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4.1 Bordering technique I

Consider a smooth one-parameter family of N ⇥N matrices A(s), such that
A(0) is singular with rank A(0) = N � 1.

Lemma 9 The matrix

M(0) =

 
A(0) p
qT 0

!

,

where A(0)q = AT(0)p = 0 with kqk = kpk = 1, is nonsingular.

Proof:
Suppose that

M(0)

 
X
�

!

=

 
0
0

!

with X 2 RN and � 2 R such that
 

X
�

!

6=
 

0
0

!

.
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This is equivalent to the system
(

A(0)X + �p = 0,
hq,Xi = 0.

(4.21)

Computing the scalar product of the first equation in (4.21) with p, we obtain

0 = hp,A(0)X + �pi = hAT(0)p,Xi+ �hp, pi = �kpk2 = �,

where AT(0)p = 0 is taken into acoount. We conclude that � = 0 and so the
first equation in (4.21) actually has the form

A(0)X = 0.

This implies that X = �q with some � 2 R. Substituting X = �q in the
second equation of (4.21), we see that

hq, �qi = �kqk2 = � = 0,

yielding X = 0. Thus  
X
�

!

=

 
0
0

!

,

a contradiction. Therefore, M(0) is nonsingular. 2

Lemma 9 ensures by continuity that the matrix

M(s) =

 
A(s) p
qT 0

!

(4.22)

is nonsingular for all s with |s| su�ciently small. For such values of s,
introduce the nonsingular bordered system:

M(s)

 
w
g

!

=

 
0
1

!

. (4.23)

At s = 0, the explicit solution to this system is obvious:
 

w(0)
g(0)

!

=

 
q
0

!

.

Thus, g(0) = 0. If  
w
g

!

=

 
w(s)
g(s)

!



4.1. BORDERING TECHNIQUE I 29

is the solution of (4.23), then Cramer’s rule gives

g(s) =
detA(s)

detM(s)
, (4.24)

implying that g(s) is as smooth as A(s). The following lemma shows how
the derivative ġ(0) can be computed explicitly.

Lemma 10 It holds that

ġ(0) = �hp, Ȧ(0)qi .

Proof:

Di↵erentiating (4.23) w.r.t. s yields

Ṁ(s)

 
w(s)
g(s)

!

+M(s)

 
ẇ(s)
ġ(s)

!

=

 
0
0

!

implying

M(0)

 
ẇ(0)
ġ(0)

!

= �Ṁ(0)

 
w(0)
g(0)

!

.

Thus,

M(0)

 
ẇ(0)
ġ(0)

!

= �Ṁ(0)

 
q
0

!

. (4.25)

Further notice that the transposed matrix

MT(0) =

 
AT(0) q
pT 0

!

is also nonsingular, so that the linear system

MT(0)

 
'
h

!

=

 
0
1

!

(4.26)

has the unique solution, namely

 
'
h

!

=

 
p
0

!

.
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Computing now the scalar product of this solution with both sides of
(4.25), we obtain

* 
p
0

!

,M(0)

 
ẇ(0)
ġ(0)

!+

= �
* 

p
0

!

, Ṁ(0)

 
q
0

!+

or *

MT(0)

 
p
0

!

,

 
ẇ(0)
ġ(0)

!+

= �
* 

p
0

!

, Ṁ(0)

 
q
0

!+

.

Taking into account (4.26), we see that

ġ(0) = �
* 

p
0

!

, Ṁ(0)

 
q
0

!+

.

Since

Ṁ(0) =

 
Ȧ(0) 0
0 0

!

,

we get
ġ(0) = �hp, Ȧ(0)qi .

This complets the proof. 2

4.2 Detection of local bifurcations

Consider a system of ODEs depending on one parameter

u̇ = f(u,↵), u 2 Rn, ↵ 2 R, (4.27)

where f : Rn ⇥ R ! Rn is smooth. The continuation of a branch in its
equilibrium manifold leads to ALCP (3.7) with

x =

 
u
↵

!

2 Rn+1

and F (x) = f(u,↵). Assume that this branch is parametrized by u = u(s)
and ↵ = ↵(s) and that s = 0 corresponds to either a quadratic limit point
w.r.t. ↵ or a simple branching point of (3.7). Ee will construct a regular
test-function  (s) to detect each bifurcation, i.e. a smooth scalar function
satisfying

 (0) = 0,  ̇(0) 6= 0.
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4.2.1 Limit point detection

Assume that s = 0 corresponds to a limit point w.r.t. ↵. We can also select
such a parametrization of the equilibrium branch near the limit point by s
that the tangent vector at s = 0 will have the form

 
u̇(0)
↵̇(0)

!

=

 
q
0

!

,

with q 2 Rn satisfying
A(0)q = 0, kqk = 1,

where A(0) = f
u

(u(0),↵(0)). Introduce

 LP(s) = g(s),

where g(s) is defined by solving the bordered system (4.23). In that system,
matrix M(s) is given by (4.22) with A(s) = f

u

(u(s),↵(s)), vector q is defined
above, and p 2 Rn satisfies AT(0)p = 0, kpk = 1.

Theorem 5 At a quadratic limit point holds

 LP(0) = 0 and  ̇LP(0) 6= 0.

Proof:

Clearly,  LP(0) = g(0) = 0. Using Lemma 10, we obtain

ġ(0) = �hp, Ȧ(0)qi = �hp, f
uu

(u(0),↵(0))[q, q]i = �hp,B(q, q)i.

Since hp,B(q, q)i 6= 0 at a quadratic limit point,  ̇LP(0) = ġ(0) 6= 0. 2

4.2.2 Branching point detection

Suppose that s = 0 corresponds to a simple branching point of ALCP (3.7)
in the solution branch �1 parametrized by x(1)(s) such that

kẋ(1)(0)k = 1.

As in Theorem 3, define the (N + 1)⇥ (N + 1) matrix

D(s) =

 
F
x

(x(1)(s)

[ẋ(1)(s)]T

!
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and introduce
 BP(s) = g(s),

where g(s) is still defined by solving the bordered system (4.23) but now

M(s) =

 
D(s) P
QT 0

!

with vectors Q,P 2 RN+1 satisfying D(0)Q = DT(0)P = 0 and kQk =
kPk = 1, so that M(s) is a (N + 2)⇥ (N + 2) nonsingular matrix for small
|s|.

Theorem 6 At a simple branching point holds

 BP(0) = 0 and  ̇BP(0) 6= 0.

Proof:
We have already seen in the proof of Theorem 3 that matrix D(0) is

singular. Its null-space N(D(0)) is one-dimensional and is spanned by Q =
q(2). Thus, g(0) = 0.

The null-space N(DT(0) is also one-dimensional and spanned by

P =

 
'
0

!

2 RN+1,

where JT' = 0 and k'k = 1 implying kPk = 1.
Now, Lemma 10 allows us to write

ġ(0) = �hP, Ḋ(0)Qi .

Since Q = q(2) and ẋ(1)(0) = q(1), we have

Ḋ(0)Q = Ḋ(0)q(2) =

 
F
xx

[ẋ(1)(0), q(2)]

[ẍ(1)(0)]Tq(2)

!

=

 
B(q(1), q(2))

[ẍ(1)(0)]Tq(2)

!

,

so that

hP, Ḋ(0)q(2)i =
* 

'
0

!

,

 
B(q(1), q(2))

[ẍ(1)(0)]Tq(2)

!+

= h', B(q(1), q(2))i.

This gives
ġ(0) = �h', B(q(1), q(2))i = �b12 6= 0,

because the branching point is simple. 2


