Lecture 4: Bordering technique. Detection of limit and branching points.

4.1 Bordering technique I

Consider a smooth one-parameter family of $N \times N$ matrices $A(s)$, such that $A(0)$ is singular with rank $A(0)=N-1$.

Lemma 9 The matrix

$$
M(0)=\left(\begin{array}{cc}
A(0) & p \\
q^{\mathrm{T}} & 0
\end{array}\right),
$$

where $A(0) q=A^{\mathrm{T}}(0) p=0$ with $\|q\|=\|p\|=1$, is nonsingular.
Proof:
Suppose that

$$
M(0)\binom{X}{\beta}=\binom{0}{0}
$$

with $X \in \mathbb{R}^{N}$ and $\beta \in \mathbb{R}$ such that

$$
\binom{X}{\beta} \neq\binom{ 0}{0} .
$$

This is equivalent to the system

$$
\left\{\begin{align*}
A(0) X+\beta p & =0 \tag{4.21}\\
\langle q, X\rangle & =0
\end{align*}\right.
$$

Computing the scalar product of the first equation in (4.21) with p, we obtain

$$
0=\langle p, A(0) X+\beta p\rangle=\left\langle A^{\mathrm{T}}(0) p, X\right\rangle+\beta\langle p, p\rangle=\beta\|p\|^{2}=\beta,
$$

where $A^{\mathrm{T}}(0) p=0$ is taken into acoount. We conclude that $\beta=0$ and so the first equation in (4.21) actually has the form

$$
A(0) X=0 .
$$

This implies that $X=\gamma q$ with some $\gamma \in \mathbb{R}$. Substituting $X=\gamma q$ in the second equation of (4.21), we see that

$$
\langle q, \gamma q\rangle=\gamma\|q\|^{2}=\gamma=0,
$$

yielding $X=0$. Thus

$$
\binom{X}{\beta}=\binom{0}{0}
$$

a contradiction. Therefore, $M(0)$ is nonsingular.
Lemma 9 ensures by continuity that the matrix

$$
M(s)=\left(\begin{array}{cc}
A(s) & p \tag{4.22}\\
q^{\mathrm{T}} & 0
\end{array}\right)
$$

is nonsingular for all s with $|s|$ sufficiently small. For such values of s, introduce the nonsingular bordered system:

$$
\begin{equation*}
M(s)\binom{w}{g}=\binom{0}{1} . \tag{4.23}
\end{equation*}
$$

At $s=0$, the explicit solution to this system is obvious:

$$
\binom{w(0)}{g(0)}=\binom{q}{0} .
$$

Thus, $g(0)=0$. If

$$
\binom{w}{g}=\binom{w(s)}{g(s)}
$$

is the solution of (4.23), then Cramer's rule gives

$$
\begin{equation*}
g(s)=\frac{\operatorname{det} A(s)}{\operatorname{det} M(s)} \tag{4.24}
\end{equation*}
$$

implying that $g(s)$ is as smooth as $A(s)$. The following lemma shows how the derivative $\dot{g}(0)$ can be computed explicitly.

Lemma 10 It holds that

$$
\dot{g}(0)=-\langle p, \dot{A}(0) q\rangle
$$

Proof:

Differentiating (4.23) w.r.t. s yields

$$
\dot{M}(s)\binom{w(s)}{g(s)}+M(s)\binom{\dot{w}(s)}{\dot{g}(s)}=\binom{0}{0}
$$

implying

$$
M(0)\binom{\dot{w}(0)}{\dot{g}(0)}=-\dot{M}(0)\binom{w(0)}{g(0)}
$$

Thus,

$$
\begin{equation*}
M(0)\binom{\dot{w}(0)}{\dot{g}(0)}=-\dot{M}(0)\binom{q}{0} \tag{4.25}
\end{equation*}
$$

Further notice that the transposed matrix

$$
M^{\mathrm{T}}(0)=\left(\begin{array}{cc}
A^{\mathrm{T}}(0) & q \\
p^{\mathrm{T}} & 0
\end{array}\right)
$$

is also nonsingular, so that the linear system

$$
\begin{equation*}
M^{\mathrm{T}}(0)\binom{\varphi}{h}=\binom{0}{1} \tag{4.26}
\end{equation*}
$$

has the unique solution, namely

$$
\binom{\varphi}{h}=\binom{p}{0}
$$

Computing now the scalar product of this solution with both sides of (4.25), we obtain

$$
\left\langle\binom{ p}{0}, M(0)\binom{\dot{w}(0)}{\dot{g}(0)}\right\rangle=-\left\langle\binom{ p}{0}, \dot{M}(0)\binom{q}{0}\right\rangle
$$

or

$$
\left\langle M^{\mathrm{T}}(0)\binom{p}{0},\binom{\dot{w}(0)}{\dot{g}(0)}\right\rangle=-\left\langle\binom{ p}{0}, \dot{M}(0)\binom{q}{0}\right\rangle
$$

Taking into account (4.26), we see that

$$
\dot{g}(0)=-\left\langle\binom{ p}{0}, \dot{M}(0)\binom{q}{0}\right\rangle .
$$

Since

$$
\dot{M}(0)=\left(\begin{array}{cc}
\dot{A}(0) & 0 \\
0 & 0
\end{array}\right)
$$

we get

$$
\dot{g}(0)=-\langle p, \dot{A}(0) q\rangle .
$$

This complets the proof.

4.2 Detection of local bifurcations

Consider a system of ODEs depending on one parameter

$$
\begin{equation*}
\dot{u}=f(u, \alpha), \quad u \in \mathbb{R}^{n}, \alpha \in \mathbb{R} \tag{4.27}
\end{equation*}
$$

where $f: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}^{n}$ is smooth. The continuation of a branch in its equilibrium manifold leads to ALCP (3.7) with

$$
x=\binom{u}{\alpha} \in \mathbb{R}^{n+1}
$$

and $F(x)=f(u, \alpha)$. Assume that this branch is parametrized by $u=u(s)$ and $\alpha=\alpha(s)$ and that $s=0$ corresponds to either a quadratic limit point w.r.t. α or a simple branching point of (3.7). Ee will construct a regular test-function $\Psi(s)$ to detect each bifurcation, i.e. a smooth scalar function satisfying

$$
\Psi(0)=0, \quad \dot{\Psi}(0) \neq 0
$$

4.2.1 Limit point detection

Assume that $s=0$ corresponds to a limit point w.r.t. α. We can also select such a parametrization of the equilibrium branch near the limit point by s that the tangent vector at $s=0$ will have the form

$$
\binom{\dot{u}(0)}{\dot{\alpha}(0)}=\binom{q}{0}
$$

with $q \in \mathbb{R}^{n}$ satisfying

$$
A(0) q=0, \quad\|q\|=1
$$

where $A(0)=f_{u}(u(0), \alpha(0))$. Introduce

$$
\Psi_{\mathrm{LP}}(s)=g(s)
$$

where $g(s)$ is defined by solving the bordered system (4.23). In that system, matrix $M(s)$ is given by (4.22) with $A(s)=f_{u}(u(s), \alpha(s))$, vector q is defined above, and $p \in \mathbb{R}^{n}$ satisfies $A^{\mathrm{T}}(0) p=0,\|p\|=1$.

Theorem 5 At a quadratic limit point holds

$$
\Psi_{\mathrm{LP}}(0)=0 \quad \text { and } \quad \dot{\Psi}_{\mathrm{LP}}(0) \neq 0
$$

Proof:

Clearly, $\Psi_{\text {LP }}(0)=g(0)=0$. Using Lemma 10 , we obtain

$$
\dot{g}(0)=-\langle p, \dot{A}(0) q\rangle=-\left\langle p, f_{u u}(u(0), \alpha(0))[q, q]\right\rangle=-\langle p, B(q, q)\rangle
$$

Since $\langle p, B(q, q)\rangle \neq 0$ at a quadratic limit point, $\dot{\Psi}_{\mathrm{LP}}(0)=\dot{g}(0) \neq 0$.

4.2.2 Branching point detection

Suppose that $s=0$ corresponds to a simple branching point of ALCP (3.7) in the solution branch Γ_{1} parametrized by $x^{(1)}(s)$ such that

$$
\left\|\dot{x}^{(1)}(0)\right\|=1
$$

As in Theorem 3, define the $(N+1) \times(N+1)$ matrix

$$
D(s)=\binom{F_{x}\left(x^{(1)}(s)\right.}{\left[\dot{x}^{(1)}(s)\right]^{T}}
$$

and introduce

$$
\Psi_{\mathrm{BP}}(s)=g(s)
$$

where $g(s)$ is still defined by solving the bordered system (4.23) but now

$$
M(s)=\left(\begin{array}{cc}
D(s) & P \\
Q^{\mathrm{T}} & 0
\end{array}\right)
$$

with vectors $Q, P \in \mathbb{R}^{N+1}$ satisfying $D(0) Q=D^{\mathrm{T}}(0) P=0$ and $\|Q\|=$ $\|P\|=1$, so that $M(s)$ is a $(N+2) \times(N+2)$ nonsingular matrix for small $|s|$.
Theorem 6 At a simple branching point holds

$$
\Psi_{\mathrm{BP}}(0)=0 \quad \text { and } \quad \dot{\Psi}_{\mathrm{BP}}(0) \neq 0
$$

Proof:

We have already seen in the proof of Theorem 3 that matrix $D(0)$ is singular. Its null-space $N(D(0))$ is one-dimensional and is spanned by $Q=$ $q^{(2)}$. Thus, $g(0)=0$.

The null-space $N\left(D^{\mathrm{T}}(0)\right.$ is also one-dimensional and spanned by

$$
P=\binom{\varphi}{0} \in \mathbb{R}^{N+1}
$$

where $J^{\mathrm{T}} \varphi=0$ and $\|\varphi\|=1$ implying $\|P\|=1$.
Now, Lemma 10 allows us to write

$$
\dot{g}(0)=-\langle P, \dot{D}(0) Q\rangle .
$$

Since $Q=q^{(2)}$ and $\dot{x}^{(1)}(0)=q^{(1)}$, we have

$$
\dot{D}(0) Q=\dot{D}(0) q^{(2)}=\binom{F_{x x}\left[\dot{x}^{(1)}(0), q^{(2)}\right]}{\left[\dot{x}^{(1)}(0)\right]^{\mathrm{T}} q^{(2)}}=\binom{B\left(q^{(1)}, q^{(2)}\right)}{\left[\ddot{x}^{(1)}(0)\right]^{\mathrm{T}} q^{(2)}},
$$

so that

$$
\left\langle P, \dot{D}(0) q^{(2)}\right\rangle=\left\langle\binom{\varphi}{0},\binom{B\left(q^{(1)}, q^{(2)}\right)}{\left[\ddot{x}^{(1)}(0)\right]^{\mathrm{T}} q^{(2)}}\right\rangle=\left\langle\varphi, B\left(q^{(1)}, q^{(2)}\right)\right\rangle .
$$

This gives

$$
\dot{g}(0)=-\left\langle\varphi, B\left(q^{(1)}, q^{(2)}\right)\right\rangle=-b_{12} \neq 0
$$

because the branching point is simple.

