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1. Point-to-point connections

• Consider a diffeomorphism

x 7→ f(x), x ∈ R
n,

having fixed points x− and x+, f(x±) = x±.

Def. 1 An orbit Γ = {xk}k∈Z where xk+1 =

f(xk), is called heteroclinic between x− and

x+ if

lim
k→±∞

xk = x±.
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If x± = x0, it is called homoclinic to x0.

• Introduce unstable and stable invariant sets

Wu(x−) = {x ∈ R
n : lim

k→∞
f−k(x) = x−},

W s(x+) = {x ∈ R
n : lim

k→+∞
fk(x) = x+}.

Then Γ ⊂ Wu(x−) ∩ W s(x+).
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• Def. 2 A homoclinic orbit Γ is called regu-

lar if fx(x0) has no eigenvalues with |µ| = 1

and the intersection of W u(x0) and W s(x0)

along Γ is transversal.
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• The presence of a regular homoclinic or-

bit implies the existence of infinite number

of cycles of f nearby (Poincaré–Birkhoff–

Smale–Shilnikov Theorem).

• In families of diffeomorphisms

x 7→ f(x, α), x ∈ R
n, α ∈ R,

regular homoclinic orbts exist in open pa-

rameter intervals.
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• Consider a family of ODEs

ẋ = f(x, α), x ∈ R
n, α ∈ R,

having equilibria x− and x+, f(x±, α) = 0.

Def. 3 An orbit Γ = {x = x(t) : t ∈ R},

where x(t) is a solution to the ODE system

at some α, is called heteroclinic between

x− and x+ if

lim
t→±∞

x(t) = x±.
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If x± = x0, it is called homoclinic to x0.

• Introduce unstable and stable invariant sets

Wu(x−) = {x(0) ∈ R
n : lim

t→−∞
x(t) = x−},

W s(x+) = {x(0) ∈ R
n : lim

t→+∞
x(t) = x+}.

Then Γ ⊂ Wu(x−) ∩ W s(x+).
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• The intersection of W u(x0) and W s(x0) can-

not be transversal along a homoclinic orbit

Γ, since ẋ(t) ∈ Tx(t)W
u(x0) ∩ Tx(t)W

s(x0).
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• Homoclinic orbts exist in generic ODE fami-

lies only at isolated parameter values.
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Def. 4 A homoclinic orbit Γ is called regular if

• fx(x0) has no eigenvalues with <(λ) = 0;

• dim(Tx(t)W
u(x0) ∩ Tx(t)W

s(x0)) = 1;

• The intersection of the traces of W u(x0)

and W s(x0) along Γ is transversal in the

(x, α)-space.
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2. Continuation of homoclinic orbits of maps

• Homoclinic problem














f(x0, α) − x0 = 0,

xk+1 − f(xk, α) = 0, k ∈ Z,

lim
k→±∞

xk − x0 = 0.

• Truncate with the projection boundary con-

ditions:






















f(x0, α) − x0 = 0,

xk+1 − f(xk, α) = 0, k ∈ [−K, K − 1],

LT
s (x0, α)(x−K − x0) = 0,

LT
u (x0, α)(x+K − x0) = 0,

where the columns of Ls and Lu span the

orthogonal complements to T u = Tx0Wu(x0)

and T s = Tx0W s(x0), resp.
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• Assume the eigenvalues of A = fx(x0, α) are

arranged as follows:

|µns| ≤ · · · ≤ |µ1| < 1 < |λ1| ≤ · · · ≤ |λnu|

If V ∗ =
{

v∗1, . . . , v∗ns

}

and W ∗ =
{

w∗
1, . . . , w∗

nu

}

span the stable and unstable eigenspaces of

AT, then Fredholm’s Alternative implies:

Ls = [V ∗] and Lu = [W ∗].

• Let (µ, λ) satisfy |µ1| < µ < 1 < λ < |λ1| and

ν = max(µ, λ−1).

Th. 1 (Beyn–Kleinkauf) There is a locally

unique solution to the truncated problem for

a regular homoclinic orbit with an error that

is O(ν2K).

• The truncated system is an ALCP in R2nK+2n+1

to which the standard continuation methods

are applicable.
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3. Continuation of homoclinic orbits of ODEs

• Homoclinic problem






























f(x0, α) = 0,

ẋ(t) − f(x(t), α) = 0,

lim
t→±∞

x(t) − x0 = 0, t ∈ R,
∫ ∞

−∞
〈ẏ(t), x(t) − y(t)〉dt = 0,

where y is a reference homoclinic solution.

• Truncate with the projection boundary con-

ditions:






































f(x0, α) = 0,

ẋ(t) − f(x(t), α) = 0, t ∈ [−T, T ]

LT
s (x0, α)(x(−T ) − x0) = 0,

LT
u (x0, α)(x(+T ) − x0) = 0,
∫ T

−T
〈ẏ(t), x(t) − y(t)〉dt = 0,

where the columns of Ls and Lu span the

orthogonal complements to T u = Tx0Wu(x0)

and T s = Tx0W s(x0), resp.

• The truncated system is a BVCP to which

the standard discretization and continuation

methods are applicable when α ∈ R2.

10



x(−T )

x(T )

x
0

W
u(x0)

W
s(x0)

T
s

T
u

• Assume the eigenvalues of A = fx(x0, α) are

arranged as follows:

<(µns)≤· · ·≤ <(µ1)<0<<(λ1)≤· · ·≤<(λnu)

If V ∗ =
{

v∗1, . . . , v∗ns

}

and W ∗ =
{

w∗
1, . . . , w∗

nu

}

span the stable and unstable eigenspaces of

AT, then Ls = [V ∗] and Lu = [W ∗].

• Let (µ, λ) satisfy <(µ1) < µ < 0 < λ < <(λ1)

and ω = min(|µ|, λ).

Th. 2 (Beyn) There is a locally unique so-

lution to the truncated problem for a regular

homoclinic orbit with the (x(·), α)-error that

is O(e−2ωT ).
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Remarks:

1. If Wu is one-dimensional, one can use the

explicit boundary conditions

x(−T ) − (x0 + εw1) = 0,

〈w∗
1, x(T ) − x0〉 = 0,

where Aw1 = λ1w1 and ATw∗
1 = λ1w∗

1, with-

out the integral phase condition.

2. Under implementation in MATCONT with

possibilities to start

(i) from a large period cycle;

(ii) by homotopy.

(iii) from a codim 2 bifurcations of equilibria,

i.e. BT and ZH;

3. Th. 3 (L.P. Shilnikov) There is always at

least one limit cycle arbitrary close to Γ near

the bifurcation. There are infinitely many

cycles nearby when µ1 and λ1 are both com-

plex, or when one of them is complex and

has the smallest absolute value of the real

part.
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4. Continuation of invariant subspaces

Th. 4 (Smooth Schur Block Factorization)

Any paramter-dependent matrix A(s) ∈ Rn×n

with nontrivial stable and unstable eigenspaces

can be written as

A(s) = Q(s)

[

R11(s) R12(s)
0 R22(s)

]

QT(s),

where Q(s) = [Q1(s) Q2(s)] such that

• Q(s) is orthogonal, i.e. QT(s)Q(s) = In;

• the eigenvalues of R11(s) ∈ R
m×m are the

unstable eigenvalues of A(s), while the eigen-

values of R22(s) ∈ R(n−m)×(n−m) are the re-

maning (n − m) eigenvalues of A(s);

• the columns of Q1(s) ∈ R
n×m span the eigen-

space E(s) of A(s) corresponding to its m

unstable eigenvalues;

• the columns of Q2(s) ∈ Rn×(n−m) span the

orthogonal complement E⊥(s).

• Qi(s) and Rij(s) have the same smoothness

as A(s).

Then holds the invariant subspace relation:

QT
2 (s)A(s)Q1(s) = 0.
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CIS-algorithm [Dieci & Friedman]

• Define
[

T11(s) T12(s)
T21(s) T22(s)

]

= QT(0)A(s)Q(0)

for small |s|, where T11(s) ∈ R
m×m.

• Compute by Newton’s method Y ∈ R(n−m)×m

satisfying the Riccati matrix equation

Y T11(s) − T22(s)Y + Y T12(s)Y = T21(s).

• Then Q(s) = Q(0)U(s) where

U(s) = [U1(s) U2(s)]

with

U1(s) =

(

Im

Y

)

(In−m + Y TY )−
1
2,

U2(s) =

(

−Y T

In−m

)

(In−m + Y Y T)−
1
2,

so that columns of Q1(s) = Q(0)U1(s) and

Q2(s) = Q(0)U2(s) form orthogonal bases in

E(s) and E⊥(s).
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5. Detection of higher-order singularities

• For homoclinic orbits to fixed points, x0 can

exhibit one of codim 1 bifucations. LP’s of

the (truncated) ALCP correspond to homo-

clinic tangencies:

• For homoclinic orbits to equilibria, there are

many codim 2 cases:

1. fold or Hopf bifurcations of x0;

2. special eigenvalue configurations (e.g. σ =

<(µ1) + <(λ1) = 0 or µ1 − µ2 = 0);

3. change of global topology of W s and Wn

(orbit and inclination flips);

4. higher nontransversality.
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6. Cycle-to-cycle connections in 3D ODEs

• Consider

ẋ = f(x, α), x ∈ R
n, α ∈ R

p.

• Let O− be a limit cycle with only one (triv-

ial) multiplier satisfying |µ| = 1 and having

dimWu
− = m−

u .

• Let O+ be a limit cycle with only one (triv-

ial) multiplier satisfying |µ| = 1 and having

dimW s
+ = m+

s .

• Let x±(t) be periodic solutions (with min-

imal periods T±) corresponding to O± and

M± the corresponding monodromy matri-

ces, i.e. M(T±) where

Ṁ = fx(x
±(t), α)M, M(0) = In.

• Then m
+
s = n

+
s +1 and m−

u = n−
u +1, where

n+
s and n−

u are the numbers of eigenvalues

of M± satisfying |µ| < 1 and |µ| > 1, resp.
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Isolated families of connecting orbits

• Beyn’s equality: p = n − m+
s − m−

u + 2.

• The cycle-to-cycle connections in R3:

W u
+

W s
+

O
+O−

W s
−

W u
−

heteroclinic orbit

O
±

W s
±

W u
±

homoclinic orbit ⇒ infinite number of cycles
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Truncated BVCP

• The connecting solution u(t) is truncated

to an interval [τ−, τ+].

• The points u(τ+) and u(τ−) are required

to belong to the linear subspaces that are

tangent to the stable and unstable invariant

manifolds of O+ and O−, respectively:
{

LT
+(u(τ+) − x+(0)) = 0,

LT
−(u(τ−) − x−(0)) = 0.

• Generically, the truncated BVP composed of

the ODE, the above projection BC’s, and a

phase condition on u, has a unique solution

family (û, α̂), provided that the ODE has a

connecting solution family satisfying the pa-

hase condition and Beyn’s equality.
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Th. 5 (Pampel–Dieci–Rebaza) If u is a generic

connecting solution to the ODE at parameter

value α, then the following estimate holds:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2min(µ−|τ−|,µ+|τ+|),

where

• ‖ · ‖ is an appropriate norm in the space

C1([τ−, τ+], Rn) × R
p,

• u|[τ−,τ+] is the restriction of u to the trunca-

tion interval,

• µ± are determined by the eigenvalues of the

monodromy matrices M±.

Adjoint variational eqiation:

ẇ = −fT
x (x±(t), α)w, w ∈ R

n.

Let N(t) be the solution to

Ṅ = −fT
x (x±(t), α)N, N(0) = In.

Then N(T±) = [M−1(T±)]T.
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The defining BVCP in 3D

Cycle-related equations:

• Periodic solutions:
{

ẋ± − f(x±, α) = 0 ,

x±(0) − x±(T±) = 0 .

• Adjoint eigenfunctions: µ+ = 1

µ+
u

, µ− = 1
µ−

s
.











ẇ± + fT
u (x±, α)w± = 0 ,

w±(T±) − µ±w±(0) = 0 ,

〈w±(0), w±(0)〉 − 1 = 0 ,

or equivalently










ẇ± + fT
u (x±, α)w± + λ±w± = 0 ,

w±(T±) − s±w±(0) = 0 ,

〈w±(0), w±(0)〉 − 1 = 0 ,

where λ± = ln |µ±|, s± = sign(µ±).

• Projection BC: 〈w±(0), u(τ±) − x±(0)〉 = 0.
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Connection-related equations:

• The equation for the connection:

u̇ − f(u, α) = 0 .

• We need the base points x±(0) to move

freely and independently upon each other

along the corresponding cycles O±.

• We require the end-point of the connection

to belong to a plane orthogonal to the vector

f(x+(0), α), and the starting point of the

connection to belong to a plane orthogonal

to the vector f(x−(0), α):

〈f(x±(0), α), u(τ±) − x±(0)〉 = 0 .
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The defining BVCP in 3D:
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ẋ± − T±f(x±, α) = 0,

x±(0) − x±(1) = 0,

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0,

w±(1) − s±w±(0) = 0,

〈w±(0), w±(0)〉 − 1 = 0,

u̇ − Tf(u, α) = 0,

〈f(x+(0), α), u(1) − x+(0)〉 = 0,

〈f(x−(0), α), u(0) − x−(0)〉 = 0,

〈w+(0), u(1) − x+(0)〉 = 0,

〈w−(0), u(0) − x−(0)〉 = 0,

‖u(0) − x−(0)‖2 − ε2 = 0.

There is an efficient homotopy method to find

a starting solution.
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