Lecture 5

Numerical continuation of connecting orbits of iterated maps and ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

May 26, 2009

1

Contents

- 1. Point-to-point connections.
- 2. Continuation of homoclinic orbits of maps.
- 3. Continuation of homoclinic orbits of ODEs.
- 4. Continuation of invariant subspaces.
- 5. Detection of higher-order singularities.
- 6. Cycle-to-cycle connections in 3D ODEs.

1. Point-to-point connections

• Consider a diffeomorphism

 $x \mapsto f(x), \quad x \in \mathbb{R}^n,$ having fixed points x^- and x^+ , $f(x^{\pm}) = x^{\pm}.$

Def. 1 An orbit $\Gamma = \{x_k\}_{k \in \mathbb{Z}}$ where $x_{k+1} = f(x_k)$, is called **heteroclinic** between x^- and x^+ if

If $x^{\pm} = x^0$, it is called **homoclinic** to x^0 .

• Introduce unstable and stable invariant sets

$$W^{u}(x^{-}) = \{x \in \mathbb{R}^{n} : \lim_{k \to \infty} f^{-k}(x) = x^{-}\},$$
$$W^{s}(x^{+}) = \{x \in \mathbb{R}^{n} : \lim_{k \to +\infty} f^{k}(x) = x^{+}\}.$$
$$\text{Then } \Gamma \subset W^{u}(x^{-}) \cap W^{s}(x^{+}).$$

• Def. 2 A homoclinic orbit Γ is called regular if $f_x(x^0)$ has no eigenvalues with $|\mu| = 1$ and the intersection of $W^u(x^0)$ and $W^s(x^0)$ along Γ is transversal.

- The presence of a regular homoclinic orbit implies the existence of infinite number of cycles of *f* nearby (Poincaré–Birkhoff– Smale–Shilnikov Theorem).
- In families of diffeomorphisms

$$x \mapsto f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R},$$

regular homoclinic orbts exist in open parameter intervals. • Consider a family of ODEs

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R},$$

having equilibria x^- and x^+ , $f(x^{\pm}, \alpha) = 0$. **Def. 3** An orbit $\Gamma = \{x = x(t) : t \in \mathbb{R}\},$ where x(t) is a solution to the ODE system at some α , is called **heteroclinic** between x^- and x^+ if

If $x^{\pm} = x^0$, it is called **homoclinic** to x^0 .

• Introduce unstable and stable invariant sets

$$W^{u}(x^{-}) = \{x(0) \in \mathbb{R}^{n} : \lim_{t \to -\infty} x(t) = x^{-}\},\$$
$$W^{s}(x^{+}) = \{x(0) \in \mathbb{R}^{n} : \lim_{t \to +\infty} x(t) = x^{+}\}.$$
Then $\Gamma \subset W^{u}(x^{-}) \cap W^{s}(x^{+}).$

• The intersection of $W^u(x^0)$ and $W^s(x^0)$ cannot be transversal along a homoclinic orbit Γ , since $\dot{x}(t) \in T_{x(t)}W^u(x^0) \cap T_{x(t)}W^s(x^0)$.

• Homoclinic orbts exist in generic ODE families only at isolated parameter values.

Def. 4 A homoclinic orbit Γ is called regular if

- $f_x(x^0)$ has no eigenvalues with $\Re(\lambda) = 0$;
- dim $(T_{x(t)}W^u(x^0) \cap T_{x(t)}W^s(x^0)) = 1;$
- The intersection of the **traces** of $W^u(x^0)$ and $W^s(x^0)$ along Γ is transversal in the (x, α) -space.

7

2. Continuation of homoclinic orbits of maps

• Homoclinic problem

$$\begin{cases} f(x^{0}, \alpha) - x^{0} = 0, \\ x_{k+1} - f(x_{k}, \alpha) = 0, \ k \in \mathbb{Z}, \\ \lim_{k \to \pm \infty} x_{k} - x^{0} = 0. \end{cases}$$

 Truncate with the projection boundary conditions:

$$\begin{cases} f(x^{0}, \alpha) - x^{0} = 0, \\ x_{k+1} - f(x_{k}, \alpha) = 0, \ k \in [-K, K-1], \\ L_{s}^{\mathsf{T}}(x^{0}, \alpha)(x_{-K} - x^{0}) = 0, \\ L_{u}^{\mathsf{T}}(x^{0}, \alpha)(x_{+K} - x^{0}) = 0, \end{cases}$$

where the columns of L_s and L_u span the orthogonal complements to $T^u = T_{x^0} W^u(x^0)$ and $T^s = T_{x^0} W^s(x^0)$, resp.

8

• Assume the eigenvalues of $A = f_x(x^0, \alpha)$ are arranged as follows:

 $|\mu_{n_s}| \leq \cdots \leq |\mu_1| < 1 < |\lambda_1| \leq \cdots \leq |\lambda_{n_u}|$ If $V^* = \{v_1^*, \dots, v_{n_s}^*\}$ and $W^* = \{w_1^*, \dots, w_{n_u}^*\}$ span the stable and unstable eigenspaces of A^{T} , then **Fredholm's Alternative** implies: $L_s = [V^*]$ and $L_u = [W^*]$.

• Let (μ, λ) satisfy $|\mu_1| < \mu < 1 < \lambda < |\lambda_1|$ and $\nu = \max(\mu, \lambda^{-1})$.

Th. 1 (Beyn–Kleinkauf) There is a locally unique solution to the truncated problem for a regular homoclinic orbit with an error that is $O(\nu^{2K})$.

• The truncated system is an ALCP in $\mathbb{R}^{2nK+2n+1}$ to which the standard continuation methods are applicable.

3. Continuation of homoclinic orbits of ODEs

Homoclinic problem

$$\begin{cases} f(x^0, \alpha) = 0, \\ \dot{x}(t) - f(x(t), \alpha) = 0, \\ \lim_{t \to \pm \infty} x(t) - x^0 = 0, \ t \in \mathbb{R}, \\ \int_{-\infty}^{\infty} \langle \dot{y}(t), x(t) - y(t) \rangle dt = 0, \end{cases}$$

where y is a reference homoclinic solution.

 Truncate with the projection boundary conditions:

$$\begin{cases} f(x^{0}, \alpha) = 0, \\ \dot{x}(t) - f(x(t), \alpha) = 0, t \in [-T, T] \\ L_{s}^{\mathsf{T}}(x^{0}, \alpha)(x(-T) - x^{0}) = 0, \\ L_{u}^{\mathsf{T}}(x^{0}, \alpha)(x(+T) - x^{0}) = 0, \\ \int_{-T}^{T} \langle \dot{y}(t), x(t) - y(t) \rangle dt = 0, \end{cases}$$

where the columns of L_s and L_u span the orthogonal complements to $T^u = T_{x^0} W^u(x^0)$ and $T^s = T_{x^0} W^s(x^0)$, resp.

• The truncated system is a BVCP to which the standard discretization and continuation methods are applicable when $\alpha \in \mathbb{R}^2$.

• Assume the eigenvalues of $A = f_x(x^0, \alpha)$ are arranged as follows:

 $\Re(\mu_{n_s}) \leq \cdots \leq \Re(\mu_1) < 0 < \Re(\lambda_1) \leq \cdots \leq \Re(\lambda_{n_u})$ If $V^* = \{v_1^*, \dots, v_{n_s}^*\}$ and $W^* = \{w_1^*, \dots, w_{n_u}^*\}$ span the stable and unstable eigenspaces of A^{T} , then $L_s = [V^*]$ and $L_u = [W^*]$.

• Let (μ, λ) satisfy $\Re(\mu_1) < \mu < 0 < \lambda < \Re(\lambda_1)$ and $\omega = \min(|\mu|, \lambda)$.

Th. 2 (Beyn) There is a locally unique solution to the truncated problem for a regular homoclinic orbit with the $(x(\cdot), \alpha)$ -error that is $O(e^{-2\omega T})$.

Remarks:

1. If W^u is **one-dimensional**, one can use the explicit boundary conditions

$$\begin{array}{rcl} x(-T) - (x^0 + \varepsilon w_1) &=& 0, \\ \langle w_1^*, x(T) - x^0 \rangle &=& 0, \end{array}$$

where $Aw_1 = \lambda_1 w_1$ and $A^{\top} w_1^* = \lambda_1 w_1^*$, without the integral phase condition.

- 2. Under implementation in MATCONT with possibilities to start
 - (i) from a large period cycle;
 - (ii) by homotopy.
 - (iii) from a codim 2 bifurcations of equilibria,i.e. BT and ZH;
- 3. Th. 3 (L.P. Shilnikov) There is always at least one limit cycle arbitrary close to Γ near the bifurcation. There are infinitely many cycles nearby when μ_1 and λ_1 are both complex, or when one of them is complex and has the smallest absolute value of the real part.

4. Continuation of invariant subspaces

Th. 4 (Smooth Schur Block Factorization) Any paramter-dependent matrix $A(s) \in \mathbb{R}^{n \times n}$ with nontrivial stable and unstable eigenspaces can be written as

$$A(s) = Q(s) \begin{bmatrix} R_{11}(s) & R_{12}(s) \\ 0 & R_{22}(s) \end{bmatrix} Q^{\mathsf{T}}(s),$$

where $Q(s) = [Q_1(s) \ Q_2(s)]$ such that

- Q(s) is orthogonal, i.e. $Q^{\top}(s)Q(s) = I_n$;
- the eigenvalues of $R_{11}(s) \in \mathbb{R}^{m \times m}$ are the unstable eigenvalues of A(s), while the eigenvalues of $R_{22}(s) \in \mathbb{R}^{(n-m) \times (n-m)}$ are the remaning (n-m) eigenvalues of A(s);
- the columns of $Q_1(s) \in \mathbb{R}^{n \times m}$ span the eigenspace $\mathcal{E}(s)$ of A(s) corresponding to its munstable eigenvalues;
- the columns of $Q_2(s) \in \mathbb{R}^{n \times (n-m)}$ span the orthogonal complement $\mathcal{E}^{\perp}(s)$.
- $Q_i(s)$ and $R_{ij}(s)$ have the same smoothness as A(s).

Then holds the **invariant subspace relation**:

$$Q_2^{\mathsf{T}}(s)A(s)Q_1(s) = 0.$$

CIS-algorithm [Dieci & Friedman]

• Define

$$\begin{bmatrix} T_{11}(s) & T_{12}(s) \\ T_{21}(s) & T_{22}(s) \end{bmatrix} = Q^{\mathsf{T}}(0)A(s)Q(0)$$

for small |s|, where $T_{11}(s) \in \mathbb{R}^{m \times m}$.

• Compute by Newton's method $Y \in \mathbb{R}^{(n-m) \times m}$ satisfying the **Riccati matrix equation**

 $YT_{11}(s) - T_{22}(s)Y + YT_{12}(s)Y = T_{21}(s).$

• Then Q(s) = Q(0)U(s) where

$$U(s) = \begin{bmatrix} U_1(s) & U_2(s) \end{bmatrix}$$

with

$$U_1(s) = \begin{pmatrix} I_m \\ Y \end{pmatrix} (I_{n-m} + Y^{\mathsf{T}}Y)^{-\frac{1}{2}},$$

$$U_2(s) = \begin{pmatrix} -Y^{\mathsf{T}} \\ I_{n-m} \end{pmatrix} (I_{n-m} + YY^{\mathsf{T}})^{-\frac{1}{2}},$$

so that columns of $Q_1(s) = Q(0)U_1(s)$ and $Q_2(s) = Q(0)U_2(s)$ form orthogonal bases in $\mathcal{E}(s)$ and $\mathcal{E}^{\perp}(s)$.

5. Detection of higher-order singularities

 For homoclinic orbits to fixed points, x⁰ can exhibit one of codim 1 bifucations. LP's of the (truncated) ALCP correspond to homoclinic tangencies:

- For homoclinic orbits to equilibria, there are many codim 2 cases:
 - 1. fold or Hopf bifurcations of x^0 ;
 - 2. special eigenvalue configurations (e.g. $\sigma = \Re(\mu_1) + \Re(\lambda_1) = 0$ or $\mu_1 \mu_2 = 0$);
 - 3. change of global topology of W^s and W^n (orbit and inclination flips);
 - 4. higher nontransversality.

6. Cycle-to-cycle connections in 3D ODEs

• Consider

$$\dot{x} = f(x, \alpha), \quad x \in \mathbb{R}^n, \alpha \in \mathbb{R}^p.$$

- Let O^- be a limit cycle with only one (trivial) multiplier satisfying $|\mu| = 1$ and having dim $W^u_- = m^-_u$.
- Let O^+ be a limit cycle with only one (trivial) multiplier satisfying $|\mu| = 1$ and having dim $W^s_+ = m^+_s$.
- Let x[±](t) be periodic solutions (with minimal periods T[±]) corresponding to O[±] and M[±] the corresponding monodromy matrices, i.e. M(T[±]) where

$$\dot{M} = f_x(x^{\pm}(t), \alpha)M, \quad M(0) = I_n.$$

• Then $m_s^+ = n_s^+ + 1$ and $m_u^- = n_u^- + 1$, where n_s^+ and n_u^- are the numbers of eigenvalues of M^{\pm} satisfying $|\mu| < 1$ and $|\mu| > 1$, resp.

Isolated families of connecting orbits

- Beyn's equality: $p = n m_s^+ m_u^- + 2$.
- The cycle-to-cycle connections in \mathbb{R}^3 :

homoclinic orbit \Rightarrow infinite number of cycles

Truncated **BVCP**

- The connecting solution u(t) is **truncated** to an interval $[\tau_{-}, \tau_{+}]$.
- The points $u(\tau_+)$ and $u(\tau_-)$ are required to belong to the linear subspaces that are tangent to the stable and unstable invariant manifolds of O^+ and O^- , respectively:

$$\begin{cases} L_{+}^{\mathsf{T}}(u(\tau_{+}) - x^{+}(0)) = 0, \\ L_{-}^{\mathsf{T}}(u(\tau_{-}) - x^{-}(0)) = 0. \end{cases}$$

 Generically, the truncated BVP composed of the ODE, the above projection BC's, and a phase condition on u, has a unique solution family (û, â), provided that the ODE has a connecting solution family satisfying the pahase condition and Beyn's equality. **Th. 5 (Pampel–Dieci–Rebaza)** If u is a generic connecting solution to the ODE at parameter value α , then the following estimate holds:

 $\|(u|_{[\tau_{-},\tau_{+}]}, \alpha) - (\hat{u}, \hat{\alpha})\| \le C e^{-2\min(\mu_{-}|\tau_{-}|,\mu_{+}|\tau_{+}|)},$ where

- $\|\cdot\|$ is an appropriate norm in the space $C^1([\tau_-, \tau_+], \mathbb{R}^n) \times \mathbb{R}^p$,
- $u|_{[\tau_-,\tau_+]}$ is the restriction of u to the truncation interval,
- μ_{\pm} are determined by the eigenvalues of the monodromy matrices M^{\pm} .

Adjoint variational eqiation:

$$\dot{w} = -f_x^{\mathsf{T}}(x^{\pm}(t), \alpha)w, \quad w \in \mathbb{R}^n.$$

Let N(t) be the solution to

$$\dot{N} = -f_x^{\mathsf{T}}(x^{\pm}(t), \alpha)N, \quad N(0) = I_n.$$

Then $N(T^{\pm}) = [M^{-1}(T^{\pm})]^{\top}$.

The defining BVCP in 3D

Cycle-related equations:

• Periodic solutions:

$$\begin{cases} \dot{x}^{\pm} - f(x^{\pm}, \alpha) = 0, \\ x^{\pm}(0) - x^{\pm}(T^{\pm}) = 0. \end{cases}$$

• Adjoint eigenfunctions: $\mu^+ = \frac{1}{\mu_u^+}$, $\mu^- = \frac{1}{\mu_s^-}$.

$$\begin{cases} \dot{w}^{\pm} + f_u^{\top}(x^{\pm}, \alpha) w^{\pm} &= 0, \\ w^{\pm}(T^{\pm}) - \mu^{\pm} w^{\pm}(0) &= 0, \\ \langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 &= 0, \end{cases}$$

or equivalently

$$\begin{cases} \dot{w}^{\pm} + f_u^{\top}(x^{\pm}, \alpha) w^{\pm} + \lambda^{\pm} w^{\pm} &= 0, \\ w^{\pm}(T^{\pm}) - s^{\pm} w^{\pm}(0) &= 0, \\ \langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 &= 0, \end{cases}$$

where $\lambda^{\pm} = \ln |\mu^{\pm}|, \ s^{\pm} = \operatorname{sign}(\mu^{\pm}).$

• Projection BC: $\langle w^{\pm}(0), u(\tau_{\pm}) - x^{\pm}(0) \rangle = 0.$

Connection-related equations:

• The equation for the connection:

$$\dot{u}-f(u,\alpha)=0$$
.

- We need the base points $x^{\pm}(0)$ to move freely and independently upon each other along the corresponding cycles O^{\pm} .
- We require the end-point of the connection to belong to a plane orthogonal to the vector $f(x^+(0), \alpha)$, and the starting point of the connection to belong to a plane orthogonal to the vector $f(x^-(0), \alpha)$:

$$\langle f(x^{\pm}(0), \alpha), u(\tau_{\pm}) - x^{\pm}(0) \rangle = 0$$
.

The defining BVCP in 3D:

There is an efficient **homotopy method** to find a starting solution.