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1. Linear nonautonomous equations

e Consider two adjoint linear ODEs
v =A)v, w=-A"t)w, v,weR",

where A : R — R™®™ " js continuous and *
denotes transpose.

e T he fundamental matrix solutions:
M= A(t)M, M(0) = I,
and
N =—-A*(t)N, N(0) = I,.
One has: N(t) = [M~1()]*.

e [ he solution of the linear ODE

v = A(t)v+b(t), veR"
with continuous b : R — R™ is given by

t
v(t) = M(#)v(0)+ /O MM -Y(F)b(r) dr
= M)+ | " MON (F)b(r) dr
M (D) [U(O) + /O " NF()b(r) dr]



2. Monodromy matrices of limit cycles

Consider a smooth ODE system

= f(u,a), uweR" acR.

A cycle with period 17" at a parameter value
a corresponds to a solution z € C1([0, 1], R™)
of the BVP

{x'—Tf(:I:,oz)

0,

x(1) — z(0) 0.

Monodromy matrix:

P(t) —Tfr(z(t),a)P(t) =0, P(0)=1I,.

The eigenvalues pq, uo, ..., yy—1, and up =1
of ®(1) are the multipliers of the cycle.

Adjoint monodromy matrix:

V() +Tfa(z(t),)W(®) =0, W(0) = Iy,
where * denotes transpose.

One has: W(t) = [~ 1(®)]* and
(P(1) — In)go = (W(1) — In)po = O,
(P(1) — In)*po = (W(1) — In)"q0 = 0,

with g3g0 = pgpo = 1. Notice that ¢gp =
coz(0) with ¢g € R, ¢g # 0.



3. Regular cycles and simple bifurcations

Def. 1 A cycle is called regular if u, = 1 has
geometric multiplicity 1.

Def. 2 A cycle bifurcation is called simple if
only the following critical multipliers are present:

o LPC: 1 = unp =1 with algebraic multiplicity
2 and geometric multiplicity 1

(P(1) —In)a1 = qo, (W(1) — In)p1 = po.

e PD:u; = —1and un, =1 both with algebraic
multiplicity 1

(®(1) + In)g2 =0, (V(1)+ In)p2 =0.

e NS: p1 o = et and u, = 1 all with alge-
braic multiplicity 1

(®(1) — eIn) (g3 + iga) = 0,
(W (1) — €1, (p3 + ips) = 0.

We have (In—2kP(1)+D2(1))qg3.4 = O where
K = COS 6.



4. Defining systems for codim 1 bifurcations

e LPC and PD: (z,T,a) € C1([0,1],R") x RxR

(2(7) =T f(z(r),a) = 0, 7€][0,1],
) x(0) —z(1) = O,

Jo (Eo(r),z(1)) dr = O,
\ Glz,T,a] = O.

e NS: (z,7,a,k) € CL([0,1],R") x Rx R xR

[ &(r) — Tf(a(7),a)
r(0) —z(1)

J3 (@0 (T),z(7)) dr
Gi1lu, T, o, K]
Goolu, T, a, K]

, 7€][0,1],

I
cNeNoNeNo

When the linearized system is nonsingular at a
solution, this solution can be continued w.r.t.
another parameter, thus obtaining a bifurcation
curve in the (a1, an)-plane.



LPC-computation

e T here exist vg1,wp1 € CO([O, 1],Rn),w02 c
R™, and vgp,wp3 € R such that

Ny cl([0,1], R xR2 — ([0, 1], R®) xR xR2,

[ D—ng;(fl?,a) —f(CC,Oé) wo1 |
Ny — 00 — 91 0 wo2
1= Intf(l,’a) O wo3 |’
! Intyg, V02 0 .

IS one-to-one and onto near a simple LPC
bifurcation point.

e Define G by solving

(V)
N | S | =
G

= O OO

e ‘‘Classical”’ form:

( o(1) = Tfz(z(1), a)v(T)

—Sf(u(r),a) + Gwoy(7)
< v(0) —v(1) + Gwogo
I3 (f(z(7), @), v(T))dr + Gwos
\ I3 (vo1(7), v(7))dT + Svgo
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Lemma 1 If (z(-),T,«) corresponds to a regular
cycle then the operator

D —Tfa;(a:,oz) o f<$705) ]
My = 51 — &g 0
| INTy(ea) o

from C1([0,1],R™) xR into C9([0, 1], R") x R"* x R
is one-to-one if the multiplier 1 has algebraic
multiplicity 1. If the multiplier 1 has algebraic
multiplicity 2, i.e. at a simple LPC, then M, has
a one-dimensional kernel, spanned by the vector

(i)ec%mJLwan,

where

o(t) = TP (1) (e200 — (91— ta0))

and co Is determined by the condition that

1
@ | P (D)®(D)leaqo — (a1~ 7a0)] dr =0,

while cq is such that x(0) = cpqp.



Proof: Consider the homogeneous equation

_D_Tf$($7a) —f(aﬁ,Oé) ] 0
51 — 8o 0 ( g ) =10|.
Intf(ac,a) O 0

From the first row we have

v — T fo(x(t), )v = Sf(z(t), o)

implying
i t
o(t) = &) _U(O)+s/0 W (1) F(2(7), a) dT]
_ $o%
— () _v(0)+?/o W (T)x(f)dT]
— _ S [ty :
— &) ZU(O) +?/o W (1) () dr a:(O)]
= o) [0(0) +%¢(0>],
since W*(7)d (1) = I, and z(t) = ®(t)x(0).

From the second row we have

0 = v(1) — v(0) = (S(1) — Nv(0) + %(0)

or

(®(1) ~ Du(0) = ~2(0).



Because z(0) = cgqg for some cg € R, ¢g #= O,
we must solve

(®(1) - Du(0) = ~coa0, (D

where gg spans the kernel of ®(1) — I.

If the multiplier 1 has algebraic multiplicity 1
then we must have S = 0, v(0) = ¢19p, and
hence v(t) = c1P(t)qp. From the third row,

1
0 = /Ofl (z(r), a)u(r) dr
1 %
= f/o " (T)v(T) dr

=1 (O] er b (Fao dr

or
* 1 *
cocr a3 | [ @ (D)®(r) dr | a0 =0,

from which it follows that ¢y = 0. Thusv(t) = 0.
It follows that the operator My is one-to-one.
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At a simple fold the multiplier 1 has algebraic
multiplicity 2. In this case (1) is also solvable if
S is nonzero, namely

S
v(0) = —C0 41 ~+ ¢2qo,

where co, € R is arbitrary. The third row then
implies

1
0 = [ & (ru(r) dr
_ /O " () () [U(O) + %@(0)] dr
= [[e@#O () [0 ar+eano+ 2 coao] dr

. (1o, S St
cogh [ #*(1)®(r) | ~coa1+eaa0+ - codo | dr,

from which it follows that

1
coSa5 [ P (NO(D)lar —Ta0] dr

Co =

1
T g /O O*(r)D(r) dr qq

Take now S = 1 and v(¢t) = P(¢t)v(0) to get a
null-vector of Mj.
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Lemma 2 Let (z(-),T,a) corresponds to a reg-
ular cycle and consider the operator

_D_Tfﬂ?(xaa) —f<$,04) |
My = 01 — 0Q 0 (2)
L ") o

from C1([0,1],R™) xR into C°([0, 1], R") x R" x R.
If the multiplier 1 has algebraic multiplicity 1,
then M- is onto.

If it has algebraic multiplicity 2, i.e., at a simple
LPC, then the range of My has codimension 1
and the vector

Wpo
—pg | €°([0,1],R") x R™ x R (3)
0

iIs complementary to the range space.
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Proof: Consider a vector

§
( n ) e c9([0, 1],R™) x R™ x R.

W

It is in the range of My if and only if there exists

( g ) c c1([0,1],R") x R

such that
(D-Tfe(w,a) —fl@a)] ¢
01 — 0p 0 ( s > = n |.
Intf(x,a) 0 w

The first row implies that

o) = &(®) [0(0) + [ W IE) + S (), a)dr]|
The second row then implies

o(1) — v(0)

(®(1) — Do(0) +

®(1) [ WH(ER) + (), 0))dr
(®(1) ~ Do(0) +

o) [ W @Edr + 20,

n
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Thus

n = (¢(1)_z)v(0)+%qo+¢(1) /01 W (r)E(T) dr.

(4)
If 1 is an algebraically simple eigenvalue of ®(1)
then ¢qg is not in the range of (®(1) —I). For
given £ and n, equation (4) can be solved for
v(0) and S. Moreover, the solution is unique up
to the addition of a scalar multiple of gg to v(0).
Since

/1(¢(7))*¢(7) dr = ¢ /1(q>(7) Y (r)qo dr
0 qd0 # OO 0 d0 d0

the scalar is determined uniquely by the third
row of the main system.

If 1 is an algebraically double eigenvalue of ®(1),
i.e., at a simple LPC point, then (4) is solvable
if and only if

1
PON :pEk)/o W (r)é(T) dr.

If so, the third row of the main system again
determines the solution uniquely.
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Lemma 3 If (x(-),T,«) corresponds to a regular
cycle then the operator

D—I—Tf;(a:,oz) _f<$705)
My = 51 — 8 0
Intf(x’a) O

from C1([0,1],R"®) x R — €9([0, 1], R") x R™ x R
IS one-to-one and onto if the multiplier 1 has
algebraic multiplicity 1.

If the multiplier 1 has algebraic multiplicity 2,
i.e., at a simple LPC, then M» has a one-dimensional
kernel, spanned by

O

while its range has codimension 1, and the vec-
tor

( Vo ) c c1([0. 1], R™) x R,

O
0 | €c9o,1],R™) x R" x R
1

iIs complementary to the range space.
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Th. 1 Let (z(-),T,«) corresponds to a simple
LPC, i.e., (1) has eigenvalue 1 with algebraic
multiplicity 2. Then there exist vg1,wo1, V11, W11
e C0([0,1],R™), w2, v12 € R™, woz,v2,v13, w12 €
R such that operator

[ D—ng;(fl?,a) —f(CC,Oé) wo1 |
N, — 01 — dp 0 w2
1= Intf(%a) O wo3

I Intyg, V02 0 |

from C1([0,1],R™") xR* xR to CO([0, 1], R™) x R™ x
R x R is one-to-one and onto.

Proof: We choose

( vo1 (%) ) _ ( v(t) )
V0?2 1 ’

where v is given in the statement of Lemma 1.
Further we set

wo1 (t) W*(t)po
w2 = O
wo3 O

By Lemmas 1 and 3, N is one-to-one and onto.
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PD-computation

e There exist vg1,wg1 € CO([0,1],R™), and wqs €
R"™ such that

N> : c1([0,1],R") xR — c°([0, 1], R™) x R" xR,

D — Tfm(aj,oz) wo1 ]
No = oo + 01 w2 |
! Intyg, 0 |

IS one-to-one and onto near a simple PD
bifurcation point.

e Define G by solving
0
()=
1

e The BVP for (v,G) can be written in the
“classical form”

(1) = Tfr(x(7),)v(r) + Gwg1 () = 0O,
U(O) +U(1) —I—Gw02 p— O’
13 (wor (1), v(r))dr = 1.
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NS-computation

e [ here exist V01, V02, W11, W12 € CO([O, 2],Rn),
and wo1,woo € R™, such that

N3 : cL([0,2],R")xR? — c9([0, 2], R™) x R" xR,

[ D —Tfz(z,0) w11 w12 |
Na — | 00— 2K01 +02 w21 w22
3 INtyg, o 0 |’

I Intyg, 0 0

IS one-to-one and onto near a simple NS bi-
furcation point.

e Define ij by solving the 3-point BVP

T S O O

O O

N3 | G11 Gio | = 1 0
Go1 Goo 0 1

e At the NS-cycle: k = cos?#.
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5. Remarks

e After discretization via orthogonal colloca-
tion, all linear BVPs for G’'s have sparsity
structure that is identical to that of the lin-
earization of the BVP for limit cycles.

e For each defining system holds: Simplicity
of the bifurcation 4+ Transversality = Reg-
ularity of the defining BVP, allowing for the
two-parameter continuation with a € R2.

e Jacobian matrix of each (discretized) defin-
ing BVP can be efficiently computed using
adjoint linear BVP.

e Border adaptation using solutions of the ad-
joint linear BVPs.

e Actually implemented in MATCONT.
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e Maximally augmented BVPCPs (AUTO)

LPC:
( (1) — Tf(x(1), )
x(1) — z(0)
Jo (o (7), (7)) dr
¢ (7)) = Tfe(z(7), )v(r) = Sf(z(r), @)
v(1) —v(0)
Jg (&0 (), v(r)) dr
\ fol(vo(T),’U(T)> dr +52 -1
PD:
( (1) = Tf(x(r),a) = O,
(1) —x(0) = O,
| Rio(r).a() dr = o
v(7) — Tfz(x(7),0)v(7) = O,
v(1l) +v(0) = O,
\ fol(vO(T),v(T)> dr—1 = O.
NS:
( (1) = Tf(x(r),a) = O,
(1) —x(0) = O,
| Reo@),(m) dr = o,
w(r) — T fz(z(7), x)w(r) = O,
w(l) — e?w(0) = o0,
| Jo (wo(r), w(r))cn dr =1 = 0.



