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3.1 Definition and properties

A point p 2 M is called singular for ALCP

F (x) = 0, F : RN+1 ! RN , (3.1)

if rank Fx(p) < N . Let p = 0 be a singular point and write the Taylor expansion

F (x) = Jx+
1

2
B(x, x) +O(kxk3), (3.2)

where J = Fx(0) and B(x, y) = Fxx(0)[x, y]. Introduce two linear spaces:

N(J) := {v 2 RN+1 : Jv = 0},
N(JT) := {w 2 RN : JTw = 0}.

Assume that rank J = N � 1. This implies that

dimN(J) = 2 and dimN(JT) = 1,

so that

N(J) = span{q(1), q(2)}, q(j) 2 RN+1, j = 1, 2,

N(JT) = span{'}, ' 2 RN .

This means that any v 2 N(J) can be written as

v = �1q
(1) + �2q

(2)

for some �j 2 R, and any w 2 N(JT) has the form

w = ↵'

for some ↵ 2 R. We can assume that

kq(1)k = kq(2)k = 1, hq(1), q(2)i = 0,

and
k'k = 1.
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Lemma 8 Any tangent vector v 2 RN+1
to M at the singular point p = 0 satisfies the

equation

h', B(v, v)i = 0. (3.3)

Proof:

Consider a solution curve in M parametrized by x = x(s) such that x(0) = 0 and ẋ(0) = v.
Then the repeated di↵erentiation w.r.t. s gives

F (x(s)) = 0,

Fx(x(s))ẋ(s) = 0,

Fxx(x(s))[ẋ(s), ẋ(s)] + Fx(x(s))ẍ(s) = 0.

At s = 0, these equations are reduced to

F (0) = 0,

Jv = 0,

B(v, v) + Jẍ(0) = 0.

Taking the scalar product of the last equation with ', we obtain

0 = h', B(v, v) + Jẍ(0)i = h', B(v, v)i+ hJT', ẍ(0)i.

Since JT' = 0, we get (3.3). ⇤
Substituting v = �1q(1) + �2q(2), we obtain the Algebraic Branching Equation

Q(�) := b11�
2

1 + 2b12�1�2 + b22�
2

2 = 0, (3.4)

where bij := h', B(q(i), q(j))i for i, j = 1, 2.
A singular point p = 0 2 M is called a simple branching point for ALCP (3.1) if

(i) rank J = N � 1;
(ii) b2

12
� b11b22 > 0.

Theorem 2 Near a simple branching point p = 0 of ALCP (3.1), the solution manifold M
consists of two smooth curves, �1 and �2, intersecting transversally at p.

A vector tangent to �2 is given by the formula

v(2) = � b22
2b12

q(1) + q(2),

where q(1) = v(1) is the tangent vector to �1 at p = 0, and a nonzero vector q(2) 2 N(J)
satisfies hq(1), q(2)i = 0.

Proof: Write
x = �1q

(1) + �2q
(2) + y, y 2 RN+1,

and consider the equation

H(y, µ,�) :=

0

@
µ'+ F (�1q(1) + �2q(2) + y)

hq(1), yi
hq(2), yi

1

A = 0 (3.5)
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with H : RN+1 ⇥ R ⇥ R2 ! RN+2. Clearly, H(0, 0, 0) = 0. Moreover, the square (N + 2) ⇥
(N + 2) matrix

(Hy(0, 0, 0) Hµ(0, 0)) =

0

@
J '

[q(1)]T 0

[q(2)]T 0

1

A

is nonsingular. Indeed, if for some w 2 RN+1 and u 2 R holds

0

@
J '

[q(1)]T 0

[q(2)]T 0

1

A
✓

w
u

◆
=

0

@
0
0
0

1

A ,

then Jw + u' = 0 implying u = 0, since 'TJ = 0 but k'k = 1. Thus Jw = 0 and
w = c1q(1) + c2q(2) with some c1,2 2 R. The conditions hq(j), wi = 0 lead to c1 = c2 = 0 and
thus w = 0.

Therefore, the Implicit Function Theorem guarantees existence and uniqueness of smooth
functions y = Y (�) and µ = m(�) with Y (0) = 0,m(0) = 0, and such that

H(Y (�),m(�),�) = 0

for all � = (�1,�2) 2 R2 with su�ciently small k�k. The solutions of the original problem
F (x) = 0 near x = 0 correspond to the level curves

m(�) = 0.

This gives relations between �1 and �2 to be used in

x = �1q
(1) + �2q

(2) + Y (�)

to parametrize di↵erent branches of the ALCP F (x) = 0 near the origin.
One can show that

m(�) = �1

2
Q(�) +O(k�k2), (3.6)

where Q(�) is defined in (3.4). Since condition (ii) in the definition of the simple branching
point guarantees that the quadratic form Q(�) has a saddle point at �1 = �2 = 0, there are
locally two zero-level curves of m(�) intersecting at a nonzero angle at the origin. Hence, we
will prove the first part of the theorem if we verify (3.6).

Notice that the first equation in (3.5) implies the identity

m(�)'+ F (�1q
(1) + �2q

(2) + Y (�)) = 0 (3.7)

for small k�k. Using the expansion (3.2), we see that this is equivalent to

0 = m(�)'+ JY (�) +
1

2

h
�21B(q(1), q(1)) + 2�1�2B(q(1), q(2)) + �22B(q(2), q(2))

i
+

�1B(q(1), Y (�)) + �2B(q(2), Y (�)) +
1

2
B(Y (�), Y (�)) + . . . ,

where dots stand for all cubic and higher-order terms in (Y,�).
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Di↵erentiating (3.7) w.r.t. �j , we therefore obtain at � = 0

@m(0)

@�j
'+ J

@Y (0)

@�j
= 0 (3.8)

for j = 1, 2. Computing the product with 'T from the left and taking into account 'TJ = 0
with k'k = 1, we see that

@m(0)

@�1
=
@m(0)

@�2
= 0.

Then (3.8) implies that
@Y (0)

@�j
2 N(J)

so that
@Y (0)

@�j
= cj1q

(1) + cj2q
(2)

with some cjk 2 R for j, k = 1, 2. Then from the last two equations in (3.5) it follows that

hq(1), @Y (0)

@�j
i = hq(2), @Y (0)

@�j
i = 0,

so that c11 = c12 = c21 = c22 = 0, ensuring

@Y (0)

@�1
=
@Y (0)

@�2
= 0.

Thus, the functions m(�) and Y (�) not only vanish at � = 0 but contain no linear terms:

m(�) = O(k�k2), Y (�) = O(k�k2).

Di↵erentiating now (3.7) w.r.t. �1 and �2 twice at � = 0 and multiplying with 'T from the
left, we see in the same manner that

@2m(0)

@�j@�k
= �h', B(q(j), q(k))i = �bjk, j, k = 1, 2,

which proves (3.6).

To complete the proof, notice that by construction the nonzero vector q(2) is orthogonal
in N(J) to q(1) and is therefore linearly independent of q(1). Since v(1) = q(1), the equality

v(1) = �(1)
1

q(1) + �(1)
2

q(2)

implies �(1)
1

= 1 and �(1)
2

= 0. Thus, because Q(�(1)) = 0, we must have b11 = 0. Therefore,

the coordinates �(2)j in the decomposition

v(2) = �(2)
1

q(1) + �(2)
2

q(2)

should satisfy

2b12�
(2)

1
+ b22�

(2)

2
= 0
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or

�(2)
1

= � b22
2b12

�(2)
2

.

Here b12 6= 0, since b2
12

� b11b22 = b2
12

> 0 due to the simplicity of the braching point. ⇤
The above theorem solves the problem of switching to the secondary branch �2 at a

simple branching point, since (an approximation of) v(1) is known from the continuation of
the primary branch �1.

3.2 Detection of branching points

Suppose that s = 0 corresponds to a branching point of ALCP (3.1) in the solution branch
�1 parametrized by x(1)(s) such that

x(1)(0) = 0, kv(1)(0)k = kẋ(1)(0)k = 1.

Theorem 3 Define the (N + 1)⇥ (N + 1) matrix

D(s) =

✓
Fx(x(1)(s)

[ẋ(1)(s)]T

◆

and introduce

 BP(s) := det(D(s)).

At a simple branching point holds

 BP(0) = 0 and  ̇BP(0) 6= 0.

Proof (under an extra genericity assumption):

The matrix D(0) is singular. Indeed, D(0)q(2) = 0 where q(2) 2 N(J) is a nonzero vector
satisfying kq(2)k = 1 and orthogonal to q(1) = v(1), the normalized tangent vector to �1 at
x(1)(0). The vectors q(1) and q(2) together span N(J). Thus  BP(0) = 0.

The null-space N(D(0)) is one-dimensional. Indeed, any vector q 2 RN+1 that satisfies
D(0)q = 0 satisfies ⇢

Jq = 0,
hq, q(1)i = 0,

and is unique (modulo scaling), since there is only one direction in the two-dimensional
space N(J) that is orthogonal to q(1). This implies that the null-space N(DT(0) is also
one-dimensional, and there is a unique (modulo scaling) P 2 RN+1 such that DT(0)P = 0.
Clearly,

P =

✓
'
0

◆
, (3.9)

where JT' = 0 and we have assumed that k'k = 1 implying kPk = 1.
Assume that � = 0 is algebraically simple eigenvalue of D(0), which is generic. Consider a

smooth continuation �(s) of this eigenvalue and its corresponding eigenvector u(s) satisfying

D(s)u(s) = �(s)u(s),
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where �(0) = 0, u(0) = q(2). By di↵erentiating w.r.t. s, we get

Ḋ(s)u(s) +D(s)u̇(s) = �̇(s)u(s) + �(s)u̇(s)

or ✓
Fxx(x(1)(s))[ẋ(1)(s), u(s)]

[ẍ(1)(s)]Tu(s)

◆
+

✓
Fx(x(1)(s)

[ẋ(1)(s)]T

◆
u̇(s) = �̇(s)u(s) + �(s)u̇(s).

At s = 0 this gives

✓
B(q(1), q(2))

[ẍ(1)(0)]Tq(2)

◆
+

✓
J

[q̇(1)]T

◆
u̇(0) = �̇(0)q(2).

Multiplying the last equation from the left with PT defined by (3.9), we obtain

h', B(q(1), q(2))i+ 'TJ u̇(0) = �̇(0)hP, q(2)i,

from which it follows that

�̇(0) =
h', B(q(1), q(2))i

hP, q(2)i
=

b12
hP, q(2)i

6= 0.

Here, we have taken into account that the branching point is simple and that hP, q(2)i 6= 0
due to simplicity of �(0) = 0.

Thus, �(s) has a regular zero at s = 0. Therefore,  BP(s) also has a regular zero at s = 0,
since it is the product of all eigenvalues of D(s). ⇤

3.3 Location of branching points

Theorem 4 Let x = 0 be a simple branching point of ALCP (3.1) and ' 2 RN
be such that

'TJ = 0, k'k = 1.
Then (x, y, z) = (0,', 0) 2 RN+1 ⇥ RN ⇥ R is a regular solution of the system

8
<

:

F (x) + zy = 0,
yTFx(x) = 0,
yTy � 1 = 0.

(3.10)

Proof:

Denote the LHS of (3.10) byG(x, y, z). Then (0,', 0) is obviously a solution toG(x, y, z) =
0. The Jacobian matrix of G at (0,', 0) is

N =

0

@
J 0 '

'TFxx(0) JT 0
0 2'T 0

1

A ,

where the elements of the (N + 1)⇥ (N + 1) matrix 'TFxx(0) are given by

('TFxx(0))jk =
NX

i=1

'i
@2Fi(0)

@xj@xk
, j, k = 1, 2, . . . , N + 1.
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Suppose that N has a nontrivial null-vector

N

0

@
X
Y
Z

1

A = 0,

0

@
X
Y
Z

1

A 6= 0.

Then

JX + Z' = 0, (3.11)

'TFxx(0)X + JTY = 0, (3.12)

2'TY = 0. (3.13)

Equation (3.11) implies
'TJX + Z'T' = 0,

i.e. Z = 0. Thus, (3.11) actually has the form JX = 0 so that X 2 N(J) and can be written
as

X = �1q
(1) + �2q

(2) (3.14)

for some �i 2 R, i = 1, 2. Substituting this expression in (3.12), we get

�1'
TFxx(0)q

(1) + �2'
TFxx(0)q

(2) + JTY = 0.

Now multiply the last equation with [q(i)]T from the left to get

⇢
�1h', B(q(1), q(1))i+ �2h', B(q(1), q(2))i+ hq(1), JTY i = 0,
�1h', B(q(1), q(2))i+ �2h', B(q(2), q(2))i+ hq(2), JTY i = 0.

But hq(i), JTY i = hJq(i), Y i = 0 for i = 1, 2. Thus, taking into account the definition of bij ,

✓
b11 b12
b12 b22

◆✓
�1
�2

◆
=

✓
0
0

◆
,

where the 2⇥ 2 matrix is nonsingular since x = 0 is the simple branching point. We see that
�1 = �2 = 0 and X = 0 due to (3.14).

The equation (3.12) now reads: JTY = 0, i.e. Y 2 N(JT). Thus Y = c' for some c 2 R.
Substituting this expression into (3.13) we get

2c'T' = 0.

This implies c = 0 and thus Y = 0.
We see that 0

@
X
Y
Z

1

A = 0,

a contradiction. Therefore (0,', 0) is a regular solution of (3.10). ⇤
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