0,

where v0,1 ∈ Rn are not orthogonal to

N (A2(u, α) − 2κA(u, α) + In).
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4. Normal forms for codim 1 bifurcations

• Fold (LP) normal form:

ξ 7→ β + ξ+ b(β)ξ2 ≡ f(β)(ξ), ξ, β ∈ R,

where b(0) > 0.

• At β = 0 this map has fixed point ξ0 = 0

with multiplier µ = 1.

µ = 1

0

β < 0 β = 0 β > 0

ξ

ξ̃ ξ̃ ξ̃

ξ ξ

ξ2

ξ1

f(β)(ξ) f(β)(ξ) f(β)(ξ)

For β < 0 there are two fixed points

ξ1,2(β) = ±

√

−
β

b(β)
.

For β > 0 the map has no fixed points.
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• Flip (PD) normal form

ξ 7→ −(1 + β)ξ+ c(β)ξ3 ≡ f(β)(ξ), ξ, β ∈ R.

where c(0) 6= 0. At β = 0 this map has fixed

point ξ0 = 0 with multiplier µ = −1.

If c(0) > 0, the second iterate f2
(β)

has two

stable fixed points for β > 0, namely

ξ1,2 = ±

√

β

c(β)
.

0

ξ̃

f2
(β)

(ξ)

β < 0 β = 0 β > 0

ξ ξ

ξ̃ ξ̃

f2
(β)

(ξ)
f2
(0)

(ξ)
ξ2

ξ1 ξ

The map f(β) has the stable 2-cycle {ξ1, ξ2}.

µ = −1

0

ξ̃ ξ̃ ξ̃

ξξξ

f(β)(ξ)
f(β)(ξ)

ξ2

ξ1

f(0)(ξ)

β < 0 β = 0 β > 0
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• Neimark-Sacker (NS) normal form

ξ 7→ eiθ(β)ξ(1+β+d(β)|ξ|2)+O(|ξ|4), ξ ∈ C, β ∈ R,

where 0 < θ < π and a(0) = ℜ(d(0)) 6= 0.

At β = 0 the corresponding real planar map

has fixed point (0,0) with multipliers µ1,2 =

e±iθ(0). Using ξ = ρeiϕ we obtain
{

ρ 7→ ρ(1 + β + a(β)ρ2) +O(ρ4)

ϕ 7→ ϕ+ θ(β) +O(ρ2),

where a(β) = ℜ(d(β)) and the O-terms are

2π-periodic in ϕ.

β < 0 β = 0

ℑ(ξ)

β > 0

ℜ(ξ)0

ℑ(ξ) ℑ(ξ)

ℜ(ξ) ℜ(ξ)

If a(0) < 0, the real planar map has for β > 0

a stable closed invariant curve near

ρ0(β) =

√

−
β

a(β)
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Remarks on the normal forms

1. The LP and PD normal forms are topologi-

cal normal forms, i.e. any one-dimensional

map near the corresponding bifurcation can

be transformed to them plus higher-order

terms in ξ, which are irrelevant for the orbit

topology.

2. In the NS-case:

• Only planar maps without strong reso-

nances, i.e. for which

eiνθ(0) 6= 1 for ν = 1,2,3,4,

can be transformed near the NS-bifurcation

to the above given normal form.

• Even in the absence of strong resonances,

the orbit topology depends on the O(|ξ|4)-

terms. Generically, there are either two

k-cycles with some k ≥ 5 in the closed in-

variant curve or all orbits are dense there.
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5. Computation of the critical NF-coefficients

• Write the critical map with F(0) = 0 as

x̃ = F(x), x ∈ R
n,

and restrict it to its nc-dimensional center

manifold:

x = H(ξ), H : R
nc → R

n, (6)

• Assume that the restricted map is put into

the normal form

ξ̃ = G(ξ), G : R
nc → R

nc.

The invariancy of CM, x̃ = H(ξ̃), gives the

homological equation:

F(H(ξ)) = H(G(ξ)).

• Substitute the Taylor expansions:

F(x) = Ax+
1

2
B(x, x)+

1

6
C(x, x, x)+O(‖x‖4),

G(ξ) =
∑

|ν|≥1

1

ν!
gνξ

ν, H(ξ) =
∑

|ν|≥1

1

ν!
hνξ

ν,

and collect ξν-terms with the multi-index ν.

All appearing linear systems for hν are solv-

able.
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Fold (LP) bifurcation

Let q, p ∈ Rn satisfy

Aq = q, ATp = p, 〈q, q〉 = 〈p, q〉 = 1.

Expand

F(H) = AH +
1

2
B(H,H) +O(‖H‖3)

and parametrize the center manifold:

H(ξ) = ξq+
1

2
h2ξ

2 +O(ξ3), ξ ∈ R, h2 ∈ R
n.

The critical normal form is

ξ̃ = G(ξ) = ξ+ bξ2 +O(ξ3).

The equation F(H(ξ)) = H(G(ξ)) reads as

A(ξq+
1

2
h2ξ

2 + · · ·) +
1

2
B(ξq + · · · , ξq+ · · ·) + · · ·

= (ξ+ bξ2 + · · ·)q+
1

2
h2(ξ+ · · ·)2 + · · ·

The ξ2-terms give the equation for h2:

(A− In)h2 = −B(q, q) + 2bq.

It is singular but solvable, thus

b =
1

2
〈p,B(q, q)〉
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Flip (PD) bifurcation

Let q, p ∈ R
n satisfy

Aq = −q, ATp = −p, 〈q, q〉 = 〈p, q〉 = 1.

Expand

F(H) = AH+
1

2
B(H,H)+

1

6
C(H,H,H)+O(‖H‖4),

and parametrize the center manifold as

H(ξ) = ξq+
1

2
h2ξ

2 +
1

6
h3ξ

3 +O(ξ4),

where ξ ∈ R, h2,3 ∈ Rn. The critical normal form

is

ξ̃ = G(ξ) = −ξ+ cξ3 +O(ξ4).

The ξ2-terms in the homological equation give

for h2:

(A− In)h2 = −B(q, q).

Since µ = 1 is not an eigenvalue of A, the matrix

(A− In) is nonsingular. Thus,

h2 = −(A− In)
−1B(q, q).
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The ξ3-terms in the homological equation give

the linear system for h3:

(A+ In)h3 = 6cq − C(q, q, q) − 3B(q, h2).

This system is singular, since (A+ In)q = 0, so

it has a solution only if

〈p,6cq − C(q, q, q) − 3B(q, h2)〉 = 0,

which implies

c =
1

6
〈p, C(q, q, q)〉 +

1

2
〈p, B(q, h2)〉.

Taking into account h2 = −(A − In)−1B(q, q),

we get the invariant formula for the flip normal

form coefficient:

c =
1

6
〈p, C(q, q, q)〉 −

1

2
〈p,B(q, (A− In)

−1B(q, q))〉.

Notice that all expressions can be evaluated in

the original basis.
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Neimark-Sacker (NS) bifurcation

Introduce two complex eigenvectors:

Aq = eiθ0q, ATp = e−iθ0p, 〈q, q〉 = 〈p, q〉 = 1,

The homological equation takes the form

F(H(ξ, ξ)) = H(G(ξ, ξ)),

where

H(ξ, ξ) = ξq+ ξ q

+
∑

2≤j+k≤3

1

j!k!
hjkξ

jξk +O(|ξ|4),

F(H) = AH+
1

2
B(H,H)+

1

6
C(H,H,H)+O(‖H‖4),

and

G(ξ, ξ) = eiθ0ξ+
1

2
G21ξ|ξ|

2 +O(|ξ|4).
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Quadratic terms give

h20 = (e2iθ0In − A)−1B(q, q),

h11 = (In − A)−1B(q, q).

While the ξ2ξ-terms give the singular system

(eiθ0In −A)h21 = C(q, q, q) +B(q, h20)

+ 2B(q, h11) −G21q.

The solvability of this system is equivalent to

〈p, C(q, q, q)+B(q, h20)+2B(q, h11)−G21q〉 = 0,

so the cubic normal form coefficient can be ex-

pressed as

G21 = 〈p, C(q, q, q) +B(q, (e2iθ0In −A)−1B(q, q))

+ 2B(q, (In − A)−1B(q, q))〉,

Then the direction of the Neimark-Sacker bifur-

cation is determined by

a =
1

2
ℜ(e−iθ0G21).

19



Detection of codim 2 bifurcations

Codim 2 bifurcations along the LP-curve:

• Test functions:

ψ1 = 2a = 〈p, B(q, q)〉, 〈q, q〉 = 〈p, q〉 = 1,

ψ2 = 〈p, q〉, 〈q, q〉 = 〈p, p〉 = 1,

ψ3 = det(A+ In),

ψ4 = det(A⊙ A− Im),

where m = 1
2n(n− 1) and

Aq = q, ATp = p.

• Singularities:

– cusp (ψ1 = 0)

– 1:1 resonance (ψ2 = 0)

– fold-flip (ψ3 = 0)

– fold-NS (ψ4 = 0, ψ2 6= 0)
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Codim 2 bifurcations along the PD-curve:

• Test functions:

ψ1 = 6b = 〈p, C(q, q, q)〉

− 3〈p, B(q, (A− In)
−1B(q, q))〉,

〈q, q〉 = 〈p, q〉 = 1,

ψ2 = 〈p, q〉, 〈q, q〉 = 〈p, p〉 = 1,

ψ3 = det(A− In),

ψ4 = det(A⊙ A− Im),

where m = 1
2n(n− 1) and

Aq = −q, ATp = −p.

• Singularities:

– generalized flip (ψ1 = 0)

– 1:2 resonance (ψ2 = 0)

– fold-flip (ψ3 = 0)

– flip-NS (ψ4 = 0, ψ2 6= 0)
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Codim 2 bifurcations along the NS-curve:

• Test functions:

ψ1 = ℜ(e−iθ0G21),

ψ2 = κ− 1,

ψ3 = det(A− In),

ψ4 = det(A+ In),

ψ5 = det(A⊥ ⊙A⊥ − Im),

ψ6 = κ+ 1,

ψ7 = κ+
1

2
,

ψ8 = κ,

where A⊥ is the restriction of A to the or-

thogonal complement to the critical NS-eigen-

space; m = 1
2(n− 2)(n− 3).

• Singularities:
– generalized NS (ψ1 = 0)
– fold-NS (ψ3 = 0, ψ2 6= 0)
– flip-NS (ψ4 = 0, ψ6 6= 0)
– double NS (ψ5 = 0)
– 1:1 resonance (ψ2 = ψ3 = 0)
– 1:2 resonance (ψ4 = ψ6 = 0)
– 1:3 resonance (ψ7 = 0)
– 1:4 resonance (ψ8 = 0)
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