
Lecture 2: Continuation of
equilibria

Yu.A. Kuznetsov: Introduction to Numerical Bifurcation Analysis

2.1 Algebraic Continuation Problems

Consider a system of ODEs depending on one parameter

u̇ = f(u,↵), u 2 Rn, ↵ 2 R, (2.1)

where f : Rn ⇥ R ! Rn is smooth. Looking at how its equilibria depend on the parameter,
leads to computing the corresponding equilibrium manifold, i.e. set of points

✓
u
↵

◆
2 Rn+1

satisfying f(u,↵) = 0. This is an example of a general Algebraic Continuaton Problem

(ALCP): Compute a solution set M ⇢ RN+1 of the smooth system

F (x) = 0, F : RN+1 ! RN , (2.2)

starting form a given point x0 2 M .

2.1.1 Regular points

A point p 2 M is called regular for ALCP (2.2) if rank Fx(p) = N . At such a point, the
N ⇥ (N + 1) matrix
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has N linearly-independent rows and there exist N colums which are linearly-independent.
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Lemma 2 Near any regular point p, ALCP (2.2) defines a solution curve M that passes

through p and is locally unique and smooth.

Proof:

Let J1 be the non-singular N ⇥N matrix composed by the linearly-independent columns
of J . Suppose that the j-th column of J

g =
@F

@xj
=

0

BBBBBBBBBB@

@F1

@xj

@F2

@xj
...

@FN

@xj

1

CCCCCCCCCCA

is their linear combination. The Implicit Function Theorem implies that (locally to p) M is
the graph of a smooth function R ! RN :

8
>>>>>>>><

>>>>>>>>:

x1 = '1(xj),
x2 = '2(xj),
. . .
xj�1 = 'j�1(xj),
xj+1 = 'j+1(xj),
. . .
xN+1 = 'N+1(xj)

Taking s = xj � pj , we get a smooth local parametrization of M : x = x(s). One can use any
other smooth local parametrization with x(0) = p, i.e. by the archlength. ⇤

Lemma 3 If p is a regular point of ALCP (2.2) then the linear equation Jv = 0 with

J = Fx(p) has a unique (modulo scaling) solution v 2 RN+1
, i.e. the kernel of J is one-

dimensional.

Proof:

Jv = 0 , J1

0

BBBBBBBB@

v1
...

vj�1

vj+1

...
vN+1

1
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= �vjg,

where J1 is non-singular. Thus
0
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= �vjJ
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with arbitrary scaling factor vj 2 R. ⇤

Lemma 4 A tangent vector v to M at a regular point p 2 M satisfies Jv = 0.

Proof:

Consider a smooth parameterization of M near p: x = x(s) with x(0) = p. By definition,

v = ẋ(0) =
dx(s)

ds

����
s=0

.

Notice that one can always select a parameterization such that kvk = 1. Di↵erentiating the
identity F (x(s)) = 0 w.r.t. s at s = 0 gives:

Fx(x(0))ẋ(0) = 0

or Jv = 0. ⇤
The following result is used to compute the kernel of Fx(x) near a regular point p.

Lemma 5 (Keller-Lemma) The (N + 1)⇥ (N + 1) matrix

B =

✓
J
vT

◆
,

where v satisfies Jv = 0 and kvk = 1, is non-singular at any regular point.

Proof:

Suppose that Bw = 0 for some v 2 RN+1 with w 6= 0. This is equivalent to the system of
equations ⇢

Jw = 0,
vTw = 0.

By Lemma 3, the first equation implies that w = Cv with some constant C 2 R. Then, the
second equation gives

0 = CvTv = Ckvk2 = C,

i.e. C = 0. This implies w = Cv = 0, a contradiction. ⇤

2.1.2 Limit points

A regular point p 2 M is a limit point for ALCP (2.2) with respect to a coordinate xj if
vj = 0, where v is a normalized tangent vector to M at p.

Lemma 6 If p is a limit point of ALCP (2.2) w.r.t. xN+1, then the N ⇥N matrix

A =

✓
@Fi(p)

@xj

◆����
i,j=1,2,...,N

is singular.
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Proof:

Let x = x(s) be a smooth parametrization of M near p such that x(0) = p and

ẋ(0) = v =

✓
w
0

◆
2 RN+1

with w 6= 0. Then

J = (A g) , gi =
@Fi(x)

@xN+1

����
x=p

(i = 1, 2, . . . , N)

and
0 = Jv = Aw + vN+1g = Aw,

so that w 2 RN is a nontrivial null-vector of A. ⇤
Since J has rank N at the limit point w.r.t. xN+1, matrix A must have rank N � 1 (not

less!). Therefore, there exists  2 RN such that  TA = 0, or

AT = 0.

The vector is unique modulo scaling.

Consider a limit point

p =

✓
u0
↵0

◆

of the equilibrium manifold of (2.1)

f(u,↵) = 0, f : Rn ⇥ R ! Rn,

w.r.t. the parameter ↵. Let

x(s) =

✓
u(s)
↵(s)

◆

be a smooth parametrization of the manifold near the limit point such that u(0) = u0, ↵(0) =
↵0. The tangent vector to the equilibrium manifold at x(s) will be

ẋ(s) =

✓
u̇(s)
↵̇(s)

◆

where ↵̇(0) = 0 and w = u̇(0) 6= 0 by definition.
Di↵erentiating the identity

f(u(s),↵(s)) = 0

twice w.r.t. s, we obtain

fu(u(s),↵(s))u̇(s) + f↵(u(s),↵(s))↵̇(s) = 0,

fuu(u(s),↵(s))[u̇(s), u̇(s)] + fu(u(s),↵(s))ü(s) + 2f↵u(u(s),↵(s))[↵̇(s), u̇(s)]

+f↵(u(s),↵(s))↵̈(s) + f↵↵(u(s),↵(s))↵̇(s)↵̇(s) = 0.

Here fuu(u,↵)[w,w] = B(u,↵;w,w) where

Bi(u,↵;w,w) =
nX

j,k=1

@2fi(u,↵)

@uj@uk
wjwk
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and

(f↵u(u,↵)[�, w])i =
nX

k=1

@2fi(u,↵)

@↵ @uk
�wk

for i = 1, 2, . . . , n.
Evaluating the first equation at s = 0 and taking into account that ↵̇(0) = 0, we see that

f0

u u̇(0) = 0,

where upper index 0 indicates the value at (u0,↵0). Thus (in accordance with Lemma 6)

Aw = 0

where A = f0
u = fu(u0,↵0). Evaluation of the second equation at s = 0 leads to

f0

uu[u̇(0), u̇(0)] + f0

u ü(0) + f0

↵↵̈(0) = 0.

Taking the scalar product of the last equation with non-zero vector  2 RN satisfying  TA =
0, we get the following expression:

↵̈(0) = � 
Tfuu(p)[w,w]

 Tf↵(p)
.

Here  Tf↵(p) 6= 0 (otherwise  TJ =  T (A f↵) = 0 and rank J  N � 1). A limit point of
the equilibrium manifold of (2.1) is called quadratic if

a =
1

2
h , B(p;w,w)i 6= 0.

Locally, f(u,↵) = 0 looks like a parabola, implying the collision and disappearance of two
equilibria as the parameter ↵ passes the limit point value.

2.2 Numerical solutions of ALCP

Solving ALCP (2.2) numerically means: Given an initial point x(0) close to x0 2 M , find a
sequence of points

x(1), x(2), x(3), . . .

such that the union of line segments connecting consequent points approximates M with given
accuracy.

This is usually achieved by with a predictor-corrector method:

• tangent prediction X0 = x(i) + hv(i), where h is the stepsize and v(i) is tangent to M
at x(i); kv(i)k = 1;

• Newton-like corrections (their type determines the continuation algorithm);

• adaptive step-size control (convergence-dependent).

All defined below corrections converge quadratically to a point x(i+1) in the curve M near
x(i), provided the step size h is su�ciently small.
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2.2.1 Natural continuation

Apply the standard Newton method to

G(x) =

✓
F (x)

xj �X0

j

◆
= 0,

where |v(j)j | is maximal in absolute value component of v(i). It is equavalent to the Newton

corrections in the hyperplane through X0 orthogonal to the xj-axis (see Figure 2.1(a)). We
have

Gx =

✓
Fx

[ej ]
T

◆
,

where ej is the unit vector along the xj-axis.

(b)(a)

x(i)

F (x) = 0

x(i+1)

v(i+1)

v(i)
X1

X0

x(i)

X1

X0

F (x) = 0

x(i+1)

v(i+1)

v(i)

Figure 2.1: Simplest continuation methods: (a) natural continuation (the xj-axis is assumed
to be horizontal); (b) pseudo-arclength continuation.

2.2.2 Pseudo-arclength continuation

Apply Newton’s method to

G(x) =

✓
F (x)

hx�X0, v(i)i

◆
= 0.

It is equivalent to the Newton corrections in the plane through X0 orthogonal to v(i) (see
Figure 2.1(b)). The linearization matrix

Gx =

✓
Fx

[v(i)]T

◆

at each iterate is close to the matrix B computed at x(i) and is nonsingular due to Keller-
Lemma.
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2.2.3 Moore-Penrose continuation

Take V 0 2 RN+1 satisfying Fx(X0)V 0 = 0 and kV 0k = 1. Make one Newton correction for

G(x) =

✓
F (x)

hx�X0, V 0i

◆
= 0.

The linearization of this system about X0 is

⇢
F (X0) + Fx(X0)(X �X0) = 0,

[V 0]T(X �X0) = 0,
(2.3)

implying ✓
Fx(X0)

[V 0]T

◆
(X �X0) = �

✓
F (X0)

0

◆
.

Therefore, define

X1 = X0 �
✓

Fx(X0)

[V 0]T

◆�1✓
F (X0)

0

◆
.

Then compute V 1 satisfying

Fx(X
1)V 1 = 0, kV 1k = 1,

and set

X2 = X1 �
✓

Fx(X1)

[V 1]T

◆�1✓
F (X1)

0

◆
,

etc.
In general, the Moore-Penrose corrections are defined by

Xk+1 = Xk �
✓

Fx(Xk)

[V k]T

◆�1✓
F (Xk)

0

◆
, (2.4)

(a) (b)

V 1

V 1

V 2

V 2

F (x) = 0 F (x) = 0

F (x) = F (X0)
F (x) = F (X0)

v(i+1)
v(i+1)

x(i)

v(i)

V 0

X1

X0

x(i+1)

V 1

V 0

X2

x(i)

v(i)

x(i+1)

X1

X0

Figure 2.2: Advanced continuation methods: (a) Moore-Penrose continuation; (b) approxi-
mate Moore-Penrose continuation.
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where

Fx(X
k)V k = 0, kV kk = 1. (2.5)

Each correction occurs within the plane orthogonal to the kernel of Fx(Xk) at Xk (see Figure
2.2(a)). If the corrections converge to x(i+1), the corresponding vectors V k converge to the
next tangent vector v(i+1).

Let J be a N ⇥ (N + 1) matrix with rank J = N . Its Moore-Penrose pseudo-inverse

is the (N + 1)⇥N matrix

J+ = JT(JJT)�1.

Since J has N linearly-independent rows, the corresponding Gramm-determinant det(JJT) >
0, so (JJT)�1 exists.

Consider the non-singular linear system for x 2 RN+1 with a given b 2 RN

⇢
Jx = b,
vTx = 0,

(2.6)

where v 2 RN+1 satisfies Jv = 0 and kvk = 1.

Lemma 7 The solution to (2.6) is given by x = J+b.

Proof:

Jx = JJ+b = JJT(JJT)�1b = INb = b

and

vTx = vTJ+b = vTJT(JJT)�1b = (Jv)T(JJT)�1b = 0,

since Jv = 0. ⇤
Therefore, the first Moore-Penrose correction can be written as

X1 = X0 � F+

x (X0)F (X0).

In general, the corrections defined by (2.4) and (2.5) can be written as

Xk+1 = Xk � F+

x (Xk)F (Xk), k = 0, 1, 2, . . . .

One can motivate the Moore-Penrose corrections as follows. If a point x(i) 2 M is known,
one can try to solve the following optimization problem

min
x

{kx�X0k | F (x) = 0}

to obtain the next point x = x(i+1) 2 M . For X0 close to x(i), this problem is equivalent to
solving the system ⇢

F (x) = 0,
vT(x�X0) = 0,

where Fx(x)v = 0 and kvk = 1. The linearization of this system about X0 gives (2.3).
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2.2.4 Approximate Moore-Penrose continuation

A disadvantage of the described Moore-Penrose correction algorithm is that one needs to
compute the null-vector V k by setting up and solving (2.5) at each Xk. One can avoid this
by looking for Xk+1 within the plane through Xk that is orthogonal to the previous kernel,
i.e. V k�1 (see Figure 2.2(b)).

Let V 0 = v(i) with kV 0k = 1. As in the exact Moore-Penrose algorithm, set

X1 = X0 �
✓

Fx(X0)

[V 0]T

◆�1✓
F (X0)

0

◆
.

To find V 1 satisfying Fx(X0)V 1 = 0, compute first

W =

✓
Fx(X0)

[V 0]T

◆�1✓
0
1

◆
,

which amounts to solving a linear system

⇢
Fx(X0)W = 0,
hV 0,W i = 1,

with exactly the same matrix as used to compute X1. The vector W spans the kernel of
Fx(X0). Now we can set

V 1 =
W

kWk
and repeat the procedure.

This leads to the following approximate Moore-Penrose corrections:

8
>>>><

>>>>:

Xk+1 = Xk �
✓

Fx(Xk)

[V k]T

◆�1✓
F (Xk)

0

◆
,

W k+1 =

✓
Fx(Xk)

[V k]T

◆�1✓
0
1

◆
, V k+1 =

W k+1

kW k+1k .

As in the exact Moore-Penrose case, the vectors V k converge to the next tangent vector v(i+1).
Notice that

W k+1 = V k �
✓

Fx(Xk)

[V k]T

◆�1✓
Fx(Xk)V k

0

◆
.
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