Lecture 2: Continuation of equilibria

2.1 Algebraic Continuation Problems

Consider a system of ODEs depending on one parameter

$$
\begin{equation*}
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R}, \tag{2.1}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ is smooth. Looking at how its equilibria depend on the parameter, leads to computing the corresponding equilibrium manifold, i.e. set of points

$$
\binom{u}{\alpha} \in \mathbb{R}^{n+1}
$$

satisfying $f(u, \alpha)=0$. This is an example of a general Algebraic Continuaton Problem (ALCP): Compute a solution set $M \subset \mathbb{R}^{N+1}$ of the smooth system

$$
\begin{equation*}
F(x)=0, \quad F: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{N}, \tag{2.2}
\end{equation*}
$$

starting form a given point $x_{0} \in M$.

2.1.1 Regular points

A point $p \in M$ is called regular for $\operatorname{ALCP}(2.2)$ if $\operatorname{rank} F_{x}(p)=N$. At such a point, the $N \times(N+1)$ matrix

$$
J=F_{x}(p)=\left.\left(\begin{array}{ccccc}
\frac{\partial F_{1}}{\partial x_{1}} & \frac{\partial F_{1}}{\partial x_{2}} & \cdots & \frac{\partial F_{1}}{\partial x_{N}} & \frac{\partial F_{1}}{\partial x_{N+1}} \\
\frac{\partial F_{2}}{\partial x_{1}} & \frac{\partial F_{2}}{\partial x_{2}} & \cdots & \frac{\partial F_{2}}{\partial x_{N}} & \frac{\partial F_{2}}{\partial x_{N+1}} \\
\dddot{\partial} & & & \\
\frac{\partial F_{N}}{\partial x_{1}} & \frac{\partial F_{N}}{\partial x_{2}} & \cdots & \frac{\partial F_{N}}{\partial x_{N}} & \frac{\partial F_{N}}{\partial x_{N+1}}
\end{array}\right)\right|_{x=p}
$$

has N linearly-independent rows and there exist N colums which are linearly-independent.

Lemma 2 Near any regular point p, ALCP (2.2) defines a solution curve M that passes through p and is locally unique and smooth.

Proof:

Let J_{1} be the non-singular $N \times N$ matrix composed by the linearly-independent columns of J. Suppose that the j-th column of J

$$
g=\frac{\partial F}{\partial x_{j}}=\left(\begin{array}{c}
\frac{\partial F_{1}}{\partial x_{j}} \\
\frac{\partial F_{2}}{\partial x_{j}} \\
\vdots \\
\frac{\partial F_{N}}{\partial x_{j}}
\end{array}\right)
$$

is their linear combination. The Implicit Function Theorem implies that (locally to p) M is the graph of a smooth function $\mathbb{R} \rightarrow \mathbb{R}^{N}$:

$$
\begin{cases}x_{1} & =\varphi_{1}\left(x_{j}\right) \\ x_{2} & =\varphi_{2}\left(x_{j}\right) \\ \cdots & \\ x_{j-1} & =\varphi_{j-1}\left(x_{j}\right) \\ x_{j+1} & =\varphi_{j+1}\left(x_{j}\right) \\ \cdots & \\ x_{N+1} & =\varphi_{N+1}\left(x_{j}\right)\end{cases}
$$

Taking $s=x_{j}-p_{j}$, we get a smooth local parametrization of $M: x=x(s)$. One can use any other smooth local parametrization with $x(0)=p$, i.e. by the archlength.

Lemma 3 If p is a regular point of $A L C P$ (2.2) then the linear equation $J v=0$ with $J=F_{x}(p)$ has a unique (modulo scaling) solution $v \in \mathbb{R}^{N+1}$, i.e. the kernel of J is onedimensional.

Proof:

$$
J v=0 \Leftrightarrow J_{1}\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{j-1} \\
v_{j+1} \\
\vdots \\
v_{N+1}
\end{array}\right)=-v_{j} g
$$

where J_{1} is non-singular. Thus

$$
\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{j-1} \\
v_{j+1} \\
\vdots \\
v_{N+1}
\end{array}\right)=-v_{j} J_{1}^{-1} g
$$

with arbitrary scaling factor $v_{j} \in \mathbb{R}$.
Lemma $4 A$ tangent vector v to M at a regular point $p \in M$ satisfies $J v=0$.

Proof:

Consider a smooth parameterization of M near $p: x=x(s)$ with $x(0)=p$. By definition,

$$
v=\dot{x}(0)=\left.\frac{d x(s)}{d s}\right|_{s=0} .
$$

Notice that one can always select a parameterization such that $\|v\|=1$. Differentiating the identity $F(x(s))=0$ w.r.t. s at $s=0$ gives:

$$
F_{x}(x(0)) \dot{x}(0)=0
$$

or $J v=0$.
The following result is used to compute the kernel of $F_{x}(x)$ near a regular point p.
Lemma 5 (Keller-Lemma) The $(N+1) \times(N+1)$ matrix

$$
B=\binom{J}{v^{\mathrm{T}}},
$$

where v satisfies $J v=0$ and $\|v\|=1$, is non-singular at any regular point.

Proof:

Suppose that $B w=0$ for some $v \in \mathbb{R}^{N+1}$ with $w \neq 0$. This is equivalent to the system of equations

$$
\left\{\begin{aligned}
J w & =0, \\
v^{\mathrm{T}} w & =0 .
\end{aligned}\right.
$$

By Lemma 3, the first equation implies that $w=C v$ with some constant $C \in \mathbb{R}$. Then, the second equation gives

$$
0=C v^{\mathrm{T}} v=C\|v\|^{2}=C
$$

i.e. $C=0$. This implies $w=C v=0$, a contradiction.

2.1.2 Limit points

A regular point $p \in M$ is a limit point for ALCP (2.2) with respect to a coordinate x_{j} if $v_{j}=0$, where v is a normalized tangent vector to M at p.

Lemma 6 If p is a limit point of $\operatorname{ALCP}(2.2)$ w.r.t. x_{N+1}, then the $N \times N$ matrix

$$
A=\left.\left(\frac{\partial F_{i}(p)}{\partial x_{j}}\right)\right|_{i, j=1,2, \ldots, N}
$$

is singular.

Proof:

Let $x=x(s)$ be a smooth parametrization of M near p such that $x(0)=p$ and

$$
\dot{x}(0)=v=\binom{w}{0} \in \mathbb{R}^{N+1}
$$

with $w \neq 0$. Then

$$
J=\left(\begin{array}{ll}
A & g
\end{array}\right), \quad g_{i}=\left.\frac{\partial F_{i}(x)}{\partial x_{N+1}}\right|_{x=p} \quad(i=1,2, \ldots, N)
$$

and

$$
0=J v=A w+v_{N+1} g=A w,
$$

so that $w \in \mathbb{R}^{N}$ is a nontrivial null-vector of A.
Since J has rank N at the limit point w.r.t. x_{N+1}, matrix A must have rank $N-1$ (not less!). Therefore, there exists $\psi \in \mathbb{R}^{N}$ such that $\psi^{\mathrm{T}} A=0$, or

$$
A^{\mathrm{T}} \psi=0 .
$$

The vector is unique modulo scaling.
Consider a limit point

$$
p=\binom{u_{0}}{\alpha_{0}}
$$

of the equilibrium manifold of (2.1)

$$
f(u, \alpha)=0, \quad f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n},
$$

w.r.t. the parameter α. Let

$$
x(s)=\binom{u(s)}{\alpha(s)}
$$

be a smooth parametrization of the manifold near the limit point such that $u(0)=u_{0}, \alpha(0)=$ α_{0}. The tangent vector to the equilibrium manifold at $x(s)$ will be

$$
\dot{x}(s)=\binom{\dot{u}(s)}{\dot{\alpha}(s)}
$$

where $\dot{\alpha}(0)=0$ and $w=\dot{u}(0) \neq 0$ by definition.
Differentiating the identity

$$
f(u(s), \alpha(s))=0
$$

twice w.r.t. s, we obtain

$$
\begin{aligned}
f_{u}(u(s), \alpha(s)) \dot{u}(s)+f_{\alpha}(u(s), \alpha(s)) \dot{\alpha}(s) & =0, \\
f_{u u}(u(s), \alpha(s))[\dot{u}(s), \dot{u}(s)]+f_{u}(u(s), \alpha(s)) \ddot{u}(s)+2 f_{\alpha u}(u(s), \alpha(s))[\dot{\alpha}(s), \dot{u}(s)] & \\
+f_{\alpha}(u(s), \alpha(s)) \ddot{\alpha}(s)+f_{\alpha \alpha}(u(s), \alpha(s)) \dot{\alpha}(s) \dot{\alpha}(s) & =0 .
\end{aligned}
$$

Here $f_{u u}(u, \alpha)[w, w]=B(u, \alpha ; w, w)$ where

$$
B_{i}(u, \alpha ; w, w)=\sum_{j, k=1}^{n} \frac{\partial^{2} f_{i}(u, \alpha)}{\partial u_{j} \partial u_{k}} w_{j} w_{k}
$$

and

$$
\left(f_{\alpha u}(u, \alpha)[\beta, w]\right)_{i}=\sum_{k=1}^{n} \frac{\partial^{2} f_{i}(u, \alpha)}{\partial \alpha \partial u_{k}} \beta w_{k}
$$

for $i=1,2, \ldots, n$.
Evaluating the first equation at $s=0$ and taking into account that $\dot{\alpha}(0)=0$, we see that

$$
f_{u}^{0} \dot{u}(0)=0,
$$

where upper index ${ }^{0}$ indicates the value at $\left(u_{0}, \alpha_{0}\right)$. Thus (in accordance with Lemma 6)

$$
A w=0
$$

where $A=f_{u}^{0}=f_{u}\left(u_{0}, \alpha_{0}\right)$. Evaluation of the second equation at $s=0$ leads to

$$
f_{u u}^{0}[\ddot{u}(0), \dot{u}(0)]+f_{u}^{0} \ddot{u}(0)+f_{\alpha}^{0} \ddot{\alpha}(0)=0 .
$$

Taking the scalar product of the last equation with non-zero vector $\psi \in \mathbb{R}^{N}$ satisfying $\psi^{\mathrm{T}} A=$ 0 , we get the following expression:

$$
\ddot{\alpha}(0)=-\frac{\psi^{\mathrm{T}} f_{u u}(p)[w, w]}{\psi^{\mathrm{T}} f_{\alpha}(p)} .
$$

Here $\psi^{\mathrm{T}} f_{\alpha}(p) \neq 0$ (otherwise $\psi^{\mathrm{T}} J=\psi^{T}\left(A f_{\alpha}\right)=0$ and rank $J \leq N-1$). A limit point of the equilibrium manifold of (2.1) is called quadratic if

$$
a=\frac{1}{2}\langle\psi, B(p ; w, w)\rangle \neq 0 .
$$

Locally, $f(u, \alpha)=0$ looks like a parabola, implying the collision and disappearance of two equilibria as the parameter α passes the limit point value.

2.2 Numerical solutions of ALCP

Solving ALCP (2.2) numerically means: Given an initial point $x^{(0)}$ close to $x_{0} \in M$, find a sequence of points

$$
x^{(1)}, x^{(2)}, x^{(3)}, \ldots
$$

such that the union of line segments connecting consequent points approximates M with given accuracy.

This is usually achieved by with a predictor-corrector method:

- tangent prediction $X^{0}=x^{(i)}+h v^{(i)}$, where h is the stepsize and $v^{(i)}$ is tangent to M at $x^{(i)} ;\left\|v^{(i)}\right\|=1$;
- Newton-like corrections (their type determines the continuation algorithm);
- adaptive step-size control (convergence-dependent).

All defined below corrections converge quadratically to a point $x^{(i+1)}$ in the curve M near $x^{(i)}$, provided the step size h is sufficiently small.

2.2.1 Natural continuation

Apply the standard Newton method to

$$
G(x)=\binom{F(x)}{x_{j}-X_{j}^{0}}=0
$$

where $\left|v_{j}^{(j)}\right|$ is maximal in absolute value component of $v^{(i)}$. It is equavalent to the Newton corrections in the hyperplane through X^{0} orthogonal to the x_{j}-axis (see Figure 2.1(a)). We have

$$
G_{x}=\binom{F_{x}}{\left[e_{j}\right]^{\mathrm{T}}}
$$

where e_{j} is the unit vector along the x_{j}-axis.

(a)

(b)

Figure 2.1: Simplest continuation methods: (a) natural continuation (the x_{j}-axis is assumed to be horizontal); (b) pseudo-arclength continuation.

2.2.2 Pseudo-arclength continuation

Apply Newton's method to

$$
G(x)=\binom{F(x)}{\left\langle x-X^{0}, v^{(i)}\right\rangle}=0 .
$$

It is equivalent to the Newton corrections in the plane through X^{0} orthogonal to $v^{(i)}$ (see Figure 2.1(b)). The linearization matrix

$$
G_{x}=\binom{F_{x}}{\left[v^{(i)}\right]^{\mathrm{T}}}
$$

at each iterate is close to the matrix B computed at $x^{(i)}$ and is nonsingular due to KellerLemma.

2.2.3 Moore-Penrose continuation

Take $V^{0} \in \mathbb{R}^{N+1}$ satisfying $F_{x}\left(X^{0}\right) V^{0}=0$ and $\left\|V^{0}\right\|=1$. Make one Newton correction for

$$
G(x)=\binom{F(x)}{\left\langle x-X^{0}, V^{0}\right\rangle}=0
$$

The linearization of this system about X^{0} is

$$
\left\{\begin{align*}
F\left(X^{0}\right)+F_{x}\left(X^{0}\right)\left(X-X^{0}\right) & =0 \tag{2.3}\\
{\left[V^{0}\right]^{\mathrm{T}}\left(X-X^{0}\right) } & =0
\end{align*}\right.
$$

implying

$$
\binom{F_{x}\left(X^{0}\right)}{\left[V^{0}\right]^{\mathrm{T}}}\left(X-X^{0}\right)=-\binom{F\left(X^{0}\right)}{0}
$$

Therefore, define

$$
X^{1}=X^{0}-\binom{F_{x}\left(X^{0}\right)}{\left[V^{0}\right]^{\mathrm{T}}}^{-1}\binom{F\left(X^{0}\right)}{0}
$$

Then compute V^{1} satisfying

$$
F_{x}\left(X^{1}\right) V^{1}=0, \quad\left\|V^{1}\right\|=1
$$

and set

$$
X^{2}=X^{1}-\binom{F_{x}\left(X^{1}\right)}{\left[V^{1}\right]^{\mathrm{T}}}^{-1}\binom{F\left(X^{1}\right)}{0}
$$

etc.
In general, the Moore-Penrose corrections are defined by

$$
\begin{equation*}
X^{k+1}=X^{k}-\binom{F_{x}\left(X^{k}\right)}{\left[V^{k}\right]^{\mathrm{T}}}^{-1}\binom{F\left(X^{k}\right)}{0} \tag{2.4}
\end{equation*}
$$

(a)

(b)

Figure 2.2: Advanced continuation methods: (a) Moore-Penrose continuation; (b) approximate Moore-Penrose continuation.
where

$$
\begin{equation*}
F_{x}\left(X^{k}\right) V^{k}=0, \quad\left\|V^{k}\right\|=1 \tag{2.5}
\end{equation*}
$$

Each correction occurs within the plane orthogonal to the kernel of $F_{x}\left(X^{k}\right)$ at X^{k} (see Figure $2.2(\mathrm{a})$). If the corrections converge to $x^{(i+1)}$, the corresponding vectors V^{k} converge to the next tangent vector $v^{(i+1)}$.

Let J be a $N \times(N+1)$ matrix with rank $J=N$. Its Moore-Penrose pseudo-inverse is the $(N+1) \times N$ matrix

$$
J^{+}=J^{\mathrm{T}}\left(J J^{\mathrm{T}}\right)^{-1} .
$$

Since J has N linearly-independent rows, the corresponding Gramm-determinant $\operatorname{det}\left(J J^{\mathrm{T}}\right)>$ 0 , so $\left(J J^{\mathrm{T}}\right)^{-1}$ exists.

Consider the non-singular linear system for $x \in \mathbb{R}^{N+1}$ with a given $b \in \mathbb{R}^{N}$

$$
\left\{\begin{align*}
J x & =b, \tag{2.6}\\
v^{\mathrm{T}} x & =0,
\end{align*}\right.
$$

where $v \in \mathbb{R}^{N+1}$ satisfies $J v=0$ and $\|v\|=1$.
Lemma 7 The solution to (2.6) is given by $x=J^{+} b$.

Proof:

$$
J x=J J^{+} b=J J^{\mathrm{T}}\left(J J^{\mathrm{T}}\right)^{-1} b=I_{N} b=b
$$

and

$$
v^{\mathrm{T}} x=v^{\mathrm{T}} J^{+} b=v^{\mathrm{T}} J^{\mathrm{T}}\left(J J^{\mathrm{T}}\right)^{-1} b=(J v)^{\mathrm{T}}\left(J J^{\mathrm{T}}\right)^{-1} b=0,
$$

since $J v=0$.
Therefore, the first Moore-Penrose correction can be written as

$$
X^{1}=X^{0}-F_{x}^{+}\left(X^{0}\right) F\left(X^{0}\right)
$$

In general, the corrections defined by (2.4) and (2.5) can be written as

$$
X^{k+1}=X^{k}-F_{x}^{+}\left(X^{k}\right) F\left(X^{k}\right), \quad k=0,1,2, \ldots .
$$

One can motivate the Moore-Penrose corrections as follows. If a point $x^{(i)} \in M$ is known, one can try to solve the following optimization problem

$$
\min _{x}\left\{\left\|x-X^{0}\right\| \mid F(x)=0\right\}
$$

to obtain the next point $x=x^{(i+1)} \in M$. For X^{0} close to $x^{(i)}$, this problem is equivalent to solving the system

$$
\left\{\begin{aligned}
F(x) & =0, \\
v^{\mathrm{T}}\left(x-X^{0}\right) & =0,
\end{aligned}\right.
$$

where $F_{x}(x) v=0$ and $\|v\|=1$. The linearization of this system about X^{0} gives (2.3).

2.2.4 Approximate Moore-Penrose continuation

A disadvantage of the described Moore-Penrose correction algorithm is that one needs to compute the null-vector V^{k} by setting up and solving (2.5) at each X^{k}. One can avoid this by looking for X^{k+1} within the plane through X^{k} that is orthogonal to the previous kernel, i.e. V^{k-1} (see Figure 2.2(b)).

Let $V^{0}=v^{(i)}$ with $\left\|V^{0}\right\|=1$. As in the exact Moore-Penrose algorithm, set

$$
X^{1}=X^{0}-\binom{F_{x}\left(X^{0}\right)}{\left[V^{0}\right]^{\mathrm{T}}}^{-1}\binom{F\left(X^{0}\right)}{0}
$$

To find V^{1} satisfying $F_{x}\left(X^{0}\right) V^{1}=0$, compute first

$$
W=\binom{F_{x}\left(X^{0}\right)}{\left[V^{0}\right]^{\mathrm{T}}}^{-1}\binom{0}{1}
$$

which amounts to solving a linear system

$$
\left\{\begin{aligned}
F_{x}\left(X^{0}\right) W & =0 \\
\left\langle V^{0}, W\right\rangle & =1
\end{aligned}\right.
$$

with exactly the same matrix as used to compute X^{1}. The vector W spans the kernel of $F_{x}\left(X^{0}\right)$. Now we can set

$$
V^{1}=\frac{W}{\|W\|}
$$

and repeat the procedure.
This leads to the following approximate Moore-Penrose corrections:

$$
\left\{\begin{aligned}
X^{k+1} & =X^{k}-\binom{F_{x}\left(X^{k}\right)}{\left[V^{k}\right]^{\mathrm{T}}}^{-1}\binom{F\left(X^{k}\right)}{0} \\
W^{k+1} & =\binom{F_{x}\left(X^{k}\right)}{\left[V^{k}\right]^{\mathrm{T}}}^{-1}\binom{0}{1}, V^{k+1}=\frac{W^{k+1}}{\left\|W^{k+1}\right\|}
\end{aligned}\right.
$$

As in the exact Moore-Penrose case, the vectors V^{k} converge to the next tangent vector $v^{(i+1)}$. Notice that

$$
W^{k+1}=V^{k}-\binom{F_{x}\left(X^{k}\right)}{\left[V^{k}\right]^{\mathrm{T}}}^{-1}\binom{F_{x}\left(X^{k}\right) V^{k}}{0} .
$$

