Yu.A. Kuznetsov: Introduction to Numerical Bifurcation Analysis

Lecture 1: Location and analysis of equilibria

1.1 Multivariate Taylor expansions

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, x \mapsto F(x)$, be a smooth map. Its multivariate Taylor expansion at $x_{0} \in \mathbb{R}^{n}$ for $h \in \mathbb{R}^{n}$ with small $\|h\|$ can be written as

$$
F\left(x_{0}+h\right)=F\left(x_{0}\right)+A\left(x_{0}\right) h+\frac{1}{2} B\left(x_{0} ; h, h\right)+O\left(\|h\|^{3}\right),
$$

where $\|h\|=\sqrt{\langle h, h\rangle}$ with

$$
\langle x, y\rangle:=x^{\mathrm{T}} y, \quad x, y \in \mathbb{R}^{n},
$$

and $A\left(x_{0}\right)=D F\left(x_{0}\right)$, while $B\left(x_{0} ; r, s\right)=D^{2} F\left(x_{0}\right)(r, s)$. In components:

$$
\begin{aligned}
\left(A\left(x_{0}\right) h\right)_{i} & =\sum_{j=1}^{n} \frac{\partial F_{i}\left(x_{0}\right)}{\partial x_{j}} h_{j}, \\
B_{i}\left(x_{0} ; r, s\right) & =\sum_{j, k=1}^{n} \frac{\partial^{2} F_{i}\left(x_{0}\right)}{\partial x_{j} \partial x_{k}} r_{j} s_{k},
\end{aligned}
$$

for $r, s \in \mathbb{R}^{n}$ and $i=1,2, \ldots, n$. Given x_{0}, the mapping $h \mapsto A\left(x_{0}\right) h$ is linear, while $(r, s) \mapsto B\left(x_{0} ; r, s\right)$ is a bilinear form.

Lemma 1 Let $x, x_{0} \in \mathbb{R}^{n}$ and $h:=x-x_{0}$. Then for all x sufficiently close to x_{0}, i.e. $\|h\|$ small enough, hold

$$
\begin{align*}
& F(x)=F\left(x_{0}\right)+\int_{0}^{1} A\left(x_{0}+t h\right) h d t \tag{1.1}\\
& F(x)=F\left(x_{0}\right)+A\left(x_{0}\right) h+\int_{0}^{1}(1-t) B\left(x_{0}+t h ; h, h\right) d t \tag{1.2}
\end{align*}
$$

Proof:

Introduce $f(t):=F\left(x_{0}+t h\right)$. Then $\dot{f}(t)=A\left(x_{0}+t h\right) h$ and $\ddot{f}(t)=B\left(x_{0}+t h ; h, h\right)$. This gives

$$
\int_{0}^{1} A\left(x_{0}+t h\right) h d t=\int_{0}^{1} \dot{f}(t) d t=f(1)-f(0)=F\left(x_{0}+h\right)-F\left(x_{0}\right)
$$

from which (1.1) follows. Similarly,

$$
\begin{aligned}
\int_{0}^{1}(1-t) B\left(x_{0}+t h ; h, h\right) d t & =\int_{0}^{1}(1-t) \ddot{f}(t) d t \\
& =\left.\dot{f}(t)(1-t)\right|_{0} ^{1}+\int_{0}^{1} \dot{f}(t) d t \\
& =-\dot{f}(0)+f(1)-f(0) \\
& =-A\left(x_{0}\right) h+F\left(x_{0}+h\right)-F\left(x_{0}\right),
\end{aligned}
$$

implying (1.2).
Define

$$
\|A\|(x):=\sup _{h \neq 0} \frac{\|A(x) h\|}{\|h\|} \text { and }\|B\|(x):=\sup _{h \neq 0} \frac{\|B(x ; h, h)\|}{\|h\|^{2}}
$$

Then

$$
\|A(x) h\| \leq\|A\|(x)\|h\| \quad \text { and } \quad\|B(x ; h, h)\| \leq\|B\|(x)\|h\|^{2}
$$

for all $x, h \in \mathbb{R}^{n}$.

1.2 Newton's method

Consider an "algebraic" equation

$$
\begin{equation*}
F(x)=0 \tag{1.3}
\end{equation*}
$$

where $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a smooth map.
Theorem 1 Let x_{*} be a solution to (1.3), i.e. $F\left(x_{*}\right)=0$, and suppose that $A\left(x_{*}\right)$ is invertible. Then there exist $\varepsilon, C>0$ such that for any x_{0} with $\left\|x_{0}-x_{*}\right\| \leq \varepsilon$ the Newton iterations

$$
\begin{equation*}
x_{k+1}=x_{k}-A^{-1}\left(x_{k}\right) F\left(x_{k}\right), \quad k=0,1,2, \ldots, \tag{1.4}
\end{equation*}
$$

are well defined, satisfy

$$
\begin{align*}
\left\|x_{k}-x_{*}\right\| & \leq \varepsilon \tag{1.5}\\
\left\|x_{k+1}-x_{*}\right\| & \leq C\left\|x_{k}-x_{*}\right\|^{2} \tag{1.6}
\end{align*}
$$

for all $k \geq 0$, implying that the sequence $\left\{x_{k}\right\}$ converges to x_{*} quadratically.

Proof:

Provided $A^{-1}\left(x_{k}\right)$ exists, it follows from (1.4) that

$$
x_{k+1}-x_{*}=A^{-1}\left(x_{k}\right)\left(A\left(x_{k}\right)\left(x_{k}-x_{*}\right)-F\left(x_{k}\right)+F\left(x_{*}\right)\right) .
$$

Using (1.2) and making a substitution in the integral, we see that

$$
A\left(x_{k}\right)\left(x_{k}-x_{*}\right)-F\left(x_{k}\right)+F\left(x_{*}\right)=\int_{0}^{1} t B\left(x_{*}+t h ; h, h\right) d t
$$

where $h=x_{k}-x_{*}$. Thus

$$
\begin{equation*}
x_{k+1}-x_{*}=A^{-1}\left(x_{k}\right) \int_{0}^{1} t B\left(x_{*}+t h ; h, h\right) d t \tag{1.7}
\end{equation*}
$$

Since F is smooth and $A\left(x_{*}\right)$ is invertible, there exist $\delta, M>0$ such that for all x with $\left\|x-x_{*}\right\| \leq \delta$ the matrix $A(x)$ is also invertible and

$$
\left\|A^{-1}(x)\right\| \leq \frac{1}{M}
$$

Let

$$
L=\sup _{\left\|x-x_{*}\right\| \leq \delta}\|B\|(x)
$$

From (1.7) it follows that

$$
\begin{equation*}
\left\|x_{k+1}-x_{*}\right\| \leq \frac{L}{2 M}\|h\|^{2}=\frac{L}{2 M}\left\|x_{k}-x_{*}\right\|^{2} \tag{1.8}
\end{equation*}
$$

for $\left\|x_{k}-x_{*}\right\| \leq \delta$. Therefore, if $\left\{x_{k}\right\}$ is well defined and (1.5) holds for some $0<\varepsilon<\delta$, then (1.6) also holds with

$$
C=\frac{L}{2 M} .
$$

Now take ε satisfying

$$
0<\varepsilon<\min \left(\delta, \frac{2 M}{L}\right)
$$

Then, if x_{k} satisfies $\left\|x_{k}-x_{*}\right\| \leq \varepsilon$, it is also true that $\left\|x_{k}-x_{*}\right\| \leq \delta$, so that $A^{-1}\left(x_{k}\right)$ exists and x_{k+1} is well defined. Moreover, (1.8) gives

$$
\left\|x_{k+1}-x_{*}\right\| \leq \frac{L}{2 M}\left\|x_{k}-x_{*}\right\|\left\|x_{k}-x_{*}\right\|<\frac{L}{2 M} \frac{2 M}{L} \varepsilon=\varepsilon
$$

We have $\varepsilon>0$ such that for any x_{0} with $\left\|x_{0}-x_{*}\right\| \leq \varepsilon$ holds $\left\|x_{k}-x_{*}\right\| \leq \varepsilon$ for all $k \geq 1$ (by induction). Thus, both estimates (1.5) and (1.6) are established.

Introducing

$$
\xi_{k}=\frac{L}{2 M}\left\|x_{k}-x_{*}\right\|
$$

we get from (1.8) that $\xi_{k+1} \leq \xi_{k}^{2}$ for $k \geq 0$, which implies

$$
\xi_{k} \leq \xi_{0}^{2^{k}}
$$

Here $\xi_{0}<1$, since

$$
\frac{L}{2 M}\left\|x_{0}-x_{*}\right\| \leq \frac{L}{2 M} \varepsilon<\frac{L}{2 M} \frac{2 M}{L}=1
$$

Thus $\xi_{k} \rightarrow 0$ as $k \rightarrow \infty$, meaning that $\left\{x_{k}\right\}$ converges to x_{*} quadratically.

1.3 Approximation of 1D invariant manifolds

Let $x_{*}=0$ be a hyperbolic equilibrium of a smooth ODE system

$$
\begin{equation*}
\dot{x}=A x+\frac{1}{2} B(x, x)+O\left(\|x\|^{3}\right), \quad x \in \mathbb{R}^{n} \tag{1.9}
\end{equation*}
$$

Suppose that A has one simple eigenvalue $\lambda>0$ and $(n-1)$ eigenvalues with $\Re(\lambda)<0$. Then

Figure 1.1: One-dimensional invariant manifolds of a saddle in the plane.
there exists a one-dimensional invaraint manifold $W^{u}(0)$ that is tangent at the equilibrium 0 to the one-dimensional unstable eigenspace E^{u} of A spanned by the eigenvector $q \in \mathbb{R}^{n}$:

$$
A q=\lambda q, \quad\langle q, q\rangle=1
$$

The manifold $W^{u}(0)$ can be parametrized near the origin by

$$
\begin{equation*}
x=\xi q+\frac{1}{2} \xi^{2} s+O\left(|\xi|^{3}\right) \tag{1.10}
\end{equation*}
$$

with $\xi \in \mathbb{R}$ and some fixed vector $s \in \mathbb{R}^{n}$ satisfying

$$
\begin{equation*}
\langle p, s\rangle=0 \tag{1.11}
\end{equation*}
$$

where $p \in \mathbb{R}^{n}$ is the adjoint eigenvector:

$$
A^{\mathrm{T}} p=\lambda p, \quad\langle p, q\rangle=1
$$

The condition (1.11) means that s belongs the ($n-1$)-dimensional stable eigenspace E^{s} of A, so that the quadratic term in (1.10) does not contain any component in the q-direction.

The restriction of (1.9) to its $W^{u}(0)$ can be written as

$$
\begin{equation*}
\dot{\xi}=\lambda \xi+a \xi^{2}+O\left(|\xi|^{3}\right) \tag{1.12}
\end{equation*}
$$

where $a \in \mathbb{R}$. Notice that both a and s are unknown at this stage.

Using the invariancy of $W^{u}(0)$, we obtain

$$
\begin{aligned}
\dot{x} & =\dot{\xi} q+\xi \dot{\xi} s+\ldots \\
& =\left(\lambda \xi+a \xi^{2}+\ldots\right) q+\xi\left(\lambda \xi+a \xi^{2}+\ldots\right) s+\ldots \\
& =\lambda \xi q+\xi^{2}(a q+\lambda s)+\ldots
\end{aligned}
$$

as well as

$$
\begin{aligned}
\dot{x} & =A\left(\xi q+\frac{1}{2} \xi^{2} s+\ldots\right)+\frac{1}{2} B(\xi q+\ldots, \xi q+\ldots)+\ldots \\
& =\xi A q+\frac{1}{2} \xi^{2} A s+\frac{1}{2} \xi^{2} B(q, q)+\ldots \\
& =\lambda \xi q+\frac{1}{2} \xi^{2}(A s+B(q, q))+\ldots
\end{aligned}
$$

where "..." denote the $O\left(|\xi|^{3}\right)$-terms. Collecting the ξ^{2} terms, we obtain the following nonsingular linear system

$$
\begin{equation*}
\left(A-2 \lambda I_{n}\right) s=2 a q-B(q, q) \tag{1.13}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left\langle p,\left(A-2 \lambda I_{n}\right) s\right\rangle & =\left\langle\left(A-2 \lambda I_{n}\right)^{\mathrm{T}} p, s\right\rangle=\left\langle A^{\mathrm{T}} p, s\right\rangle-2 \lambda\langle p, s\rangle \\
& =\lambda\langle p, s\rangle-2 \lambda\langle p, s\rangle=-\lambda\langle p, s\rangle \\
& =0
\end{aligned}
$$

due to (1.11), we must have $\langle p, 2 a q-B(q, q)\rangle=0$. This implies

$$
a=\frac{1}{2}\langle p, B(q, q)\rangle
$$

and (1.13) finally gives

$$
s=\left(A-2 \lambda I_{n}\right)^{-1}(\langle p, B(q, q)\rangle q-B(q, q))
$$

