Yu.A. Kuznetsov: Introduction to Numerical Bifurcation Analysis

Lecture 5: Location and
continuation of limit cycles

5.1 Limit cycles of autonomous ODEs
Assume, the ODE system

= f(u), ueR", (5.1)
has an isolated periodic orbit (limit cycle). Let uo(t + Tp) = up(t) be the

corresponding periodic solution with minimal period Ty > 0. The multipli-
ers of the cycle are the eigenvalues

M1, 2,y oy fin eC

of the n x n monodromy matrix M (Tp), where M (t) satisfies

{M(t) = fuluo(t))M(t),

There is always a trivial multiplier u, = 1. If || < 1 for each multiplier
except pun, = 1, the cycle is (orbitally) stable. If |u| > 1 for at least one
multiplier, it is unstable.
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Consider a periodic boundary-value problem on the unit interval:

#(t) — Tf(x(t) = 0, telo,1],
2(0) —z(1) = 0.

Clearly, z(t) = up(Tot 4+ o) is a solution to this BVP for T = Tj and any
phase shift o.

Let w(t) be a smooth period-1 function. To fix o, impose the integral
phase condition:

Lemma 11 The condition

/1<w(7),x(7)>d7 —0
0

s a mecessary condition for the Lo-distance

_ /1 |2(r + o) — w(r)|2dr
0

between 1-periodic smooth functions x and w to achieve a local minimum
with respect to possible shifts o at o = 0.

Since ||z]? = (z, ),

1
5,&(0) = /()(:c(7'+a)—w(7'),jc(7'+0)>d7

o=0

- /01<a;(7)—w(r),a‘c(r)>df
1 1
= [ w)ampdr = [ ().

= 5 [ AP - [ (), atrar

1
_ / (W (7), 2())dr .
0
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5.2 BYVP for periodic solutions

A periodic solution to (5.1) can thus be computed by solving the BVP
o(t) = Tf(x(t)) = 0, te[0,1],
z(0) —x(1) = 0, (5.2)
Jo ((r),a(r)) dr = 0,

where w € C'([0,1],R") is a reference period-1 function. If (xo(-),Tp) €
C1([0,1],R") x R satisfies this BVP, then

w-n(5)

gives the Ty-periodic solution of (5.1) with u(0) = z(0).
For the monodromy matrix of the corresponding cycle we have M (T') =
®(1), where

(1) — Tfulx()D(t) =0, D(0) = .

The eigenvalues of ¥(1) coincide with the above introduced multipliers of
the cycle.
Introduce also the adjoint monodromy matrix ¥ (1) using the solution
of
W(t) + Tfy (z(0)P(t) =0, ¥(0) =TI,

One has
U(t) =@ (1)

Any solution v of an inhomogeneous linear system
0 —Tfe(x(t))v ="0b(t),

where b € C°(R,R™), can be written as

o(t) = B(t) [U(O) + /0 tqu(T)b(T)dT} — () [U(o) 4 /0 t qJT(T)b(T)dT] .

A cycle is called simple if u, = 1 has algebraic multiplicity 1. Let
qo,po € R™ denote the left and right eigenvectors of the monodromy matrix
corresponding to the trivial multiplier,

(‘I’(l)—fn)% = (\Ij(l)_In)pO = 0,
(®(1) = I)'po = (¥(1) =)0 = O,

such that pipo = ¢ qo = 1. One can take gy = cof(z(0)) with ¢y € R,
Co 75 0.
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5.3 Regularity of the defining system

One Newton iterate for problem (5.2) is
(,T) = (z+v,T+59),

where (v(-),S) € C1([0,1],R™) x R is the solution of the linearized inhomo-
geneous BVP

o(t) = Tfa(z®)v = Sf(a(t) = —i(t)+Tf(x(t), t<]01],
v(0) —v(l) = —=z(1)+z(0), (5.3)

Jo (w(r),v(r)) dr = —f01<w(7),m( ) dr.

The LHS of (5.3) can be re-written in the matrix form

+Tf
+ x(

D—-Tf.(z) —f(x) y
L (),
Intw 0

where D is the differentiation operator, d, is the evaluation at ¢ = a, i.e.
0qv = v(a), and

1
Inty, v = /0 (w(T),v(r)) dT.

First we assume that w = x so that w = & = T f(x) on solutions of (5.2).
The next lemma is also valid for all w close to such z, i.e. when w is some
reference period-1 function, e.g. the solution at the previous continuation
step. We can also replace T'f(z) in the integral operator by f(z) without
affecting essential properties of the operator.

Theorem 7 If (z(-),T) corresponds to a simple cycle then the operator

D=Tfe(x) = f(z)
L= 01 — do 0
Intf(m) 0

from C1([0,1],R™) x R into C°([0,1],R™) x R™ x R is one-to-one and onto.

Proof:
(1) Consider the homogeneous system

D—-Tf,(x) — f(z)
01 — do 0 <

0
) 1ol (5.4)
Intf(l,) 0
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From the first row of (5.4) we have
0 =T fo(x(t))v = Sf(x(t))
implying
o(t) = (1) :U(O) 4 S/Ot V(7)) dT}
~ o) :U(O) + % /0 t \I/T(T)Q’J(T)dT}

= o o)+ 2 | U (r)(r)dr 0]
st

— (t) [o(0) + 3(0)].

since UT(7)®(7) = I, and (t) = ®(¢)2(0).
From the second row of (5.4) we now have

0=v(1) —v(0) = (®(1) — I)v(0) + %x(())
(®(1) — Iv(0) = —%:)’:(0).

Because #(0) = ¢oqp for some ¢y € R, ¢y # 0, we must solve

S
(B(1) ~ 1)u(0) = ~co0, (5:5)
where ¢y spans the kernel of ®(1) — I.
Since the trivial multiplier 1 has algebraic multiplicity 1, we must have
S =0, v(0) = 190, and hence v(t) = c1P(t)qo.
From the third row of (5.4) it follows that

1 1 1
0= [ Fam) dr= [ i) dr= [ @) e dr

cocy qg (/01 <I>T(T)CI>(T) dT) qo =0,

from which it follows that ¢; = 0. Thus v(¢) = 0, so that the operator L is
one-to-one.
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(2) Consider a vector

§

n | €c®(o0,1],R") x R" x R.

w

It is in the range of L if and only if there exists

( g ) e cY([0,1],R") x R

such that

01 — do 0
Intf(x) 0

D —Tf.(x) — f(=x) (

The first row implies that

o(t) = { / ol (r

The second row of (5.6) then implies
n = o(1)-v(0)

— (@(1) — D)o(0) + (1 /\IJT
— (@(1) - I)w(0) + 31 /\IIT
| v = [Tem
Thus

1= (@)~ D0(0) + gy + 2(1)

/ v (r (5.7)

Since 1 is an algebraically simple eigenvalue of ®(1), go is not in the range
of ((1) — I). For given £ and 7, equation (5.7) can be solved for v(0) and
S. Moreover, the solution is unique up to the addition of a scalar multiple

of go to v(0). Since

1 1
[ @@ e i = e [ (@00 @0 dr
0 0

= aodl ([ #T2r) 0
0
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the scalar is determined uniquely by the third row of system (5.6). It follows
that the operator L is onto. a

The established regularity of the linearization of the defining BVP at
the periodic solution ensures that this solution can be found by Newton’s
iterations.

To continue a limit cycle branch in
= f(u,a), ueR", acR. (5.8)
w.r.t. parameter o € R, the following BVP can be used:

i(t) = Tf(x(r),0) = 0, 7€[0,1],
w(O) —z(1) = 0, (5.9)
fo (r))dr =0

Theorem 7 together with an appropriate implicit function arguments implies
that a simple cycle has a locally unique continuation w.r.t. a. Moreover the
derivative operator of (5.9) with respect to (z, T, a):

D—fo(l‘,()é) —f(ZL‘,OZ) _Tfoz(xv Oé)
8o — 61 0 0 (5.10)
Intg, 0 0

has the one-dimensional null-space at a simple cycle.

5.4 BVCPs and their discretization

A Boundary Value Continuation Problem (BVCP) consists of finding
a branch of solutions (u(-), 3) to the boundary-value problem with integral
constraints

u(T)—H(u(T),,B) = 0, 7€0,1],
u(0),u(1),8) = 0,

) (5.11)
/C’u(r),ﬁ dr = 0,

starting from a given solution (ug(-), Bp). Here u € R™, 3 € R™ and

H :R™ x R" — R™,
B :R™ x R™ x R™ — R",
C:R™ x R" — R"*
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are smooth functions.
BVCP (5.11) is (formally) well posed if
ng =np + ne — Ny + 1. (5.12)

The most widely used discretization of BVCP (5.11) is based on ortho-
gonal collocation. Introduce the primary mesh points

O=mp<n<...<1y=1

and the basis points
Tij = Ti + L(Ti—&-l —Ti),
’ m

where i =0,1,...,N—1, 7=0,1,...,m. Then approximate the solution u
by

u(l)(T) = Zui’jliﬂ‘(T), T E [Ti77'i+1]7
7=0

where [; j(7) are the Lagrange basis polynomials
m
L) = ]I %
k=0ks£j 'bJ T ik
and ub™ = 4" +10,
Finally, apply the orthogonal collocation, i.e. require that

(70wl (i) ) = H(ST g a5 (Gi), B) = 0,

E B(u®0, uN=1m 8y =0, (5.13)
foi_ol Z;n:O wi,jc(ui7j7 B) = 07
where (; 5, k = 1,2,...,m, are the Gauss points (roots of the Legendre

polynomials relative to the interval [r;,7;11]), and w;; are the Lagrange
quadrature coefficients.
If h = max;—12 N |7 — Ti—1| then the approximation error, i.e. the

deviation from the exact solution,
e in the basis points: |u(r; ;) — u™’|| = O(h™);
e in the mesh points: ||u(r;) — u*?|| = O(h*™).

Moreover, the deviation from the exact parameter values is also O(h?*™)
(super-convergence).
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5.5 Discretized BVCP for limit cycles

The problem (5.9) is a particular instance of a BVPC with

{5 _ (T,a),

and

H(u, f) = Tf(z, @), B(u(0),u(1), ) = u(0) = u(1), Clu, ) = (x, o),

so that n, = ny = n,n. = 1,ng = 2, and (5.12) holds. The corresponding
to (5.9) discretized via the orthogonal collocation system (5.13) is a huge
ALCP:

F(X)=0, X = {2}, T, a)ermnN+tnt2
where 7 =0,1,...,N -1, k=0,1,...,m. Its Jacobian matrix Fx

0 1
X

k=

1,1 2,0 2,1 3,0
X

Z 1 Ty Ty Ty

8

® 6 6 o6 o6 o o o ——
3
2

0, 0
1 1
[ [
[ ] [ ]
[ [ ]
[ ] [ ]

is sparse, corresponds to the linear operator (5.10), and has the one-dimensional
null-space at generic points satisfying F'(X) = 0.
Suppose that Newton-like corrections of the continuation algorithm con-
verged to a point
Xo = ({23}, T, a0)
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on the cycle branch, which therefore approximates a solution to (5.9). The
matrix Fx(Xp) can be transformed by Gauss elimination to the form

,1
X

[

1,1 2,0 2,1 3,0
x i i x|

=
L

0,0
T x
[

0
1
°
o
o
o

e o o o
O O e e

O O e @€ O e o o —+—
O O e e o o o o
O O O e
O O e e

O O e @€ O e e o

O O e e o o o o

O O O e

O O e e

@ O 0 X X e e
e 0 0 X X e o

e O O X X
o O O X X

(¢] ¢} (¢] (¢] (¢} (¢] O o O o

where o’s denote eliminated entries. Let Py be the matrix block marked by
x’s and P; the matrix block marked by x’s. Applying this matrix to the
vector

({v*},0,0)
N,0 _

and using v%0 = v(0),vN? = v(1), we see that
Py(0) + Pro(l) =0 = M(Ty) =~ —P;'R.

Thus, the eigenvalues of (—P; 1Po) approximate the multipliers of the cycle.
Note that the matrices above correspond to the case N =3, m =n = 2.



