Lecture 8

Continuation of codim 1 bifurcations of limit cycles in ODEs

Yu.A. Kuznetsov (Utrecht University, NL)

March 26, 2014

Contents

1. Linear nonautonomous equations.

2. Monodromy matrices of limit cycles.
3. Regular cycles and simple bifurcations.
4. Defining systems for codim 1 bifurcations.
5. Remarks

1. Linear nonautonomous equations

- Consider two adjoint linear ODEs

$$
\dot{v}=A(t) v, \dot{w}=-A^{*}(t) w, \quad v, w \in \mathbb{R}^{n}
$$

where $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}$ is continuous and ${ }^{*}$ denotes transpose.

- The fundamental matrix solutions:

$$
\dot{M}=A(t) M, \quad M(0)=I_{n},
$$

and

$$
\dot{N}=-A^{*}(t) N, \quad N(0)=I_{n} .
$$

One has: $N(t)=\left[M^{-1}(t)\right]^{*}$.

- The solution of the linear ODE

$$
\dot{v}=A(t) v+b(t), \quad v \in \mathbb{R}^{n}
$$

with continuous $b: \mathbb{R} \rightarrow \mathbb{R}^{n}$ is given by

$$
\begin{aligned}
v(t) & =M(t) v(0)+\int_{0}^{t} M(t) M^{-1}(\tau) b(\tau) d \tau \\
& =M(t) v(0)+\int_{0}^{t} M(t) N^{*}(\tau) b(\tau) d \tau \\
& =M(t)\left[v(0)+\int_{0}^{t} N^{*}(\tau) b(\tau) d \tau\right] .
\end{aligned}
$$

2. Monodromy matrices of limit cycles

- Consider a smooth ODE system

$$
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R} .
$$

A cycle with period T at a parameter value α corresponds to a solution $x \in \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right)$ of the BVP

$$
\left\{\begin{aligned}
\dot{x}-T f(x, \alpha) & =0, \\
x(1)-x(0) & =0 .
\end{aligned}\right.
$$

- Monodromy matrix:

$$
\dot{\Phi}(t)-T f_{x}(x(t), \alpha) \Phi(t)=0, \quad \Phi(0)=I_{n}
$$

The eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{n-1}$, and $\mu_{n}=1$ of $\Phi(1)$ are the multipliers of the cycle.

- Adjoint monodromy matrix:
$\dot{\psi}(t)+T f_{x}^{*}(x(t), \alpha) \Psi(t)=0, \quad \Psi(0)=I_{n}$, where * denotes transpose.
- One has: $\Psi(t)=\left[\Phi^{-1}(t)\right]^{*}$ and

$$
\begin{aligned}
& \left(\Phi(1)-I_{n}\right) q_{0}=\left(\Psi(1)-I_{n}\right) p_{0}=0 \\
& \left(\Phi(1)-I_{n}\right)^{*} p_{0}=\left(\Psi(1)-I_{n}\right)^{*} q_{0}=0,
\end{aligned}
$$

with $q_{0}^{*} q_{0}=p_{0}^{*} p_{0}=1$. Notice that $q_{0}=$ $c_{0} \dot{x}(0)$ with $c_{0} \in \mathbb{R}, c_{0} \neq 0$.

3. Regular cycles and simple bifurcations

Def. 1 A cycle is called regular if $\mu_{n}=1$ has geometric multiplicity 1.

Def. 2 A cycle bifurcation is called simple if only the following critical multipliers are present:

- LPC: $\mu_{1}=\mu_{n}=1$ with algebraic multiplicity 2 and geometric multiplicity 1

$$
\left(\Phi(1)-I_{n}\right) q_{1}=q_{0}, \quad\left(\Psi(1)-I_{n}\right) p_{1}=p_{0} .
$$

- PD: $\mu_{1}=-1$ and $\mu_{n}=1$ both with algebraic multiplicity 1

$$
\left(\Phi(1)+I_{n}\right) q_{2}=0, \quad\left(\Psi(1)+I_{n}\right) p_{2}=0
$$

- NS: $\mu_{1,2}=e^{ \pm i \theta_{0}}$ and $\mu_{n}=1$ all with algebraic multiplicity 1

$$
\begin{aligned}
& \left(\Phi(1)-\mathrm{e}^{i \theta_{0}} I_{n}\right)\left(q_{3}+i q_{4}\right)=0, \\
& \left(\Psi(1)-\mathrm{e}^{i \theta_{0}} I_{n}\right)\left(p_{3}+i p_{4}\right)=0 .
\end{aligned}
$$

We have $\left(I_{n}-2 \kappa \Phi(1)+\Phi^{2}(1)\right) q_{3,4}=0$ where $\kappa=\cos \theta_{0}$.

4. Defining systems for codim 1 bifurcations

- LPC and PD: $(x, T, \alpha) \in \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R} \times \mathbb{R}$

$$
\left\{\begin{aligned}
\dot{x}(\tau)-T f(x(\tau), \alpha) & =0, \quad \tau \in[0,1] \\
x(0)-x(1) & =0 \\
\int_{0}^{1}\left\langle\dot{x}_{0}(\tau), x(\tau)\right\rangle d \tau & =0 \\
G[x, T, \alpha] & =0
\end{aligned}\right.
$$

- NS: $(x, T, \alpha, \kappa) \in \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$

$$
\left\{\begin{aligned}
\dot{x}(\tau)-T f(x(\tau), \alpha) & =0, \quad \tau \in[0,1] \\
x(0)-x(1) & =0 \\
\int_{0}^{1}\left\langle\dot{x}_{0}(\tau), x(\tau)\right\rangle d \tau & =0 \\
G_{11}[u, T, \alpha, \kappa] & =0 \\
G_{22}[u, T, \alpha, \kappa] & =0
\end{aligned}\right.
$$

When the linearized system is nonsingular at a solution, this solution can be continued w.r.t. another parameter, thus obtaining a bifurcation curve in the $\left(\alpha_{1}, \alpha_{2}\right)$-plane.

- There exist $v_{01}, w_{01} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right), w_{02} \in$ \mathbb{R}^{n}, and $v_{02}, w_{03} \in \mathbb{R}$ such that

$$
\begin{gathered}
N_{1}: \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{2} \rightarrow \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{2}, \\
N_{1}=\left[\begin{array}{ccc}
D-T f_{x}(x, \alpha) & -f(x, \alpha) & w_{01} \\
\delta_{0}-\delta_{1} & 0 & w_{02} \\
\operatorname{Int}_{f(x, \alpha)} & 0 & w_{03} \\
\operatorname{Int}_{v_{01}} & v_{02} & 0
\end{array}\right],
\end{gathered}
$$

is one-to-one and onto near a simple LPC bifurcation point.

- Define G by solving

$$
N_{1}\left(\begin{array}{c}
v \\
S \\
G
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

- "Classical" form:

$$
\left\{\begin{aligned}
& \dot{v}(\tau)-T f_{x}(x(\tau), \alpha) v(\tau) \\
&-S f(u(\tau), \alpha)+G w_{01}(\tau)=0, \\
& v(0)-v(1)+G w_{02}=0, \\
& \int_{0}^{1}\langle f(x(\tau), \alpha), v(\tau)\rangle d \tau+G w_{03}=0, \\
& \int_{0}^{1}\left\langle v_{01}(\tau), v(\tau)\right\rangle d \tau+S v_{02}=1
\end{aligned}\right.
$$

Lemma 1 If $(x(\cdot), T, \alpha)$ corresponds to a regular cycle then the operator

$$
M_{1}=\left[\begin{array}{cc}
D-T f_{x}(x, \alpha) & -f(x, \alpha) \\
\delta_{1}-\delta_{0} & 0 \\
\operatorname{Int}_{f(x, \alpha)} & 0
\end{array}\right]
$$

from $\mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}$ into $\mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}$ is one-to-one if the multiplier 1 has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e. at a simple LPC, then M_{1} has a one-dimensional kernel, spanned by the vector

$$
\binom{v}{1} \in \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}
$$

where

$$
v(t)=\frac{c_{0}}{T} \Phi(t)\left(c_{2} q_{0}-\left(q_{1}-t q_{0}\right)\right)
$$

and c_{2} is determined by the condition that

$$
q_{0}^{*} \int_{0}^{1} \Phi^{*}(\tau) \Phi(\tau)\left[c_{2} q_{0}-\left(q_{1}-\tau q_{0}\right)\right] d \tau=0
$$

while c_{0} is such that $\dot{x}(0)=c_{0} q_{0}$.

Proof: Consider the homogeneous equation

$$
\left[\begin{array}{cc}
D-T f_{x}(x, \alpha) & -f(x, \alpha) \\
\delta_{1}-\delta_{0} & 0 \\
\operatorname{Int}_{f(x, \alpha)} & 0
\end{array}\right]\binom{v}{S}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) .
$$

From the first row we have

$$
\dot{v}-T f_{x}(x(t), \alpha) v=S f(x(t), \alpha)
$$

implying

$$
\begin{aligned}
v(t) & =\Phi(t)\left[v(0)+S \int_{0}^{t} \Psi^{*}(\tau) f(x(\tau), \alpha) d \tau\right] \\
& =\Phi(t)\left[v(0)+\frac{S}{T} \int_{0}^{t} \Psi^{*}(\tau) \dot{x}(\tau) d \tau\right] \\
& =\Phi(t)\left[v(0)+\frac{S}{T} \int_{0}^{t} \Psi^{*}(\tau) \Phi(\tau) d \tau \dot{x}(0)\right] \\
& =\Phi(t)\left[v(0)+\frac{S t}{T} \dot{x}(0)\right]
\end{aligned}
$$

since $\Psi^{*}(\tau) \Phi(\tau)=I_{n}$ and $\dot{x}(t)=\Phi(t) \dot{x}(0)$.

From the second row we have

$$
0=v(1)-v(0)=(\Phi(1)-I) v(0)+\frac{S}{T} \dot{x}(0)
$$

or

$$
(\Phi(1)-I) v(0)=-\frac{S}{T} \dot{x}(0)
$$

Because $\dot{x}(0)=c_{0} q_{0}$ for some $c_{0} \in \mathbb{R}, c_{0} \neq 0$, we must solve

$$
\begin{equation*}
(\Phi(1)-I) v(0)=-c_{0} \frac{S}{T} q_{0}, \tag{1}
\end{equation*}
$$

where q_{0} spans the kernel of $\Phi(1)-I$.

If the multiplier 1 has algebraic multiplicity 1 then we must have $S=0, v(0)=c_{1} q_{0}$, and hence $v(t)=c_{1} \Phi(t) q_{0}$. From the third row,

$$
\begin{aligned}
0 & =\int_{0}^{1} f^{*}(x(\tau), \alpha) v(\tau) d \tau \\
& =\frac{1}{T} \int_{0}^{1} \dot{x}^{*}(\tau) v(\tau) d \tau \\
& =\frac{1}{T} \int_{0}^{1}[\Phi(\tau) \dot{x}(0)]^{*} c_{1} \Phi(\tau) q_{0} d \tau
\end{aligned}
$$

or

$$
c_{0} c_{1} q_{0}^{*}\left(\int_{0}^{1} \Phi^{*}(\tau) \Phi(\tau) d \tau\right) q_{0}=0
$$

from which it follows that $c_{1}=0$. Thus $v(t) \equiv 0$. It follows that the operator M_{1} is one-to-one.

At a simple fold the multiplier 1 has algebraic multiplicity 2. In this case (1) is also solvable if S is nonzero, namely

$$
v(0)=-c_{0} \frac{S}{T} q_{1}+c_{2} q_{0}
$$

where $c_{2} \in \mathbb{R}$ is arbitrary. The third row then implies

$$
\begin{aligned}
0 & =\int_{0}^{1} \dot{x}^{*}(\tau) v(\tau) d \tau \\
& =\int_{0}^{1} \dot{x}^{*}(\tau) \Phi(\tau)\left[v(0)+\frac{S \tau}{T} \dot{x}(0)\right] d \tau \\
& =\int_{0}^{1}[\Phi(\tau) \dot{x}(0)]^{*} \Phi(\tau)\left[-c_{0} \frac{S}{T} q_{1}+c_{2} q_{0}+\frac{S \tau}{T} c_{0} q_{0}\right] d \tau \\
& =c_{0} q_{0}^{*} \int_{0}^{1} \Phi^{*}(\tau) \Phi(\tau)\left[-c_{0} \frac{S}{T} q_{1}+c_{2} q_{0}+\frac{S \tau}{T} c_{0} q_{0}\right] d \tau
\end{aligned}
$$

from which it follows that

$$
c_{2}=\frac{c_{0} S q_{0}^{*} \int_{0}^{1} \Phi^{*}(\tau) \Phi(\tau)\left[q_{1}-\tau q_{0}\right] d \tau}{T q_{0}^{*} \int_{0}^{1} \Phi^{*}(\tau) \Phi(\tau) d \tau q_{0}} .
$$

Take now $S=1$ and $v(t)=\Phi(t) v(0)$ to get a null-vector of M_{1}.

Lemma 2 Let $(x(\cdot), T, \alpha)$ corresponds to a regular cycle and consider the operator

$$
M_{1}=\left[\begin{array}{cc}
D-T f_{x}(x, \alpha) & -f(x, \alpha) \tag{2}\\
\delta_{1}-\delta_{0} & 0 \\
\operatorname{Int}_{f(x, \alpha)} & 0
\end{array}\right]
$$

from $\mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}$ into $\mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}$. If the multiplier 1 has algebraic multiplicity 1 , then M_{1} is onto.

If it has algebraic multiplicity 2, i.e., at a simple LPC, then the range of M_{1} has codimension 1 and the vector

$$
\left(\begin{array}{c}
\Psi_{p_{0}} \tag{3}\\
-p_{0} \\
0
\end{array}\right) \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}
$$

is complementary to the range space.

Proof: Consider a vector

$$
\left(\begin{array}{c}
\xi \\
\eta \\
\omega
\end{array}\right) \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}
$$

It is in the range of M_{1} if and only if there exists

$$
\binom{v}{S} \in \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}
$$

such that

$$
\left[\begin{array}{cc}
D-T f_{x}(x, \alpha) & -f(x, \alpha) \\
\delta_{1}-\delta_{0} & 0 \\
\operatorname{Int}_{f(x, \alpha)} & 0
\end{array}\right]\binom{v}{S}=\left(\begin{array}{c}
\xi \\
\eta \\
\omega
\end{array}\right) .
$$

The first row implies that

$$
v(t)=\Phi(t)\left[v(0)+\int_{0}^{t} \Psi^{*}(\tau)(\xi(\tau)+S f(x(\tau), \alpha)) d \tau\right] .
$$

The second row then implies

$$
\begin{aligned}
\eta= & v(1)-v(0) \\
= & (\Phi(1)-I) v(0)+ \\
& \Phi(1) \int_{0}^{1} \Psi^{*}(\tau)(\xi(\tau)+S f(x(\tau), \alpha)) d \tau \\
= & (\Phi(1)-I) v(0)+ \\
& \Phi(1) \int_{0}^{1} \Psi^{*}(\tau) \xi(\tau) d \tau+\frac{S c_{0}}{T} q_{0} .
\end{aligned}
$$

Thus

$$
\eta=(\Phi(1)-I) v(0)+\frac{S c_{0}}{T} q_{0}+\Phi(1) \int_{0}^{1} \Psi^{*}(\tau) \xi(\tau) d \tau
$$

If 1 is an algebraically simple eigenvalue of $\Phi(1)$ then q_{0} is not in the range of $(\Phi(1)-I)$. For given ξ and η, equation (4) can be solved for $v(0)$ and S. Moreover, the solution is unique up to the addition of a scalar multiple of q_{0} to $v(0)$. Since

$$
\begin{aligned}
\int_{0}^{1}(\dot{x}(\tau))^{*} \Phi(\tau) q_{0} d \tau & =c_{0} \int_{0}^{1}\left(\Phi(\tau) q_{0}\right)^{*} \Phi(\tau) q_{0} d \tau \\
& \neq 0,
\end{aligned}
$$

the scalar is determined uniquely by the third row of the main system.

If 1 is an algebraically double eigenvalue of $\Phi(1)$, i.e., at a simple LPC point, then (4) is solvable if and only if

$$
p_{0}^{*} \eta=p_{0}^{*} \int_{0}^{1} \Psi^{*}(\tau) \xi(\tau) d \tau
$$

If so, the third row of the main system again determines the solution uniquely.

Lemma 3 If $(x(\cdot), T, \alpha)$ corresponds to a regular cycle then the operator

$$
M_{2}=\left[\begin{array}{cc}
D+T f_{x}^{*}(x, \alpha) & -f(x, \alpha) \\
\delta_{1}-\delta_{0} & 0 \\
\operatorname{Int}_{f(x, \alpha)} & 0
\end{array}\right]
$$

from $\mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R} \rightarrow \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}$ is one-to-one and onto if the multiplier 1 has algebraic multiplicity 1.

If the multiplier 1 has algebraic multiplicity 2, i.e., at a simple LPC, then M_{2} has a one-dimensional kernel, spanned by

$$
\binom{\Psi^{*} p_{0}}{0} \in \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}
$$

while its range has codimension 1, and the vector

$$
\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}
$$

is complementary to the range space.

Th. 1 Let $(x(\cdot), T, \alpha)$ corresponds to a simple LPC, i.e., $\Phi(1)$ has eigenvalue 1 with algebraic multiplicity 2. Then there exist $v_{01}, w_{01}, v_{11}, w_{11}$ $\in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right), w_{02}, v_{12} \in \mathbb{R}^{n}, w_{03}, v_{02}, v_{13}, w_{12} \in$ \mathbb{R} such that operator

$$
N_{1}=\left[\begin{array}{ccc}
D-T f_{x}(x, \alpha) & -f(x, \alpha) & w_{01} \\
\delta_{1}-\delta_{0} & 0 & w_{02} \\
\operatorname{Int}_{f(x, \alpha)} & 0 & w_{03} \\
\operatorname{Int}_{v_{01}} & v_{02} & 0
\end{array}\right]
$$

from $\mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}$ to $\mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times$ $\mathbb{R} \times \mathbb{R}$ is one-to-one and onto.

Proof: We choose

$$
\binom{v_{01}(t)}{v_{02}}=\binom{v(t)}{1},
$$

where v is given in the statement of Lemma 1. Further we set

$$
\left(\begin{array}{c}
w_{01}(t) \\
w_{02} \\
w_{03}
\end{array}\right)=\left(\begin{array}{c}
\Psi^{*}(t) p_{0} \\
0 \\
0
\end{array}\right) .
$$

By Lemmas 1 and 3, N_{1} is one-to-one and onto.

PD-computation

- There exist $v_{01}, w_{01} \in \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right)$, and $w_{02} \in$ \mathbb{R}^{n}, such that

$$
\begin{gathered}
N_{2}: \mathcal{C}^{1}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R} \rightarrow \mathcal{C}^{0}\left([0,1], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}, \\
N_{2}=\left[\begin{array}{cc}
D-T f_{x}(x, \alpha) & w_{01} \\
\delta_{0}+\delta_{1} & w_{02} \\
\operatorname{Int}_{v_{01}} & 0
\end{array}\right],
\end{gathered}
$$

is one-to-one and onto near a simple PD bifurcation point.

- Define G by solving

$$
N_{2}\binom{v}{G}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) .
$$

- The BVP for (v, G) can be written in the "classical form"

$$
\left\{\begin{aligned}
\dot{v}(\tau)-T f_{x}(x(\tau), \alpha) v(\tau)+G w_{01}(\tau) & =0, \\
v(0)+v(1)+G w_{02} & =0, \\
\int_{0}^{1}\left\langle v_{01}(\tau), v(\tau)\right\rangle d \tau & =1 .
\end{aligned}\right.
$$

NS-computation

- There exist $v_{01}, v_{02}, w_{11}, w_{12} \in \mathcal{C}^{0}\left([0,2], \mathbb{R}^{n}\right)$, and $w_{21}, w_{22} \in \mathbb{R}^{n}$, such that
$N_{3}: \mathcal{C}^{1}\left([0,2], \mathbb{R}^{n}\right) \times \mathbb{R}^{2} \rightarrow \mathcal{C}^{0}\left([0,2], \mathbb{R}^{n}\right) \times \mathbb{R}^{n} \times \mathbb{R}^{2}$,

$$
N_{3}=\left[\begin{array}{ccc}
D-T f_{x}(x, \alpha) & w_{11} & w_{12} \\
\delta_{0}-2 \kappa \delta_{1}+\delta_{2} & w_{21} & w_{22} \\
\operatorname{Int}_{v_{01}} & 0 & 0 \\
\operatorname{Int}_{v_{02}} & 0 & 0
\end{array}\right],
$$

is one-to-one and onto near a simple NS bifurcation point.

- Define $G_{j k}$ by solving the 3-point BVP

$$
N_{3}\left(\begin{array}{cc}
r & s \\
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right) .
$$

- At the NS-cycle: $\kappa=\cos \theta$.

5. Remarks

- After discretization via orthogonal collocation, all linear BVPs for G's have sparsity structure that is identical to that of the linearization of the BVP for limit cycles.
- For each defining system holds: Simplicity of the bifurcation + Transversality \Rightarrow Regularity of the defining BVP, allowing for the two-parameter continuation with $\alpha \in \mathbb{R}^{2}$.
- Jacobian matrix of each (discretized) defining BVP can be efficiently computed using adjoint linear BVP.
- Border adaptation using solutions of the adjoint linear BVPs.
- Actually implemented in MATCONT.
- Maximally augmented BVPCPs (AUTO)

LPG:

$$
\left\{\begin{aligned}
\dot{x}(\tau)-T f(x(\tau), \alpha) & =0, \\
x(1)-x(0) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{0}(\tau), x(\tau)\right\rangle d \tau & =0, \\
\dot{v}(\tau)-T f_{x}(x(\tau), \alpha) v(\tau)-S f(x(\tau), \alpha) & =0, \\
v(1)-v(0) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{0}(\tau), v(\tau)\right\rangle d \tau & =0, \\
\int_{0}^{1}\left\langle v_{0}(\tau), v(\tau)\right\rangle d \tau+S^{2}-1 & =0 .
\end{aligned}\right.
$$

PD:

$$
\left\{\begin{aligned}
\dot{x}(\tau)-T f(x(\tau), \alpha) & =0, \\
x(1)-x(0) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{0}(\tau), x(\tau)\right\rangle d \tau & =0, \\
\dot{v}(\tau)-T f_{x}(x(\tau), \alpha) v(\tau) & =0, \\
v(1)+v(0) & =0, \\
\int_{0}^{1}\left\langle v_{0}(\tau), v(\tau)\right\rangle d \tau-1 & =0
\end{aligned}\right.
$$

NS:

$$
\left\{\begin{aligned}
\dot{x}(\tau)-T f(x(\tau), \alpha) & =0, \\
x(1)-x(0) & =0, \\
\int_{0}^{1}\left\langle\dot{x}_{0}(\tau), x(\tau)\right\rangle d \tau & =0, \\
\dot{w}(\tau)-T f_{x}(x(\tau), \alpha) w(\tau) & =0, \\
w(1)-e^{i \theta} w(0) & =0, \\
\int_{0}^{1}\left\langle w_{0}(\tau), w(\tau)\right\rangle_{\mathbb{C}^{n}} d \tau-1 & =0
\end{aligned}\right.
$$

