Lecture 3: Branching points

3.1 Definition and properties

A point $p \in M$ is called singular for ALCP

$$
\begin{equation*}
F(x)=0, \quad F: \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{N}, \tag{3.1}
\end{equation*}
$$

if rank $F_{x}(p)<N$. Let $p=0$ be a singular point and write the Taylor expansion

$$
\begin{equation*}
F(x)=J x+\frac{1}{2} B(x, x)+O\left(\|x\|^{3}\right), \tag{3.2}
\end{equation*}
$$

where $J=F_{x}(0)$ and $B(x, y)=F_{x x}(0)[x, y]$. Introduce two linear spaces:

$$
\begin{aligned}
N(J) & :=\left\{v \in \mathbb{R}^{N+1}: J v=0\right\}, \\
N\left(J^{\mathrm{T}}\right) & :=\left\{w \in \mathbb{R}^{N}: J^{\mathrm{T}} w=0\right\} .
\end{aligned}
$$

Assume that rank $J=N-1$. This implies that

$$
\operatorname{dim} N(J)=2 \quad \text { and } \quad \operatorname{dim} N\left(J^{\mathrm{T}}\right)=1,
$$

so that

$$
\begin{aligned}
N(J) & =\operatorname{span}\left\{q^{(1)}, q^{(2)}\right\}, \quad q^{(j)} \in \mathbb{R}^{N+1}, j=1,2, \\
N\left(J^{\mathrm{T}}\right) & =\operatorname{span}\{\varphi\}, \quad \varphi \in \mathbb{R}^{N} .
\end{aligned}
$$

This means that any $v \in N(J)$ can be written as

$$
v=\beta_{1} q^{(1)}+\beta_{2} q^{(2)}
$$

for some $\beta_{j} \in \mathbb{R}$, and any $w \in N\left(J^{\mathrm{T}}\right)$ has the form

$$
w=\alpha \varphi
$$

for some $\alpha \in \mathbb{R}$. We can assume that

$$
\left\|q^{(1)}\right\|=\left\|q^{(2)}\right\|=1, \quad\left\langle q^{(1)}, q^{(2)}\right\rangle=0
$$

and

$$
\|\varphi\|=1 .
$$

Lemma 8 Any tangent vector $v \in \mathbb{R}^{N+1}$ to M at the singular point $p=0$ satisfies the equation

$$
\begin{equation*}
\langle\varphi, B(v, v)\rangle=0 \tag{3.3}
\end{equation*}
$$

Proof:

Consider a solution curve in M parametrized by $x=x(s)$ such that $x(0)=0$ and $\dot{x}(0)=v$. Then the repeated differentiation w.r.t. s gives

$$
\begin{aligned}
F(x(s)) & =0, \\
F_{x}(x(s)) \dot{x}(s) & =0 \\
F_{x x}(x(s))[\dot{x}(s), \dot{x}(s)]+F_{x}(x(s)) \ddot{x}(s) & =0 .
\end{aligned}
$$

At $s=0$, these equations are reduced to

$$
\begin{aligned}
F(0) & =0 \\
J v & =0 \\
B(v, v)+J \ddot{x}(0) & =0 .
\end{aligned}
$$

Taking the scalar product of the last equation with φ, we obtain

$$
0=\langle\varphi, B(v, v)+J \ddot{x}(0)\rangle=\langle\varphi, B(v, v)\rangle+\left\langle J^{\mathrm{T}} \varphi, \ddot{x}(0)\right\rangle .
$$

Since $J^{\mathrm{T}} \varphi=0$, we get (3.3).
Substituting $v=\beta_{1} q^{(1)}+\beta_{2} q^{(2)}$, we obtain the Algebraic Branching Equation

$$
\begin{equation*}
Q(\beta):=b_{11} \beta_{1}^{2}+2 b_{12} \beta_{1} \beta_{2}+b_{22} \beta_{2}^{2}=0 \tag{3.4}
\end{equation*}
$$

where $b_{i j}:=\left\langle\varphi, B\left(q^{(i)}, q^{(j)}\right)\right\rangle$ for $i, j=1,2$.
A singular point $p=0 \in M$ is called a simple branching point for ALCP (3.1) if
(i) rank $J=N-1$;
(ii) $b_{12}^{2}-b_{11} b_{22}>0$.

Theorem 2 Near a simple branching point $p=0$ of $A L C P$ (3.1), the solution manifold M consists of two smooth curves, Γ_{1} and Γ_{2}, intersecting transversally at p.

A vector tangent to Γ_{2} is given by the formula

$$
v^{(2)}=-\frac{b_{22}}{2 b_{12}} q^{(1)}+q^{(2)},
$$

where $q^{(1)}=v^{(1)}$ is the tangent vector to Γ_{1} at $p=0$, and a nonzero vector $q^{(2)} \in N(J)$ satisfies $\left\langle q^{(1)}, q^{(2)}\right\rangle=0$.

Proof: Write

$$
x=\beta_{1} q^{(1)}+\beta_{2} q^{(2)}+y, \quad y \in \mathbb{R}^{N+1}
$$

and consider the equation

$$
H(y, \mu, \beta):=\left(\begin{array}{c}
\mu \varphi+F\left(\beta_{1} q^{(1)}+\beta_{2} q^{(2)}+y\right) \tag{3.5}\\
\left\langle q^{(1)}, y\right\rangle \\
\left\langle q^{(2)}, y\right\rangle
\end{array}\right)=0
$$

with $H: \mathbb{R}^{N+1} \times \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{N+2}$. Clearly, $H(0,0,0)=0$. Moreover, the square $(N+2) \times$ $(N+2)$ matrix

$$
\left(H_{y}(0,0,0) \quad H_{\mu}(0,0)\right)=\left(\begin{array}{cc}
J & \varphi \\
{\left[q^{(1)}\right]^{\mathrm{T}}} & 0 \\
{\left[q^{(2)}\right]^{\mathrm{T}}} & 0
\end{array}\right)
$$

is nonsingular. Indeed, if for some $w \in \mathbb{R}^{N+1}$ and $u \in \mathbb{R}$ holds

$$
\left(\begin{array}{cc}
J & \varphi \\
{\left[q^{(1)}\right]^{\mathrm{T}}} & 0 \\
{\left[q^{(2)}\right]^{\mathrm{T}}} & 0
\end{array}\right)\binom{w}{u}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

then $J w+u \varphi=0$ implying $u=0$, since $\varphi^{\mathrm{T}} J=0$ but $\|\varphi\|=1$. Thus $J w=0$ and $w=c_{1} q^{(1)}+c_{2} q^{(2)}$ with some $c_{1,2} \in \mathbb{R}$. The conditions $\left\langle q^{(j)}, w\right\rangle=0$ lead to $c_{1}=c_{2}=0$ and thus $w=0$.

Therefore, the Implicit Function Theorem guarantees existence and uniqueness of smooth functions $y=Y(\beta)$ and $\mu=m(\beta)$ with $Y(0)=0, m(0)=0$, and such that

$$
H(Y(\beta), m(\beta), \beta)=0
$$

for all $\beta=\left(\beta_{1}, \beta_{2}\right) \in \mathbb{R}^{2}$ with sufficiently small $\|\beta\|$. The solutions of the original problem $F(x)=0$ near $x=0$ correspond to the level curves

$$
m(\beta)=0
$$

This gives relations between β_{1} and β_{2} to be used in

$$
x=\beta_{1} q^{(1)}+\beta_{2} q^{(2)}+Y(\beta)
$$

to parametrize different branches of the ALCP $F(x)=0$ near the origin.
One can show that

$$
\begin{equation*}
m(\beta)=-\frac{1}{2} Q(\beta)+O\left(\|\beta\|^{2}\right) \tag{3.6}
\end{equation*}
$$

where $Q(\beta)$ is defined in (3.4). Since condition (ii) in the definition of the simple branching point guarantees that the quadratic form $Q(\beta)$ has a saddle point at $\beta_{1}=\beta_{2}=0$, there are locally two zero-level curves of $m(\beta)$ intersecting at a nonzero angle at the origin. Hence, we will prove the first part of the theorem if we verify (3.6).

Notice that the first equation in (3.5) implies the identity

$$
\begin{equation*}
m(\beta) \varphi+F\left(\beta_{1} q^{(1)}+\beta_{2} q^{(2)}+Y(\beta)\right)=0 \tag{3.7}
\end{equation*}
$$

for small $\|\beta\|$. Using the expansion (3.2), we see that this is equivalent to

$$
\begin{aligned}
0= & m(\beta) \varphi+J Y(\beta)+ \\
& \frac{1}{2}\left[\beta_{1}^{2} B\left(q^{(1)}, q^{(1)}\right)+2 \beta_{1} \beta_{2} B\left(q^{(1)}, q^{(2)}\right)+\beta_{2}^{2} B\left(q^{(2)}, q^{(2)}\right)\right]+ \\
& \beta_{1} B\left(q^{(1)}, Y(\beta)\right)+\beta_{2} B\left(q^{(2)}, Y(\beta)\right)+\frac{1}{2} B(Y(\beta), Y(\beta))+\ldots,
\end{aligned}
$$

where dots stand for all cubic and higher-order terms in (Y, β).

Differentiating (3.7) w.r.t. β_{j}, we therefore obtain at $\beta=0$

$$
\begin{equation*}
\frac{\partial m(0)}{\partial \beta_{j}} \varphi+J \frac{\partial Y(0)}{\partial \beta_{j}}=0 \tag{3.8}
\end{equation*}
$$

for $j=1,2$. Computing the product with φ^{T} from the left and taking into account $\varphi^{\mathrm{T}} J=0$ with $\|\varphi\|=1$, we see that

$$
\frac{\partial m(0)}{\partial \beta_{1}}=\frac{\partial m(0)}{\partial \beta_{2}}=0
$$

Then (3.8) implies that

$$
\frac{\partial Y(0)}{\partial \beta_{j}} \in N(J)
$$

so that

$$
\frac{\partial Y(0)}{\partial \beta_{j}}=c_{j 1} q^{(1)}+c_{j 2} q^{(2)}
$$

with some $c_{j k} \in \mathbb{R}$ for $j, k=1,2$. Then from the last two equations in (3.5) it follows that

$$
\left\langle q^{(1)}, \frac{\partial Y(0)}{\partial \beta_{j}}\right\rangle=\left\langle q^{(2)}, \frac{\partial Y(0)}{\partial \beta_{j}}\right\rangle=0
$$

so that $c_{11}=c_{12}=c_{21}=c_{22}=0$, ensuring

$$
\frac{\partial Y(0)}{\partial \beta_{1}}=\frac{\partial Y(0)}{\partial \beta_{2}}=0
$$

Thus, the functions $m(\beta)$ and $Y(\beta)$ not only vanish at $\beta=0$ but contain no linear terms:

$$
m(\beta)=O\left(\|\beta\|^{2}\right), \quad Y(\beta)=O\left(\|\beta\|^{2}\right)
$$

Differentiating now (3.7) w.r.t. β_{1} and β_{2} twice at $\beta=0$ and multiplying with φ^{T} from the left, we see in the same manner that

$$
\frac{\partial^{2} m(0)}{\partial \beta_{j} \partial \beta_{k}}=-\left\langle\varphi, B\left(q^{(j)}, q^{(k)}\right)\right\rangle=-b_{j k}, \quad j, k=1,2
$$

which proves (3.6).
To complete the proof, notice that by construction the nonzero vector $q^{(2)}$ is orthogonal in $N(J)$ to $q^{(1)}$ and is therefore linearly independent of $q^{(1)}$. Since $v^{(1)}=q^{(1)}$, the equality

$$
v^{(1)}=\beta_{1}^{(1)} q^{(1)}+\beta_{2}^{(1)} q^{(2)}
$$

implies $\beta_{1}^{(1)}=1$ and $\beta_{2}^{(1)}=0$. Thus, because $Q\left(\beta^{(1)}\right)=0$, we must have $b_{11}=0$. Therefore, the coordinates $\beta_{j}^{(2)}$ in the decomposition

$$
v^{(2)}=\beta_{1}^{(2)} q^{(1)}+\beta_{2}^{(2)} q^{(2)}
$$

should satisfy

$$
2 b_{12} \beta_{1}^{(2)}+b_{22} \beta_{2}^{(2)}=0
$$

or

$$
\beta_{1}^{(2)}=-\frac{b_{22}}{2 b_{12}} \beta_{2}^{(2)}
$$

Here $b_{12} \neq 0$, since $b_{12}^{2}-b_{11} b_{22}=b_{12}^{2}>0$ due to the simplicity of the braching point.
The above theorem solves the problem of switching to the secondary branch Γ_{2} at a simple branching point, since (an approximation of) $v^{(1)}$ is known from the continuation of the primary branch Γ_{1}.

3.2 Detection of branching points

Suppose that $s=0$ corresponds to a branching point of ALCP (3.1) in the solution branch Γ_{1} parametrized by $x^{(1)}(s)$ such that

$$
x^{(1)}(0)=0,\left\|v^{(1)}(0)\right\|=\left\|\dot{x}^{(1)}(0)\right\|=1 .
$$

Theorem 3 Define the $(N+1) \times(N+1)$ matrix

$$
D(s)=\binom{F_{x}\left(x^{(1)}(s)\right.}{\left[\dot{x}^{(1)}(s)\right]^{\mathrm{T}}}
$$

and introduce

$$
\psi_{\mathrm{BP}}(s):=\operatorname{det}(D(s)) .
$$

At a simple branching point holds

$$
\psi_{\mathrm{BP}}(0)=0 \quad \text { and } \quad \dot{\psi}_{\mathrm{BP}}(0) \neq 0
$$

Proof (under an extra genericity assumption):

The matrix $D(0)$ is singular. Indeed, $D(0) q^{(2)}=0$ where $q^{(2)} \in N(J)$ is a nonzero vector satisfying $\left\|q^{(2)}\right\|=1$ and orthogonal to $q^{(1)}=v^{(1)}$, the normalized tangent vector to Γ_{1} at $x^{(1)}(0)$. The vectors $q^{(1)}$ and $q^{(2)}$ together span $N(J)$. Thus $\psi_{\mathrm{BP}}(0)=0$.

The null-space $N(D(0))$ is one-dimensional. Indeed, any vector $q \in \mathbb{R}^{N+1}$ that satisfies $D(0) q=0$ satisfies

$$
\left\{\begin{array}{r}
J q=0, \\
\left\langle q, q^{(1)\rangle}=0,\right.
\end{array}\right.
$$

and is unique (modulo scaling), since there is only one direction in the two-dimensional space $N(J)$ that is orthogonal to $q^{(1)}$. This implies that the null-space $N\left(D^{\mathrm{T}}(0)\right.$ is also one-dimensional, and there is a unique (modulo scaling) $P \in \mathbb{R}^{N+1}$ such that $D^{\mathrm{T}}(0) P=0$. Clearly,

$$
\begin{equation*}
P=\binom{\varphi}{0}, \tag{3.9}
\end{equation*}
$$

where $J^{\mathrm{T}} \varphi=0$ and we have assumed that $\|\varphi\|=1$ implying $\|P\|=1$.
Assume that $\lambda=0$ is algebraically simple eigenvalue of $D(0)$, which is generic. Consider a smooth continuation $\lambda(s)$ of this eigenvalue and its corresponding eigenvector $u(s)$ satisfying

$$
D(s) u(s)=\lambda(s) u(s)
$$

where $\lambda(0)=0, u(0)=q^{(2)}$. By differentiating w.r.t. s, we get

$$
\dot{D}(s) u(s)+D(s) \dot{u}(s)=\dot{\lambda}(s) u(s)+\lambda(s) \dot{u}(s)
$$

or

$$
\binom{F_{x x}\left(x^{(1)}(s)\right)\left[\dot{x}^{(1)}(s), u(s)\right]}{\left[\dot{x}^{(1)}(s)\right]^{\mathrm{T}} u(s)}+\binom{F_{x}\left(x^{(1)}(s)\right.}{\left[\dot{x}^{(1)}(s)\right]^{\mathrm{T}}} \dot{u}(s)=\dot{\lambda}(s) u(s)+\lambda(s) \dot{u}(s) .
$$

At $s=0$ this gives

$$
\binom{B\left(q^{(1)}, q^{(2)}\right)}{\left[\ddot{x}^{(1)}(0)\right]^{\mathrm{T}} q^{(2)}}+\binom{J}{\left[\dot{q}^{(1)}\right]^{\mathrm{T}}} \dot{u}(0)=\dot{\lambda}(0) q^{(2)} .
$$

Multiplying the last equation from the left with P^{T} defined by (3.9), we obtain

$$
\left\langle\varphi, B\left(q^{(1)}, q^{(2)}\right)\right\rangle+\varphi^{\mathrm{T}} J \dot{u}(0)=\dot{\lambda}(0)\left\langle P, q^{(2)}\right\rangle
$$

from which it follows that

$$
\dot{\lambda}(0)=\frac{\left\langle\varphi, B\left(q^{(1)}, q^{(2)}\right)\right\rangle}{\left\langle P, q^{(2)}\right\rangle}=\frac{b_{12}}{\left\langle P, q^{(2)}\right\rangle} \neq 0
$$

Here, we have taken into account that the branching point is simple and that $\left\langle P, q^{(2)}\right\rangle \neq 0$ due to simplicity of $\lambda(0)=0$.

Thus, $\lambda(s)$ has a regular zero at $s=0$. Therefore, $\psi_{\mathrm{BP}}(s)$ also has a regular zero at $s=0$, since it is the product of all eigenvalues of $D(s)$.

3.3 Location of branching points

Theorem 4 Let $x=0$ be a simple branching point of $A L C P$ (3.1) and $\varphi \in \mathbb{R}^{N}$ be such that $\varphi^{\mathrm{T}} J=0,\|\varphi\|=1$.

Then $(x, y, z)=(0, \varphi, 0) \in \mathbb{R}^{N+1} \times \mathbb{R}^{N} \times \mathbb{R}$ is a regular solution of the system

$$
\left\{\begin{align*}
F(x)+z y & =0 \tag{3.10}\\
y^{\mathrm{T}} F_{x}(x) & =0 \\
y^{\mathrm{T}} y-1 & =0
\end{align*}\right.
$$

Proof:

Denote the LHS of (3.10) by $G(x, y, z)$. Then $(0, \varphi, 0)$ is obviously a solution to $G(x, y, z)=$ 0 . The Jacobian matrix of G at $(0, \varphi, 0)$ is

$$
N=\left(\begin{array}{ccc}
J & 0 & \varphi \\
\varphi^{\mathrm{T}} F_{x x}(0) & J^{\mathrm{T}} & 0 \\
0 & 2 \varphi^{\mathrm{T}} & 0
\end{array}\right)
$$

where the elements of the $(N+1) \times(N+1)$ matrix $\varphi^{\mathrm{T}} F_{x x}(0)$ are given by

$$
\left(\varphi^{\mathrm{T}} F_{x x}(0)\right)_{j k}=\sum_{i=1}^{N} \varphi_{i} \frac{\partial^{2} F_{i}(0)}{\partial x_{j} \partial x_{k}}, \quad j, k=1,2, \ldots, N+1
$$

Suppose that N has a nontrivial null-vector

$$
N\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)=0, \quad\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right) \neq 0
$$

Then

$$
\begin{align*}
J X+Z \varphi & =0 \tag{3.11}\\
\varphi^{\mathrm{T}} F_{x x}(0) X+J^{\mathrm{T}} Y & =0 \tag{3.12}\\
2 \varphi^{\mathrm{T}} Y & =0 \tag{3.13}
\end{align*}
$$

Equation (3.11) implies

$$
\varphi^{\mathrm{T}} J X+Z \varphi^{\mathrm{T}} \varphi=0
$$

i.e. $Z=0$. Thus, (3.11) actually has the form $J X=0$ so that $X \in N(J)$ and can be written as

$$
\begin{equation*}
X=\beta_{1} q^{(1)}+\beta_{2} q^{(2)} \tag{3.14}
\end{equation*}
$$

for some $\beta_{i} \in \mathbb{R}, i=1$, 2 . Substituting this expression in (3.12), we get

$$
\beta_{1} \varphi^{\mathrm{T}} F_{x x}(0) q^{(1)}+\beta_{2} \varphi^{\mathrm{T}} F_{x x}(0) q^{(2)}+J^{\mathrm{T}} Y=0
$$

Now multiply the last equation with $\left[q^{(i)}\right]^{\mathrm{T}}$ from the left to get

$$
\left\{\begin{array}{l}
\beta_{1}\left\langle\varphi, B\left(q^{(1)}, q^{(1)}\right)\right\rangle+\beta_{2}\left\langle\varphi, B\left(q^{(1)}, q^{(2)}\right)\right\rangle+\left\langle q^{(1)}, J^{\mathrm{T}} Y\right\rangle=0 \\
\beta_{1}\left\langle\varphi, B\left(q^{(1)}, q^{(2)}\right)\right\rangle+\beta_{2}\left\langle\varphi, B\left(q^{(2)}, q^{(2)}\right)\right\rangle+\left\langle q^{(2)}, J^{\mathrm{T}} Y\right\rangle=0
\end{array}\right.
$$

But $\left\langle q^{(i)}, J^{\mathrm{T}} Y\right\rangle=\left\langle J q^{(i)}, Y\right\rangle=0$ for $i=1,2$. Thus, taking into account the definition of $b_{i j}$,

$$
\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{12} & b_{22}
\end{array}\right)\binom{\beta_{1}}{\beta_{2}}=\binom{0}{0},
$$

where the 2×2 matrix is nonsingular since $x=0$ is the simple branching point. We see that $\beta_{1}=\beta_{2}=0$ and $X=0$ due to (3.14).

The equation (3.12) now reads: $J^{\mathrm{T}} Y=0$, i.e. $Y \in N\left(J^{\mathrm{T}}\right)$. Thus $Y=c \varphi$ for some $c \in \mathbb{R}$. Substituting this expression into (3.13) we get

$$
2 c \varphi^{\mathrm{T}} \varphi=0
$$

This implies $c=0$ and thus $Y=0$.
We see that

$$
\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=0
$$

a contradiction. Therefore $(0, \varphi, 0)$ is a regular solution of (3.10).

