
Lecture 5: Location and
continuation of limit cycles

Yu.A. Kuznetsov: Introduction to Numerical Bifurcation Analysis

5.1 Limit cycles of autonomous ODEs

Assume, the ODE system

u̇ = f(u), u 2 Rn, (5.1)

has an isolated periodic orbit (limit cycle). Let u0(t + T0) = u0(t) be the
corresponding periodic solution with minimal period T0 > 0. The multipli-
ers of the cycle are the eigenvalues

µ1, µ2, . . . , µn

2 C

of the n⇥ n monodromy matrix M(T0), where M(t) satisfies

(
Ṁ(t) = f

u

(u0(t))M(t),
M(0) = I

n

.

There is always a trivial multiplier µ
n

= 1. If |µ| < 1 for each multiplier
except µ

n

= 1, the cycle is (orbitally) stable. If |µ| > 1 for at least one
multiplier, it is unstable.
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Consider a periodic boundary-value problem on the unit interval:

(
ẋ(t)� Tf(x(t)) = 0, t 2 [0, 1],

x(0)� x(1) = 0.

Clearly, x(t) = u0(T0t + �) is a solution to this BVP for T = T0 and any
phase shift �.

Let w(t) be a smooth period-1 function. To fix �, impose the integral
phase condition:

 [x] =
Z 1

0
hẇ(⌧), x(⌧)id⌧ = 0

Lemma 11 The condition

Z 1

0
hẇ(⌧), x(⌧)id⌧ = 0

is a necessary condition for the L2-distance

⇢(�) =
Z 1

0
kx(⌧ + �)� w(⌧)k2d⌧

between 1-periodic smooth functions x and w to achieve a local minimum
with respect to possible shifts � at � = 0.

Since kxk2 = hx, xi,

1

2
⇢̇(0) =

Z 1

0
hx(⌧ + �)� w(⌧), ẋ(⌧ + �)id⌧

����
�=0

=
Z 1

0
hx(⌧)� w(⌧), ẋ(⌧)id⌧

=
Z 1

0
hx(⌧), ẋ(⌧)id⌧ �

Z 1

0
hw(⌧), ẋ(⌧)id⌧

=
1

2

Z 1

0
dkx(⌧)k2 �

Z 1

0
hw(⌧), ẋ(⌧)id⌧

=
Z 1

0
hẇ(⌧), x(⌧)id⌧ .

2
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5.2 BVP for periodic solutions

A periodic solution to (5.1) can thus be computed by solving the BVP
8
><

>:

ẋ(t)� Tf(x(t)) = 0, t 2 [0, 1],
x(0)� x(1) = 0,R 1

0 hẇ(⌧), x(⌧)i d⌧ = 0,
(5.2)

where w 2 C1([0, 1],Rn) is a reference period-1 function. If (x0(·), T0) 2
C1([0, 1],Rn)⇥ R satisfies this BVP, then

u(t) = x0

✓
t

T0

◆

gives the T0-periodic solution of (5.1) with u(0) = x0(0).
For the monodromy matrix of the corresponding cycle we have M(T ) =

�(1), where
�̇(t)� Tf

x

(x(t))�(t) = 0, �(0) = I
n

.

The eigenvalues of  (1) coincide with the above introduced multipliers of
the cycle.

Introduce also the adjoint monodromy matrix (1) using the solution
of

 ̇(t) + TfT
x

(x(t)) (t) = 0,  (0) = I
n

.

One has
 (t) = [��1(t)]T.

Any solution v of an inhomogeneous linear system

v̇ � Tf
x

(x(t))v = b(t),

where b 2 C0(R,Rn), can be written as

v(t) = �(t)

v(0) +

Z
t

0
��1(⌧)b(⌧)d⌧

�
= �(t)


v(0) +

Z
t

0
 T(⌧)b(⌧)d⌧

�
.

A cycle is called simple if µ
n

= 1 has algebraic multiplicity 1. Let
q0, p0 2 Rn denote the left and right eigenvectors of the monodromy matrix
corresponding to the trivial multiplier,

(�(1)� I
n

)q0 = ( (1)� I
n

)p0 = 0,

(�(1)� I
n

)Tp0 = ( (1)� I
n

)Tq0 = 0,

such that pT0 p0 = qT0 q0 = 1. One can take q0 = c0f(x(0)) with c0 2 R,
c0 6= 0.
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5.3 Regularity of the defining system

One Newton iterate for problem (5.2) is

(x, T ) 7! (x+ v, T + S),

where (v(·), S) 2 C1([0, 1],Rn) ⇥ R is the solution of the linearized inhomo-
geneous BVP
8
><

>:

v̇(t)� Tf
x

(x(t))v � Sf(x(t)) = �ẋ(t) + Tf(x(t)), t 2 [0, 1],
v(0)� v(1) = �x(1) + x(0),R 1

0 hẇ(⌧), v(⌧)i d⌧ = �
R 1
0 hẇ(⌧), x(⌧)i d⌧.

(5.3)

The LHS of (5.3) can be re-written in the matrix form
2

64
D � Tf

x

(x) �f(x)
�0 � �1 0
Int

ẇ

0

3

75

 
v
S

!

,

where D is the di↵erentiation operator, �
a

is the evaluation at t = a, i.e.
�
a

v = v(a), and

Int
ẇ

v =
Z 1

0
hẇ(⌧), v(⌧)i d⌧.

First we assume that w = x so that ẇ = ẋ = Tf(x) on solutions of (5.2).
The next lemma is also valid for all w close to such x, i.e. when w is some
reference period-1 function, e.g. the solution at the previous continuation
step. We can also replace Tf(x) in the integral operator by f(x) without
a↵ecting essential properties of the operator.

Theorem 7 If (x(·), T ) corresponds to a simple cycle then the operator

L =

2

64
D � Tf

x

(x) � f(x)
�1 � �0 0
Int

f(x) 0

3

75

from C1([0, 1],Rn)⇥ R into C0([0, 1],Rn)⇥ Rn ⇥ R is one-to-one and onto.

Proof:
(1) Consider the homogeneous system

2

64
D � Tf

x

(x) � f(x)
�1 � �0 0
Int

f(x) 0

3

75

 
v
S

!

=

0

B@
0
0
0

1

CA . (5.4)
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From the first row of (5.4) we have

v̇ � Tf
x

(x(t))v = Sf(x(t))

implying

v(t) = �(t)

v(0) + S

Z
t

0
 T(⌧)f(x(⌧)) d⌧

�

= �(t)

v(0) +

S

T

Z
t

0
 T(⌧)ẋ(⌧)d⌧

�

= �(t)

v(0) +

S

T

Z
t

0
 T(⌧)�(⌧)d⌧ ẋ(0)

�

= �(t)

v(0) +

St

T
ẋ(0)

�
,

since  T(⌧)�(⌧) = I
n

and ẋ(t) = �(t)ẋ(0).
From the second row of (5.4) we now have

0 = v(1)� v(0) = (�(1)� I)v(0) +
S

T
ẋ(0)

or

(�(1)� I)v(0) = �S

T
ẋ(0).

Because ẋ(0) = c0q0 for some c0 2 R, c0 6= 0, we must solve

(�(1)� I)v(0) = �c0
S

T
q0, (5.5)

where q0 spans the kernel of �(1)� I.
Since the trivial multiplier 1 has algebraic multiplicity 1, we must have

S = 0, v(0) = c1q0, and hence v(t) = c1�(t)q0.
From the third row of (5.4) it follows that

0=
Z 1

0
fT(x(⌧))v(⌧) d⌧=

1

T

Z 1

0
ẋT(⌧)v(⌧) d⌧=

1

T

Z 1

0
[�(⌧)ẋ(0)]Tc1�(⌧)q0 d⌧

or

c0c1 qT0

✓Z 1

0
�T(⌧)�(⌧) d⌧

◆
q0 = 0,

from which it follows that c1 = 0. Thus v(t) ⌘ 0, so that the operator L is
one-to-one.
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(2) Consider a vector
0

B@
⇠
⌘
!

1

CA 2 C0([0, 1],Rn)⇥ Rn ⇥ R.

It is in the range of L if and only if there exists
 

v
S

!

2 C1([0, 1],Rn)⇥ R

such that 2

64
D � Tf

x

(x) � f(x)
�1 � �0 0
Int

f(x) 0

3

75

 
v
S

!

=

0

B@
⇠
⌘
!

1

CA . (5.6)

The first row implies that

v(t) = �(t)

v(0) +

Z
t

0
 T(⌧)(⇠(⌧) + Sf(x(⌧)))d⌧

�
.

The second row of (5.6) then implies

⌘ = v(1)� v(0)

= (�(1)� I)v(0) + �(1)
Z 1

0
 T(⌧)(⇠(⌧) + Sf(x(⌧)))d⌧

= (�(1)� I)v(0) + �(1)
Z 1

0
 T(⌧)⇠(⌧)d⌧ +

Sc0
T

q0,

since
Z 1

0
 T(⌧)f(x(⌧))d⌧ =

1

T

Z 1

0
 T(⌧)ẋ(⌧)d⌧ =

1

T

Z 1

0
 T(⌧)c0�(⌧)q0d⌧ =

c0
T
q0.

Thus

⌘ = (�(1)� I)v(0) +
Sc0
T

q0 + �(1)
Z 1

0
 T(⌧)⇠(⌧) d⌧. (5.7)

Since 1 is an algebraically simple eigenvalue of �(1), q0 is not in the range
of (�(1) � I). For given ⇠ and ⌘, equation (5.7) can be solved for v(0) and
S. Moreover, the solution is unique up to the addition of a scalar multiple
of q0 to v(0). Since

Z 1

0
(ẋ(⌧))T�(⌧)q0 d⌧ = c0

Z 1

0
(�(⌧)q0)

T�(⌧)q0 d⌧

= c0q
T
0

✓Z 1

0
�T(⌧)�(⌧)d⌧

◆
q0

6= 0,
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the scalar is determined uniquely by the third row of system (5.6). It follows
that the operator L is onto. 2

The established regularity of the linearization of the defining BVP at
the periodic solution ensures that this solution can be found by Newton’s
iterations.

To continue a limit cycle branch in

u̇ = f(u,↵), u 2 Rn,↵ 2 R. (5.8)

w.r.t. parameter ↵ 2 R, the following BVP can be used:
8
><

>:

ẋ(⌧)� Tf(x(⌧),↵) = 0, ⌧ 2 [0, 1],
x(0)� x(1) = 0,R 1

0 hx(⌧), ẋ0(⌧)i d⌧ = 0.
(5.9)

Theorem 7 together with an appropriate implicit function arguments implies
that a simple cycle has a locally unique continuation w.r.t. ↵. Moreover the
derivative operator of (5.9) with respect to (x, T,↵):

2

64
D � Tf

x

(x,↵) �f(x,↵) �Tf
↵

(x,↵)
�0 � �1 0 0
Int

ẋ0 0 0

3

75 (5.10)

has the one-dimensional null-space at a simple cycle.

5.4 BVCPs and their discretization

A Boundary Value Continuation Problem (BVCP) consists of finding
a branch of solutions (u(·),�) to the boundary-value problem with integral
constraints 8

>><

>>:

u̇(⌧)�H(u(⌧),�) = 0, ⌧ 2 [0, 1],
B(u(0), u(1),�) = 0,Z 1

0
C(u(⌧),�) d⌧ = 0,

(5.11)

starting from a given solution (u0(·),�0). Here u 2 Rnu ,� 2 Rn� and

H : Rnu ⇥ Rn� ! Rnu ,

B : Rnu ⇥ Rnu ⇥ Rn� ! Rnb ,

C : Rnu ⇥ Rn� ! Rnc
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are smooth functions.
BVCP (5.11) is (formally) well posed if

n
�

= n
b

+ n
c

� n
u

+ 1. (5.12)

The most widely used discretization of BVCP (5.11) is based on ortho-
gonal collocation. Introduce the primary mesh points

0 = ⌧0 < ⌧1 < . . . < ⌧
N

= 1

and the basis points

⌧
i,j

= ⌧
i

+
j

m
(⌧

i+1 � ⌧
i

),

where i = 0, 1, . . . , N � 1, j = 0, 1, . . . ,m. Then approximate the solution u
by

u(i)(⌧) =
mX

j=0

ui,jl
i,j

(⌧), ⌧ 2 [⌧
i

, ⌧
i+1],

where l
i,j

(⌧) are the Lagrange basis polynomials

l
i,j

(⌧) =
mY

k=0,k 6=j

⌧ � ⌧
i,k

⌧
i,j

� ⌧
i,k

and ui,m = ui+1,0.
Finally, apply the orthogonal collocation, i.e. require that

F :

8
><

>:

⇣P
m

j=0 u
i,jl0

i,j

(⇣
i,k

)
⌘
�H(

P
m

j=0 u
i,jl

i,j

(⇣
i,k

),�) = 0,

B(u0,0, uN�1,m,�) = 0,P
N�1
i=0

P
m

j=0 !i,j

C(ui,j ,�) = 0,

(5.13)

where ⇣
i,k

, k = 1, 2, . . . ,m, are the Gauss points (roots of the Legendre
polynomials relative to the interval [⌧

i

, ⌧
i+1]), and !

i,j

are the Lagrange
quadrature coe�cients.

If h = max
i=1,2,...,N |⌧

i

� ⌧
i�1| then the approximation error, i.e. the

deviation from the exact solution,

• in the basis points: ku(⌧
i,j

)� ui,jk = O(hm);

• in the mesh points: ku(⌧
i

)� ui,0k = O(h2m).

Moreover, the deviation from the exact parameter values is also O(h2m)
(super-convergence).
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5.5 Discretized BVCP for limit cycles

The problem (5.9) is a particular instance of a BVPC with

(
u = x,
� = (T,↵),

and

H(u,�) = Tf(x,↵), B(u(0), u(1),�) = u(0)� u(1), C(u,�) = hx, ẋ0i,

so that n
u

= n
b

= n, n
c

= 1, n
�

= 2, and (5.12) holds. The corresponding
to (5.9) discretized via the orthogonal collocation system (5.13) is a huge
ALCP:

F (X) = 0, X = ({xj,k}, T,↵) 2 RmnN+n+2

where j = 0, 1, . . . , N � 1, k = 0, 1, . . . ,m. Its Jacobian matrix F
X

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

x0,01 x0,11 x1,01 x1,11 x2,01 x2,11 x3,01 T1 ↵1

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

• • • •
• • • •
• • • • • • • • • • • • • •

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

is sparse, corresponds to the linear operator (5.10), and has the one-dimensional
null-space at generic points satisfying F (X) = 0.

Suppose that Newton-like corrections of the continuation algorithm con-
verged to a point

X0 = ({xj,k0 }, T0,↵0)
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on the cycle branch, which therefore approximates a solution to (5.9). The
matrix F

X

(X0) can be transformed by Gauss elimination to the form

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

x0,01 x0,11 x1,01 x1,11 x2,01 x2,11 x3,01 T1 ↵1

• • • • • • • •
• • � • • • • •
• • � � • • • •
• • � � � • • •

• • • • • • • •
• • � • • • • •

• • � � � � • • • •
• • � � � � � • • •

• • • • • • • •
• • � • • • • •

⇤ ⇤ � � � � ? ? • •
⇤ ⇤ � � � � ? ? • •
• • • • • •
• • • • • •
• • � � � � � � � � � � • • • •

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

where �’s denote eliminated entries. Let P0 be the matrix block marked by
⇤’s and P1 the matrix block marked by ?’s. Applying this matrix to the
vector

({vj,k}, 0, 0)

and using v0,0 = v(0), vN,0 = v(1), we see that

P0v(0) + P1v(1) = 0 ) M(T0) ⇡ �P�1
1 P0.

Thus, the eigenvalues of (�P�1
1 P0) approximate the multipliers of the cycle.

Note that the matrices above correspond to the case N = 3,m = n = 2.


